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ABSTRACT
In the assignment problem, a set of items must be allocated to unit-

demand agents who express ordinal preferences (rankings) over

the items. In the assignment problem with priorities, agents with

higher priority are entitled to their preferred goods with respect to

lower priority agents. A priority can be naturally represented as a

ranking and an uncertain priority as a distribution over rankings.

For example, this models the problem of assigning student appli-

cants to university seats or job applicants to job openings when the

admitting body is uncertain about the true priority over applicants.

This uncertainty can express the possibility of bias in the genera-

tion of the priority ranking. We believe we are the first to explicitly

formulate and study the assignment problem with uncertain priori-

ties. We introduce two natural notions of fairness in this problem:

stochastic envy-freeness (SEF) and likelihood envy-freeness (LEF).

We show that SEF and LEF are incompatible and that LEF is in-

compatible with ordinal efficiency. We describe two algorithms,

Cycle Elimination (CE) and Unit-Time Eating (UTE) that satisfy

ordinal efficiency (a form of ex-ante Pareto optimality) and SEF;

the well known random serial dictatorship algorithm satisfies LEF

and the weaker efficiency guarantee of ex-post Pareto optimality.

We also show that CE satisfies a relaxation of LEF that we term

1-LEF which applies only to certain comparisons of priority, while

UTE satisfies a version of proportional allocations with ranks. We

conclude by demonstrating how a mediator can model a problem

of school admission in the face of bias as an assignment problem

with uncertain priority.
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1 INTRODUCTION
Consider a motivating example of the assignment problem where a

number of university admission slots (the items) must be assigned

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

to student applicants (the agents). The university slots could be at a

single university or several. Applicants might have preferences over

different universities, or might have preferences over different slots

at the same university (for example, some slots might be associated

with merit-based financial aid, or include admission to particular

academic programs). Applicants are unit-demand, meaning they

only need to be assigned a single slot (and derive no benefit from

being assigned multiple).

Most university systems employ some form of priority-based

admissions; this can be expressed through a ranking over applicants.

For example, a priority might rank applicants by standardized exam

scores, or perhaps by some more complex holistic assessment. Given

any deterministic priority (a ranking), one might naturally solve

the assignment problem using the serial dictatorship rule, so that

students choose their most preferred remaining university slot one

at a time in order of their standardized exam score. Indeed, systems

roughly like this are employed in several countries around the

world such as the Indian Institutes of Technology [13].

Despite the appeal of such a simple and ostensibly fair system,

there is reason to suspect that any scoring or ranking system is

based on imperfect noisy signals of the true underlying priority

(whatever that might be). For example, an applicant A scoring 1

point higher on a standardized exam or holistic assessment than

another applicant B is not, in general, 100% more likely to be a better

student than B. Even more worryingly, studies show that standard-

ized exam performance is closely related to demographic factors

such as race and income [8], leading to uncertainty based on social

bias and inequality in addition to random noise like whether one

had a good breakfast the day of an exam. More holistic assessments

are further vulnerable to the well documented phenomenon of im-

plicit bias against historically marginalized groups [5]. Ignoring

these uncertainties may result in arbitrary decisions (deterministi-

cally preferring one applicant over another when the comparison is

unclear and noisy) and systemic discrimination against historically

marginalized groups.

Previous work has attempted to solve the second problem of bias

without explicitly modeling an uncertain priority by adapting the

so-called “Rooney Rule” [7, 15]. There are variations, but roughly

speaking these methods reserve a number of “minority” spots and

prioritize this many “minority” applicants in some serial dictator-

ship assignment. This approach can lead to fairness gerrymander-
ing [14] by which structured subgroups remain disadvantaged. In

particular, Rooney Rule style approaches are predicated on a single

binary distinction of the applicant population into “majority” (or
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privileged) and “minority” (or disadvantaged) applicants. But in

reality, applicant identity is multidimensional (race, gender, income,

disability, first language, etc.) and bias can compound along inter-

sections. In fact, it is perfectly plausible that the vast majority of

applicants are disadvantaged (that is, suffer from bias leading to

underestimation of their priority) along one or more dimensions of

identity, though not all to the same extent. In addition to group iden-

tity, there may sometimes be uncertainties related to the priority of

individual applicants, unique circumstances that merit accounting.

For these reasons, we consider the more general problem that

takes as input an uncertain priority, expressed as a probability

distribution over rankings of applicants. The generality of the input

to our algorithms ensures that a decision maker can fully model

the complexity of uncertainty and bias inherent in the creation of a

priority. This modeling problem is outside the scope of this paper,

though we do provide an example for our experiments in Section 6.

Rather, our emphasis is on the question of characterizing fairness

and efficiency given a random priority, and providing algorithms

to compute random assignments that satisfy these desiderata.

1.1 Contributions
We study an extension of the random assignment problem [2, 6, 18]

in which a decision maker must allocate a number of items to unit-

demand agents in a way that is consistent with an uncertain priority
represented as a distribution over rankings of the agents. To the

best of our knowledge, we are the first to characterize this more

general problem.

In general we want to compute a random assignment that is

simultaneously efficient with respect to agent preferences over the

items and fair with respect to the agent priorities. Ordinal efficiency
(OE) [6] generalizes the concept of Pareto efficiency to the case of a

random assignment. Our main contribution is to characterize two

alternative notions of fairness for the random assignment problem

with uncertain priorities in Section 3. The first notion, which we

call stochastic envy-freeness (SEF), guarantees that any agent whose

priority first-order stochastically dominates another agent’s priority

should prefer their own (random) assignment to that of the other

agent. The second notion, which we call likelihood envy-freeness
(LEF), guarantees that the likelihood (over the random assignment)

that an agent prefers the assignment of another should be at most

the likelihood (over the uncertain priority) that the latter agent has

higher priority than the former.

We introduce additional notions that helps more finely distin-

guish between algorithms that satisfy one of the above notions. The

first is a relaxation of LEF called 1-LEF that holds only when an

agent has higher priority than another with probability 1. The next

is ranked proportionality (PROP), where the allocation of any agent

should stochastically dominate the allocation where she gets her

𝑖-th preferred item with probability 𝑝𝑖 if she herself is ranked at

position 𝑖 with that probability.

Formal definitions are provided in Section 3. We provide illus-

trative examples of these concepts as well as justification for why

multiple definitions of fairness might be appropriate in Section 3.3.

In Section 4 we show that it is impossible to guarantee OE and

LEF simultaneously. We also show that it is impossible to guarantee

SEF and LEF simultaneously. Given this, we focus on achieving

OE and SEF. In Section 5 we describe two algorithms: Unit-time
Eating (UTE) and Cycle Elimination (CE). We show that both of

these algorithms satisfy OE and SEF. To more finely distinguish be-

tween these algorithms, we show that CE also satisfies the relaxed

1-LEF property, while UTE satisfies PROP. We also show that any

algorithm achieving OE cannot achieve PROP and 1-LEF simulta-

neously, so that we cannot achieve a super-set of the properties

achieved by these algorithms.

It is straightforward to observe that the well known Random
Serial Dictatorship (RSD) that samples a priority from Σ and then

uses the serial dictatorship satisfies LEF, PROP, and is ex-post Pareto

efficient, though it does not satisfy OE [6]. We obtain a nearly

complete characterization of achievable subsets of our efficiency

and fairness properties, as shown in Table 1.

Algorithm OE SEF LEF 1-LEF PROP

RSD ✓ ✓ ✓
UTE (new) ✓ ✓ ✓
CE (new) ✓ ✓ ✓

Table 1: Summary of fairness properties achieved.

In Section 6 we return to a consideration of our motivating

application of biased school admissions. We provide a practical

example modeling an uncertain priority in the presence of bias and

compare our CE and UTE algorithms with previous approaches to

address bias using “Rooney Rule” style approaches [7, 15].

1.2 Related Work
Random Assignment. There is a large body of work studying the

problem of random assignment with no priority (or, in our frame-

work, when the priority is uniform). Abdulkadiroglu and Sönmez

[1] proposed a random serial dictatorship mechanism, which draws

an ordering of agents uniformly at random and let them choose

items in that order, and showed that this mechanism is ex-post effi-

cient. Zhou [24] observed that though random serial dictatorship

is fair, it is not efficient when the agents are endowed with Von

Neumann-Morgenstern preferences over lotteries. Bogomolnaia

and Moulin [6] introduced a notion of efficiency that is stronger

than ex-post efficiency, namely ordinal efficiency, and showed that

random serial dictatorship is not ordinally efficient. They proposed

the probabilistic serial rule that is ordinally efficient. Moreover,

probabilistic serial is (stochastically) envy-free while random se-

rial dictatorship is not. Abdulkadiroglu and Sönmez [2] studied

the relationship between ex-post efficiency and ordinal efficiency,

showing that a lottery induces an ordinally efficient random assign-

ment if and only if each subset of the full support of the lottery is

undominated (in a specific sense).

Subsequent works investigated natural extensions of the canoni-

cal setup. Moulin and Bogomolnaia [18] considered the problem of

random assignment in the case where agents can opt out, and char-

acterised probabilistic serial by ordinal efficiency, envy-freeness,

strategyproofness, and equal treatment of equals in this setting.

Featherstone [10] studied the notion of rank efficiency, which max-

imises the number of agents matched to their first choices.
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Fair Ranking. The assignment problem with priority is closely

related to the subset selection problem that has been studied ex-

tensively as a problem in fair ranking [7, 9, 12, 15–17, 19] where

the goal is to optimize some latent measure of utility for the algo-

rithm designer subject to group fairness constraints on the resulting

ranking. Recent work considers explicitly modeling the uncertainty

from bias when estimating a ranking based on observed utilities

[23], similar to our approach in modeling an uncertain priority.

Our work differs from the fair ranking literature in that we study

a more general assignment problem in which agents may not all

have the same preferences over items. Of course, one can always

translate a given ranking into an assignment by employing the

serial dictatorship rule, but this need not be ordinally efficient [6].

Instead, we formulate our desiderata more explicitly in the wider

context of the assignment problem itself.

Two-sided matching. School choice problems are often studied

in the context of two-sided matching, where applicants have pref-

erences over schools and schools have preferences over applicants.

For example, the deferred acceptance algorithm (and its extensions)

calculates stable matchings and has been extensively studied and

deployed in the real world [3, 4, 11, 20, 21]. Our problem is different

in two ways. First, the “items” in our problem (eg., school seats)

share a single common priority over applicants, so the notion of

stability simply means no applicant of lower priority is assigned an

item preferred by an agent of higher priority. However, our setting

is more complex in the second sense: The shared priority is uncer-

tain, and the assignment will be random, requiring an extension of

existing fairness properties and algorithms.

2 PRELIMINARIES
We are given 𝑛 unit demand agentsA = {1, 2, . . . , 𝑛} and a set of𝑚

items I. We assume without loss of generality that𝑚 ≥ 𝑛 (if not,

one can create additional “dummy” items that are least preferred

by all agents). We write 𝑎 ≻𝑖 𝑏 to denote that agent 𝑖 prefers item

𝑎 to item 𝑏. Each agent has ordinal preferences represented as a

total order over I, that is, for every agent 𝑖 we have a permutation

𝜋𝑖 : I → {1, . . . , 𝑛} such that 𝜋𝑖 (𝑎) < 𝜋𝑖 (𝑏) if and only if 𝑎 ≻𝑖 𝑏.
1

A simple priority over agents is a permutation𝜎 : A → {1, . . . , 𝑛}
where𝜎 (𝑖) < 𝜎 ( 𝑗)means that 𝑖 has higher priority than 𝑗 . A random
priority is a probability distribution over simple priorities which we

denote as Σ = {(𝜎𝑘 , 𝜌𝑘 )} where each 𝜎𝑘 is a simple priority, 𝜌𝑘 ≥ 0,

and

∑
𝑘 𝜌𝑘 = 1.

A simple assignment is a matching 𝑓 : A → I. A lottery is a

probability distribution over simple assignments which we denote

as L = {(𝑓𝑘 , 𝑝𝑘 )} where each 𝑓𝑘 is a simple assignment, 𝑝𝑘 ≥ 0,

and

∑
𝑘 𝑝𝑘 = 1.

Following [6], we call a probability distribution over [𝑚] itself a

random allocation to an agent. It is important to note that agents

have ordinal preferences over deterministic items which only in-

duces a partial order over random allocations. That is, given 𝜋𝑖 , it

may be unclear whether 𝑖 would prefer one random allocation to

another. We denote by 𝑃 = {𝑝𝑖 𝑗 } a random assignment, the 𝑛 by 𝑚

1
In general, results extend trivially to the case where agents may have objective indiffer-

ences between items, meaning that if any agent is indifferent between two items then

all agents are indifferent between those items. However, our results do not necessarily

extend straightforwardly if agents have subjective indifferences, see [6].

matrix where 𝑃𝑖 , the 𝑖-th row, is agent 𝑖’s random allocation, and

where

∑
𝑖 𝑝𝑖 𝑗 = 1 for all columns 𝑗 . In general, a random assign-

ment 𝑃 can be induced by one or more lotteries, the existence of

which is guaranteed by the Birkhoff-von Neumann Theorem, but a

particular lottery induces a unique random assignment 𝑃 .

In the assignment problem with uncertain priorities we are given a

random priority Σ and agent preferences {𝜋𝑖 } and we must compute

a random assignment.

3 DESIDERATA
In this section we introduce the normative properties that an algo-

rithm for the random assignment with uncertain priorities problem

should satisfy. Broadly speaking, these desiderata require that the

algorithm be efficient with respect to agent preferences and fair

with respect to agent priorities.

3.1 Efficiency
A simple assignment 𝑓 is Pareto efficient (or Pareto optimal) if it

is not dominated by any other simple assignment, which simply

means that there is no alternative such that no agent is worse off

and at least one agent is better off.

Definition 1 (Pareto Efficiency). A simple assignment 𝑓 is
Pareto efficient if for all simple assignments 𝑔 one of the following
holds: (i) ∃𝑖 ∈ A such that 𝑓 (𝑖) ≻𝑖 𝑔(𝑖), or (ii) 𝑔(𝑖) ⊁ 𝑓 (𝑖) for all
𝑖 ∈ [𝑛].

A lottery L is ex-post Pareto efficient if every simple assignment

in the support of L (i.e., every simple assignment 𝑓𝑘 with 𝑝𝑘 > 0)

is Pareto efficient.

A stronger efficiency property for a random assignment is ordinal
efficiency (OE) [6]. To define ordinal efficiency we must first define

the notion of stochastic dominance.

Definition 2 (Stochastic Domination). A probability distri-
bution 𝑋 stochastically dominates another distribution 𝑌 under per-
mutation 𝜋 (denoted 𝑋 ≻𝑠𝑑𝜋 𝑌 ) if for all 𝑡 ∈ {1, . . . , 𝑛} it holds that∑𝑡
𝑟=1

𝑋𝜋−1 (𝑟 ) ≥
∑𝑡
𝑟=1

𝑌𝜋−1 (𝑟 ) , where 𝜋
−1 is the inverse permutation.

A random assignment 𝑃 is stochastically dominated by a random as-
signment 𝑄 ≠ 𝑃 if the random allocation induced by 𝑄 stochastically
dominates the random allocation induced by 𝑃 under preferences 𝜋𝑖
for every agent 𝑖 ∈ [𝑛].

Note that this implies the following: If random assignment 𝑄

stochastically dominates random assignment 𝑃 , then every agent

prefers 𝑄 to 𝑃 under any Von Neumann-Morgenstern utility func-

tion consistent with their ordinal preferences. Now we can define

ordinal efficiency, following [6].

Definition 3 (Ordinal Efficiency, OE). We say that a random
assignment 𝑃 is ordinally efficient if it is not stochastically dominated
by any other random assignment.

At a high level, a random assignment is ordinally efficient if

there is no other random assignment that is better for all agents

and all utility functions consistent with their ordinal preferences.

The property is not trivial: Some natural algorithms such as random

serial dictatorship are Pareto efficient but not ordinally efficient.
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3.2 Fairness
We define fairness in terms of envy. We say that one agent envies
another if the former prefers the item assigned to the latter. Envy

of a lower priority agent constitutes a justified complaint against

an assignment; ideally we would like to compute an envy-free as-

signment with respect to the priority.

Definition 4 (Envy-Freeness). We say that a simple assignment
𝑓 is envy-free with respect to a simple priority 𝜎 if for all 𝑖, 𝑗 ∈ [𝑛],
𝜎 (𝑖) < 𝜎 ( 𝑗) =⇒ 𝑓 (𝑖) ≻𝑖 𝑓 ( 𝑗) .

However, it is immediately evident that it is impossible to com-

pute a single simple assignment that is envy-free in this sense for

every simple priority in the support of a random priority (for exam-

ple, if there are two agents with uncertain priority who both prefer

the same item). Instead, we need to compute a random assignment

so that each agent is fairly treated ex-ante (for example, so that

each agent has a fair probability of receiving the preferred good).

There are two natural ways to generalize the concept of envy to

a random assignment with a random priority. One is to imagine

that one agent envies another if the random allocation of the latter

stochastically dominates that of the former under the former’s

ordinal preferences. Envy of this type forms a justified complaint if

the envying agent also stochastically dominates the envied agent

in terms of the random priority. More formally,

Definition 5 (Stochastic Envy-Freeness, SEF). Consider a
random assignment 𝑃 generated under a random priority Σ. Let 𝑆𝑖 be
the probability distribution over [𝑛] induced by Σ for agent 𝑖 , that is,
for 𝑟 ∈ [𝑛], 𝑆𝑖𝑟 =

∑
𝑘 :𝜎𝑘 (𝑖 )=𝑟 𝜌𝑘 . Let 𝜎∗ be the identity permutation,

i.e., 𝜎∗ (𝑖) = 𝑖 . 𝑃 is stochastically envy-free (SEF) with respect to Σ if
for all 𝑖, 𝑗 ∈ [𝑛], 𝑆𝑖 ≻𝑠𝑑𝜎∗ 𝑆 𝑗 =⇒ 𝑃𝑖 ≻𝑠𝑑𝜋𝑖 𝑃 𝑗 .

Loosely speaking, the implication of stochastic envy-freeness

can be read as “if agent 𝑖 probably has higher priority than 𝑗 then 𝑖

should prefer their random allocation to 𝑗 ’s under all utility func-

tions consistent with 𝑖’s ordinal preferences.”

A second way to generalize envy is by considering the likelihood

of envy (in the simple sense) with respect to a lottery inducing

a given random assignment. Envy of this type is justified if the

likelihood of agent 𝑖 envying another agent 𝑗 is greater than the

likelihood over the random priority that 𝑖 has lower priority than

agent 𝑗 . We call a random assignment likelihood envy-free if there

is a lottery which induces it and has no envy of this kind.

Definition 6 (Likelihood Envy-Freeness, LEF). A random
assignment 𝑃 satisfies likelihood envy-freeness (LEF) under Σ if 𝑃 can
be induced by a lottery L such that for all 𝑖, 𝑗 ∈ [𝑛], Pr𝜎∼Σ [𝜎 (𝑖) <
𝜎 ( 𝑗)] ≤ Pr𝑓 ∼L [𝑓 (𝑖) ≻𝑖 𝑓 ( 𝑗)] .

In other words, LEF means that an agent 𝑖 who is ℓ-likely to have

higher priority than another agent 𝑗 should be at least ℓ-likely to

prefer their assigned item to 𝑗 ’s.

We say an algorithm satisfies OE (resp. SEF, LEF) if it always

produces random assignment that satisfies OE (resp. SEF, LEF). As

we show in Section 4, it is not possible to guarantee SEF and LEF

simultaneously.

3.3 Relationship between LEF and SEF
The relationship between SEF and LEF is subtle; neither implies

the other and it is not immediately evident which is the “better”

or more “natural” fairness property. We present two examples to

illustrate that an assignment satisfying only one of SEF and LEF

might still be unfair, so that both properties are useful competing

notions of fairness, and neither is strictly stronger than the other.

We first present an example which shows that an assignment that

satisfies SEF can be unfair. Consider 𝑛 = 2 agents and𝑚 = 2 items

which we label 𝑎, 𝑏 for clarity. Both agents prefer 𝑎 to 𝑏, and the

random priority is simply Σ = {(𝜎, 1)} with 𝜎 (1) < 𝜎 (2), i.e. agent

1 has higher priority than agent 2 with probability 1. In this setup,

allocating
1

2
unit of 𝑎 and 𝑏 to both agent yields an assignment that

satisfies SEF. However, this assignment is clearly unfair, because

even though agent 1 has higher priority than agent 2, they are

getting the same assignment. Notice that this assignment does not

satisfy LEF. In this instance, LEF could be used to characterize how

much one agent is prioritized over the other.

The next example shows that an assignment that only satis-

fies LEF can also be unfair. Consider 𝑛 = 2 agents and 𝑚 = 100

items which we label 𝑖1, . . . , 𝑖100 for clarity. The preferences of both

agents are 𝑖1 ≻ · · · ≻ 𝑖100. The random priority is given by Σ =

{(𝜎1,
1

2
), (𝜎2,

1

2
)} with 𝜎1 (1) < 𝜎1 (2) and 𝜎2 (2) < 𝜎2 (1). In other

words, both agents have the same priority. In this setup, allocating

1

2
unit of 𝑖1 and

1

2
unit of 𝑖100 to agent 1 and

1

2
unit of 𝑖99 and

1

2
unit

of 𝑖100 to agent 2 yields an assignment that satisfies LEF. Notice that

this assignment can be induced by a lottery L = {(𝑓1, 1

2
), (𝑓2, 1

2
)}

where 𝑓1 (1) = 𝑖1, 𝑓1 (2) = 𝑖100, 𝑓2 (1) = 𝑖100, 𝑓2 (2) = 𝑖99. However,

this assignment is clearly unfair, because even though the two

agents have the same priority, agent 1 gets a strictly better assign-

ment than agent 2. This shows that LEF alone has limitations as

well, and the appropriate concept here is SEF.

The above examples show that SEF and LEF provide reasonable

competing notions of fairness. When combined with the efficiency

notion of OE, we will show in Section 4 that LEF and OE are incom-

patible. If OE is replaced by the weaker notion of Pareto-efficiency,

then it is easy to check that random serial dictatorship (RSD), which

simply samples a priority of agents from the distribution and al-

locates each agent their favorite remaining item in this priority

order, satisfies LEF
2

and pareto efficiency. Thus, in our work, we

will focus on the more non-trivial part of finding algorithms that

satisfy SEF and OE.

3.4 Additional Fairness Criteria
As we show in Section 5, there can be multiple algorithms that

satisfy the same subset of the fairness criteria. We therefore consider

two additional notions to more finely distinguish between them.

The first criterion is the following relaxation of LEF: If agent 𝑖

with probability 1 has higher priority than another agent 𝑗 then

agent 𝑖 should certainly (again, with probability 1) not envy 𝑗 .

Definition 7 (1-LEF). A random assignment 𝑃 under random
priority Σ satisfies 1-LEF if there exists some lottery L which induces

2
To see why RSD satisfies LEF, suppose the random priority is given by Σ =

{ (𝜎𝑘 , 𝜌𝑘 ) }, then the random assignment produced by RSD can be induced by the

lottery L = { (𝑓𝑘 , 𝜌𝑘 ) }, where 𝑓𝑘 is the deterministic assignment produced by letting

agents successively choose an item based on the order given by 𝜎𝑘 .
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𝑃 such that for all agents 𝑖 ≠ 𝑗 ∈ [𝑛], if Pr𝜎∼Σ [𝜎 (𝑖) < 𝜎 ( 𝑗)] = 1,
then Pr𝑓 ∼L [𝑓 (𝑖) ≻𝑖 𝑓 ( 𝑗)] = 1.

The next criterion is called Ranked Proportionality (PROP), which

captures stochastic dominance over an allocation that matches the

probability an agent gets her 𝑖𝑡ℎ ranked item to the probability of

she being ranked at position 𝑖 . Note that if all rankings of agents

were equally likely, this captures stochastic dominance to an allo-

cation that assigns every item to every agent uniformly at random.

Definition 8 (PROP). Given a random priority Σ = {(𝜎𝑘 , 𝜌𝑘 )},
we define the baseline allocation 𝑃𝑖 for agent 𝑖 by 𝑃𝑖𝜋−1

𝑖
(𝑟 ) = 𝑆𝑖𝑟 =∑

𝑘 :𝜎𝑘 (𝑖 )=𝑟 𝜌𝑘 for all 𝑟 ∈ [𝑛]. In other words, if an agent 𝑖 ranks
the 𝑟 -th in the random priorities with probability 𝑝 , then we add 𝑝
fraction of the 𝑟 -th preferred item of agent 𝑖 to her baseline allocation.
For an allocation to satisfy ranked proportionality (PROP), it should
stochastically dominate this baseline for each agent.

4 IMPOSSIBILITY RESULTS
In this part, we present several impossibility results. We note that

these are existential hardness results, not computational. We begin

by observing that LEF is incompatible with OE.

Theorem 1. LEF is incompatible with OE.

Proof. We present an instance in which no random assignment

can satisfy both LEF and OE. There are𝑛 = 4 agents and𝑚 = 4 items

which we label 𝑎, 𝑏, 𝑐, 𝑑 for clarity. Agent preferences are given by

𝜋1, 𝜋3 : 𝑎 ≻ 𝑏 ≻ 𝑐 ≻ 𝑑, 𝜋2, 𝜋4 : 𝑏 ≻ 𝑎 ≻ 𝑐 ≻ 𝑑

Moreover, we consider the priority Σ = {(𝜎1,
1

2
), (𝜎2,

1

2
)} where

𝜎1 (4) < 𝜎1 (2) < 𝜎1 (3) < 𝜎1 (1),

𝜎2 (3) < 𝜎2 (1) < 𝜎2 (4) < 𝜎2 (2) .
In other words, with probability

1

2
under 𝜎1, agent 4 has the highest

priority, then agent 2, then agent 3, finally agent 1. Similarly for

𝜎2 with probability
1

2
. Assume for contradiction that there exists

a random assignment 𝑃 = [𝑝𝑖 𝑗 ], together with a lottery L which

induces 𝑃 , satisfying LEF and OE. By definition of LEF, we note that

Pr

𝑓 ∼L
[𝑓 (3) ≻3 𝑓 (1)] ≥ Pr

𝜎∼Σ
[𝜎 (3) < 𝜎 (1)] = 1,

so it must be that Pr𝑓 ∼L [𝑓 (3) ≻3 𝑓 (1)] = 1. Thus, we must have

𝑝1𝑎 = 0, because otherwise there would exist a simple assignment

in the lottery in which agent 1 is assigned with 𝑎 and agent 3

is assigned with some less preferred item under 𝜋3. By the same

reasoning, we note that 𝑝
2𝑏 = 0.

Also by definition of LEF, observe that

Pr

𝑓 ∼L
[𝑓 (2) ≻2 𝑓 (3)] ≥ Pr

𝜎∼Σ
[𝜎 (2) < 𝜎 (3)] = 1

2

.

This implies 𝑝3𝑎 < 1, as otherwise we have 𝑓 (3) = 𝑎 for all 𝑓 ∼ L;

combined with the fact that 𝑝
2𝑏 = 0, we would have 𝑓 (3) ≻2 𝑓 (2)

for all 𝑓 ∼ L, which contradicts Pr𝑓 ∼L [𝑓 (2) ≻2 𝑓 (3)] ≥ 1

2
.

Since 𝑝1𝑎 = 0, 𝑝3𝑎 < 1, and

∑
𝑖 𝑝𝑖𝑎 = 1, it follows that 𝑝2𝑎 +𝑝4𝑎 >

0. Similarly, we have 𝑝
1𝑏 + 𝑝3𝑏 > 0. Without loss of generality, we

assume that 𝑝2𝑎 > 0 and 𝑝
1𝑏 > 0 (if 𝑝4𝑎 > 0 or 𝑝

3𝑏 > 0, the

proof proceeds similarly). Let 𝑝𝑚𝑖𝑛 = min(𝑝2𝑎, 𝑝1𝑏 ); define random

assignment 𝑄 = [𝑞𝑖 𝑗 ] by

𝑞𝑖 𝑗 =


𝑝𝑖 𝑗 if 𝑖 ∉ {1, 2} and 𝑗 ∉ {𝑎, 𝑏}
𝑝𝑖 𝑗 + 𝑝𝑚𝑖𝑛 if (𝑖, 𝑗) = (1, 𝑎) or (2, 𝑏)
𝑝𝑖 𝑗 − 𝑝𝑚𝑖𝑛 if (𝑖, 𝑗) = (1, 𝑏) or (2, 𝑎)

We can see that 𝑄 stochastically dominates 𝑃 . In particular, all

that is different in 𝑄 is that agent 1 swaps agent 2 some of agent 2’s

allocated probability mass on item 𝑎 in exchange for an equivalent

amount of agent 1’s probability mass on item 𝑏. Since 𝑎 ≻1 𝑏 and

𝑏 ≻2 𝑎 and nothing else changes, agents 1 and 2 prefer 𝑄 , and

nothing has changed for agents 3 and 4. This contradicts with the

fact that 𝑃 satisfies OE. Thus, we can conclude that no random

assignment in this instance satisfies LEF and OE. □

Theorem 1 can be interpreted as a fundamental tradeoff between

efficiency and fairness conceived as LEF. Next, we show that LEF

and SEF are two fundamentally different notions of fairness that

are incompatible with one another. As we will see later in Section 5,

each of LEF and SEF independently can be guaranteed. Thus, neither

notion of fairness is subsumed by the other.

Theorem 2. LEF is incompatible with SEF.

Proof. We present an instance in which no random assignment

can satisfy both LEF and SEF. There are 𝑛 = 5 agents and 𝑚 = 5

items which we label 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 for clarity. Preferences are given by

𝜋1, 𝜋3 : 𝑎 ≻ 𝑏 ≻ 𝑐 ≻ 𝑑 ≻ 𝑒, 𝜋2, 𝜋4 : 𝑏 ≻ 𝑎 ≻ 𝑐 ≻ 𝑑 ≻ 𝑒,

𝜋5 : 𝑎 ≻ 𝑐 ≻ 𝑏 ≻ 𝑑 ≻ 𝑒.

We consider the priority Σ = {(𝜎1,
1

2
), (𝜎2,

1

2
)} defined by

𝜎1 (3) < 𝜎1 (5) < 𝜎1 (1) < 𝜎1 (4) < 𝜎1 (2),

𝜎2 (4) < 𝜎2 (5) < 𝜎2 (2) < 𝜎2 (3) < 𝜎2 (1) .
In other words, with probability

1

2
under 𝜎1, agent 3 has the

highest priority, then agents 5, 1, 4, and finally 2. Similarly for 𝜎2.

Assume for contradiction that there exists a random assignment

𝑃 = [𝑝𝑖 𝑗 ], together with a lottery L which induces 𝑃 , that satisfies

LEF and SEF. Since agent 3 always has higher priority than agent 1

and agent 3 prefers 𝑎 over all other items, LEF implies that 𝑝1𝑎 = 0.

Similarly, since agent 4 always has higher priority than agent 2

prefers 𝑏 over all other itmes, LEF implies that 𝑝
2𝑏 = 0.

Recall that 𝑆𝑖 is the probability density over [𝑛] induced by Σ
for agent 𝑖 and 𝜎∗ is the identity permutation. Since 𝑆1 ≻𝑠𝑑𝜎∗ 𝑆2 by

construction and 𝑃 satisfies (SEF) by assumption, we have 𝑃1 ≻𝑠𝑑𝜋1

𝑃2. Combined with the fact that 𝑝1𝑎 = 0, we must have 𝑝2𝑎 = 0.

Similarly, 𝑝
1𝑏 = 0.

We next show 𝑝1𝑐 = 𝑝2𝑐 = 1

2
. First, observe that LEF guarantees

Pr

𝑓 ∼L
[𝑓 (4) ≻4 𝑓 (2)] ≥ Pr

𝜎∼Σ
[𝜎 (4) < 𝜎 (2)] = 1,

Thus, since 𝑒 is the least preferred item by agent 4, we must have

𝑝4𝑒 = 0. Also by LEF, we have

Pr

𝑓 ∼L
[𝑓 (1) ≻1 𝑓 (4)] ≥ Pr

𝜎∼Σ
[𝜎 (1) < 𝜎 (4)] = 1

2

,
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i.e. Pr𝑓 ∼L [𝑓 (1) ≻1 𝑓 (4)] ≥ 1

2
. On the other hand, since 𝑝4𝑒 = 0,

the worst item that agent 4 can get under 𝜋4 is 𝑑 , so

Pr

𝑓 ∼L
[𝑓 (1) ≻1 𝑓 (4)] ≤ 𝑝1𝑎 + 𝑝1𝑏 + 𝑝1𝑐 = 𝑝1𝑐 ,

since we earlier found that 𝑝1𝑎 = 𝑝
1𝑏 = 0. Recall Pr𝑓 ∼L [𝑓 (1) ≻1

𝑓 (4)] ≥ 1

2
, we get 𝑝1𝑐 ≥ 1

2
. Similarly, we have 𝑝2𝑐 ≥ 1

2
. Since∑

𝑖 𝑝𝑖𝑐 = 1, it must be the case that 𝑝1𝑐 = 𝑝2𝑐 = 1

2
. We deduce that

for any 𝑓 ∼ L, either 𝑓 (1) = 𝑐 or 𝑓 (2) = 𝑐 , because on one hand,

for any fixed 𝑓 , we should have 𝑓 (1) ≠ 𝑓 (2), while on the other

hand, 𝑝1𝑐 + 𝑝2𝑐 = 1.

Observe that 𝑝5𝑎 ≤ 1

2
. This follows directly from LEF, because

Pr

𝑓 ∼L
[𝑓 (3) ≻3 𝑓 (5)] ≥ Pr

𝜎∼Σ
[𝜎 (3) < 𝜎 (5)] = 1

2

;

if 𝑝5𝑎 > 1

2
, we would have Pr𝑓 ∼L [𝑓 (3) ≻3 𝑓 (5)] < 1 − 𝑝5𝑎 = 1

2
,

leading to contradiction. What’s more, we have 𝑝5𝑐 = 0, since we

already have 𝑝1𝑐 + 𝑝2𝑐 = 1.

On one hand, we should have Pr𝑓 ∼L [𝑓 (5) ≻5 𝑓 (1) and 𝑓 (5) ≻5

𝑓 (2)] = 1, since 𝜎𝑖 (5) < 𝜎𝑖 (1) and 𝜎𝑖 (5) < 𝜎𝑖 (2) for 𝑖 ∈ {1, 2};
but on the other hand, we have Pr𝑓 ∼L [𝑓 (5) ≻5 𝑓 (1) and 𝑓 (5) ≻5

𝑓 (2)] ≤ 𝑝5𝑎 ≤ 1

2
, because for any 𝑓 ∼ L, either 𝑓 (1) = 𝑐 or

𝑓 (2) = 𝑐 , so 𝑓 (5) ≻5 𝑓 (1) and 𝑓 (5) ≻5 𝑓 (2) if and only if 𝑓 (5) = 𝑎.

This leads to contradiction. Thus, LEF and SEF are incompatible. □

We finally show that OE, 1-LEF, and PROP are simultaneously

incompatible. This will inform the design of algorithms in Section 5.

Lemma 1 (Proved in full paper [22]). There is an instance where
no allocation simultaneously satisfies OE, 1-LEF, and PROP.

5 ALGORITHMS
As we have seen, LEF is a very strong notion of fairness which is

incompatible with both OE and SEF. In the following, we present

two algorithms – cycle elimination (CE) and unit time eating (UTE) –

that satisfy both OE and SEF. In addition, we show that CE satisfies

1-LEF and UTE satisfies PROP. Given Lemma 1, we cannot design

an algorithm that achieves OE and both these properties.

Therefore, both CE and UTE are reasonable fair allocation al-

gorithms in that they satisfy efficiency (OE) and envy-freeness

(SEF). The choice of which to implement depends on whether we

care more about a form of proportionality in the resulting allo-

cation (UTE satisfies PROP) or whether we care about additional

envy-freeness in a deterministic sense (CE satisfies 1-LEF).

5.1 Cycle Elimination algorithm
We first introduce a Cycle Elimination algorithm (CE), which works

by constructing a directed graph based on the random priority, and

allocate items based on this graph.

To begin with, we introduce the Probabilistic Serial rule [6], a

continuous algorithm which works as follows. Initially, each agent 𝑖

goes to their favorite item 𝑗 and starts “eating” it (that is, increasing

𝑝𝑖 𝑗 ) at unit speed. It is possible that several agents eat the same item

at the same time. Whenever an item is fully eaten, each of the agents

eating it goes to their favorite remaining item not fully allocated

(that is,

∑
𝑖 𝑝𝑖 𝑗 < 1) and starts eating it in the same way. This process

continues until all items are consumed, or all the agents are full

(that is,

∑
𝑗 𝑝𝑖 𝑗 = 1). We use PS(A, I) to denote the assignment

produced by running Probabilistic Serial rule on the set of agents

A and items I.

We construct a graph from Σ, which we call a Stochastic-Dominance

graph (SD-graph), as follows: Start with a graph with 𝑛 vertices,

where the 𝑖-th vertex corresponds to the 𝑖-th agent. For any pair of

distinct agents 𝑖 and 𝑗 , if 𝑆𝑖 ≻𝑠𝑑𝜎∗ 𝑆 𝑗 , then we draw a directed edge

from 𝑖 to 𝑗 . The algorithm is now formally stated in Algorithm 1.

Algorithm 1: Cycle Elimination, Eliminate(A, I, 𝐺)

Input: Set of agents A, set of items I, SD-graph 𝐺 ;

Let 𝐺 be the condensation
3
of 𝐺 ;

Let Ã be the set of agents that belong to a strongly

connected component whose in-degree in 𝐺 is zero;

if A = Ã then
Output PS(A, I);

else
A′ ← A \ Ã; I′ ← I \ PS(Ã; I); 𝐺 ′ ← 𝐺 \ Ã;

Output PS(Ã, I) + Eliminate(A′, I′, 𝐺 ′);
end

Theorem 3. The Cycle Elimination algorithm satisfies OE, SEF,
and 1-LEF. It runs in 𝑂 (𝑛3 + 𝑛𝑚 + 𝑛 |Σ|) time.

Proof. Theorem 1 in [6] states that any simultaneous eating

algorithm where each agent always eats from her favorite remaining

item satisfies OE. Hence, CE satisfies OE.

To show SEF, fix two agents 𝑖 and 𝑗 , and assume 𝑆𝑖 ≻𝑠𝑑𝜎∗ 𝑆 𝑗 .

Let 𝑃 be the random assignment produced by CE. We show that

𝑃𝑖 ≻𝑠𝑑𝜋𝑖 𝑃 𝑗 . Since 𝑆𝑖 ≻𝑠𝑑𝜎∗ 𝑆 𝑗 , there exists an edge from 𝑖 to 𝑗 in the SD-

graph. Thus, 𝑖 and 𝑗 either belong to the same strongly connected

component, or the strongly connected component of 𝑖 has higher

topological order than that of 𝑗 ’s. Either way, we have 𝑃𝑖 ≻𝑠𝑑𝜋𝑖 𝑃 𝑗 ,

from which we can conclude that CE satisfies SEF.

To show 1-LEF, fix two agents 𝑖 and 𝑗 , and assume Pr𝜎∼Σ [𝜎 (𝑖) <
𝜎 ( 𝑗)] = 1. Let 𝑃 be the random assignment produced by CE. We

show that, for any lottery L inducing 𝑃 , we have Pr𝑓 ∼L [𝑓 (𝑖) ≻𝑖
𝑓 ( 𝑗)] = 1. We use proof by contradiction. Assume that there exists

a lottery L0 which induces 𝑃 such that Pr𝑓 ∼L0
[𝑓 (𝑖) ≻𝑖 𝑓 ( 𝑗)] < 1.

This implies that there exists two items 𝑎 and 𝑏 such that 𝑎 ≻𝑖 𝑏,

𝑝𝑖𝑏 > 0 and 𝑝 𝑗𝑎 > 0. On the other hand, since Pr𝜎∼Σ [𝜎 (𝑖) <

𝜎 ( 𝑗)] = 1, so we have 𝑆𝑖 ≻𝑠𝑑𝜎∗ 𝑆 𝑗 ; thus, the strongly connected com-

ponent that agent 𝑖 belongs to must have higher topological order

than that of 𝑗 ’s. By CE, agent 𝑗 could start eating only when agent

𝑖 is completely full. Thus, 𝑝 𝑗𝑎 > 0 implies that there is still item 𝑎

remaining when agent 𝑖 finishes eating; this leads to contradiction,

because 𝑎 ≻𝑖 𝑏 implies that 𝑖 could eat 𝑎 instead of 𝑏. Therefore,

we must have Pr𝑓 ∼L [𝑓 (𝑖) ≻𝑖 𝑓 ( 𝑗)] = 1 for all lotteries L which

induces 𝑃 , from which we can conclude that CE satisfies 1-LEF.

To show the running time, preprocessing Σ in order to compute

the stochastic dominance relation between agents takes 𝑂 (𝑛 |Σ| +
𝑛3) time. Constructing the SD-graph by the stochastic dominance

relation between agents takes 𝑂 (𝑛2) time, as there are

(𝑛
2

)
pair of

3
Condensation of a graph is a directed acyclic graph formed by contracting each

strongly connected component to a single vertex.
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agents. Given the SD-graph, running CE takes 𝑂 (𝑛𝑚) time. This is

because we only need to consider at most 𝑚 time points: the time

at which each item is eaten up. We divide this process into 𝑚 time

intervals. During each time interval, each agent keeps eating the

same item, so it simply takes𝑂 (𝑛) time to keep track of the state of

each agent, and the running time over𝑚 intervals is𝑂 (𝑛𝑚). Hence,

the total running time is 𝑂 (𝑛3 + 𝑛𝑚 + 𝑛 |Σ|). □

5.2 Unit-time Eating Algorithm
We next introduce the Unit-time Eating Algorithm (UTE). Recall

that Σ = {(𝜎𝑘 , 𝜌𝑘 )}. Essentially, the algorithm works by dividing

the time into 𝑛 units, each of duration one; in time unit 𝑡 , the 𝑡-th

ranked agent in 𝜎𝑘 eats their favorite item among those left over at

rate 𝜌𝑘 for all 𝑘 . The procedure is formally stated in Algorithm 2.

Algorithm 2: Unit-time Eating Algorithm

for 𝑡 = 1, . . . , 𝑛 do
The 𝑡-th ranked agent in each 𝜎𝑘 eats their favorite item

among those left over at rate 𝜌𝑘 for all (𝜎𝑘 , 𝜌𝑘 ) ∈ Σ;

end

Theorem 4. The Unit-time Eating Algorithm satisfies OE, SEF,
and PROP. Further, it runs in 𝑂 (𝑛2 |Σ| + 𝑛𝑚) time.

Proof. By Theorem 1 in [6], we have UTE satisfies OE.

To show SEF, fix two agents 𝑖 and 𝑗 ; assume that 𝑆𝑖 ≻𝑠𝑑𝜎∗ 𝑆 𝑗 .

Let 𝑃 be the random assignment produced by UTE, we show that

𝑃𝑖 ≻𝑠𝑑𝜋𝑖 𝑃 𝑗 . Let 𝑡𝑘 be the time when item 𝜋−1

𝑖
(𝑘) has been eaten up.

Fix some 𝑘 ∈ [𝑚]; because 𝑆𝑖 ≻𝑠𝑑𝜎∗ 𝑆 𝑗 , we have

⌊𝑡𝑘 ⌋∑︁
𝑡=1

𝑆𝑖𝑡 ≥
⌊𝑡𝑘 ⌋∑︁
𝑡=1

𝑆 𝑗𝑡 and

⌈𝑡𝑘 ⌉∑︁
𝑡=1

𝑆𝑖𝑡 ≥
⌈𝑡𝑘 ⌉∑︁
𝑡=1

𝑆 𝑗𝑡

Combining these gives(
𝑡𝑘 − ⌊𝑡𝑘 ⌋

)
𝑆𝑖 ⌈𝑡𝑘 ⌉ +

⌊𝑡𝑘 ⌋∑︁
𝑡=1

𝑆𝑖𝑡 ≥
(
𝑡𝑘 − ⌊𝑡𝑘 ⌋

)
𝑆 𝑗 ⌈𝑡𝑘 ⌉ +

⌊𝑡𝑘 ⌋∑︁
𝑡=1

𝑆 𝑗𝑡 . (1)

Observe that

𝑘∑︁
𝑟=1

𝑃𝑖𝜋−1

𝑖
(𝑟 ) =

(
𝑡𝑘 − ⌊𝑡𝑘 ⌋

)
𝑆𝑖 ⌈𝑡𝑘 ⌉ +

⌊𝑡𝑘 ⌋∑︁
𝑡=1

𝑆𝑖𝑡 ,

𝑘∑︁
𝑟=1

𝑃 𝑗𝜋−1

𝑖
(𝑟 ) ≤

(
𝑡𝑘 − ⌊𝑡𝑘 ⌋

)
𝑆 𝑗 ⌈𝑡𝑘 ⌉ +

⌊𝑡𝑘 ⌋∑︁
𝑡=1

𝑆 𝑗𝑡 ,

which gives

∑𝑘
𝑟=1

𝑃𝑖𝜋−1

𝑖
(𝑟 ) ≥

∑𝑘
𝑟=1

𝑃 𝑗𝜋−1

𝑖
(𝑟 ) . Because this holds for

all 𝑘 ∈ [𝑚], we conclude that 𝑃𝑖 ≻𝑠𝑑𝜋𝑖 𝑃 𝑗 . Hence, UTE satisfies SEF.

To show PROP, fix some agent 𝑖 . Suppose the allocation produced

by UTE for this agent is 𝑃𝑖 , and the baseline allocation for this agent

is 𝑃𝑖 . We will show that 𝑃𝑖 ≻𝑠𝑑𝜋𝑖 𝑃𝑖 . Let 𝑡𝑘 be the time when item

𝜋−1

𝑖
(𝑘) has been eaten. Fix some 𝑘 ∈ [𝑚]. Clearly, we have 𝑡𝑘 ≥ 𝑘 ,

because in order to eat up 𝜋−1

𝑖
(𝑘), we have to eat up 𝜋−1 (𝑟 ) for all

𝑟 < 𝑘 . We observe that

𝑘∑︁
𝑟=1

𝑃𝑖𝜋−1

𝑖
(𝑟 ) =

(
𝑡𝑘 − ⌊𝑡𝑘 ⌋

)
𝑆𝑖 ⌈𝑡𝑘 ⌉ +

⌊𝑡𝑘 ⌋∑︁
𝑡=1

𝑆𝑖𝑡 .

Combined with 𝑡𝑘 ≥ 𝑘 , we have

𝑘∑︁
𝑟=1

𝑃𝑖𝜋−1

𝑖
(𝑟 ) ≥

𝑘∑︁
𝑡=1

𝑆𝑖𝑡 =

𝑘∑︁
𝑟=1

𝑃𝑖𝜋−1

𝑖
(𝑟 ) .

Because this holds for all 𝑘 ∈ [𝑚], we conclude that that 𝑃𝑖 ≻𝑠𝑑𝜋𝑖 𝑃𝑖 ,
and hence UTE satisfies PROP.

To show running time, preprocessing Σ to obtain the eating

speed of each agent in each unit time interval takes 𝑂 (𝑛2 |Σ|) time.

Then, running UTE takes 𝑂 (𝑛𝑚) time, as we similarly only need

to consider at most 𝑚 time points and keeping track of the state

of each agent in each time interval takes 𝑂 (𝑛) time. Therefore, the

total running time is 𝑂 (𝑛2 |Σ| + 𝑛𝑚). □

6 GENERATING RANDOM PRIORITIES AND
EMPIRICAL RESULTS

In this section, we will demonstrate how one could obtain random

priorities in practical settings using an example of school admission

under implicit bias. In several environments based on such gen-

erative model, we will compare our proposed algorithms, namely

Cycle Elimination (CE) and Unit-time Eating (UTE), with other

common bias mitigating allocation algorithms such as “the Rooney

Rule” [7]. We empirically demonstrate that all existing algorithms

induce stochastic envy. To show this, using the same notation as in

Definition 5, we say a pair of agents 𝑖 and 𝑗 form a stochastic envy
pair if 𝑍𝑖 ≻𝑠𝑑𝜎∗ 𝑍 𝑗 but 𝑃𝑖 ⊁

𝑠𝑑
𝜋𝑖

𝑃 𝑗 , and we will count the number of

stochastic envy pairs produced by each algorithm.

6.1 Random Priority in School Admission
Consider a group of 𝑁 students, including 𝑛 disadvantaged students

with indices {1, . . . , 𝑛} and 𝑁 −𝑛 advantaged students with indices

{𝑛 + 1, . . . , 𝑁 }. Suppose that they are competing for admission pri-

orities of ℓ schools with capacities 𝑐1, . . . , 𝑐ℓ ∈ N that

∑ℓ
𝑖=1

𝑐𝑖 = 𝑁 ,

in which process disadvantaged students are subjected to implicit

bias on their capability. We will quantify the effect of implicit bias

in the experiments. This is equivalent to allocating 𝑁 items to 𝑁

agents, where items correspond to seats, and the agents’ preferences

are their school choices.

Denote the 𝑗-th seat of school 𝑖 as 𝑠𝑖 𝑗 , then the set of seats is

𝑆 ≜
⋃ℓ

𝑖=1
{𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑐𝑖 }. For any ordinal preference 𝜋 : [ℓ] → [ℓ]

over the schools, it induces an ordinal preference 𝜋 : 𝑆 → [𝑁 ] over

the seats such that for any 𝑠𝑖 𝑗 ∈ 𝑆 , 𝜋 (𝑠𝑖 𝑗 ) = 𝑗 +∑𝑘 :𝜋 (𝑘 )<𝜋 (𝑖 ) 𝑐𝑘 . In

other words, if a student prefers school 𝑎 to school 𝑏, then all seats

of school 𝑎 are preferred over the seats of school 𝑏. For the seats in

the same school, smaller indices are preferred. In the following, we

describe how random priorities over students are generated.

For each student, we assign a “capability score” 𝑥𝑖 that is drawn

from the same distribution D, and students with higher capability

score should have higher priority. Moreover, assume every stu-

dent from the disadvantaged group is subjected to a multiplicative

implicit bias 𝑏𝑖 , which is independently sampled from some dis-

tribution B. A disadvantaged student with capability score 𝑥𝑖 is

perceived to have a biased score 𝑥𝑖 ≜ 𝑏𝑖𝑥𝑖 . We will also consider

additive bias 𝑥𝑖 ≜ 𝑥𝑖 + 𝑏𝑖 in our experiments. The admission com-

mittee make decisions based on the perceived scores (which are
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ℓ 𝛽 N RN R RR CE UTE

0.2 3.4 0 3.4 10 0 0

1 0.5 1.2 0 1.2 10 0 0

0.8 0.6 0 0.6 10 0 0

0.2 14.3 42.8 2.6 3.8 0 0

2 0.5 14.5 42.8 1.0 3.8 0 0

0.8 19.7 42.8 0.6 3.8 0 0

0.2 88.8 175.7 1.6 2.5 0 0

3 0.5 98.9 175.7 0.7 2.5 0 0

0.8 103.5 175.7 0.4 2.5 0 0

ℓ 𝛽 N RN R RR CE UTE

0.2 7.0 0 15.4 25.4 0 0

1 0.5 7.3 0 6.2 36.9 0 0

0.8 7.8 0 2.8 42.2 0 0

0.2 38.2 36.2 11.2 16.8 0 0

2 0.5 37.0 38.3 4.5 22.9 0 0

0.8 37.4 39.6 2.2 25.6 0 0

0.2 156.2 183.3 7.3 9.8 0 0

3 0.5 141.4 200.5 3.4 12.6 0 0

0.8 127.6 205.5 1.9 15.5 0 0

Figure 1: Number of stochastic envy pairs under multiplicative bias (left) and additive bias (right).

biased for disadvantaged students and equal to the true scores for

advantaged students).

For each experiment, we fix a set of unbiased capability scores

{𝑥𝑖 }𝑁𝑖=1
for the students, where 𝑥𝑖

iid∼ D. Then, we take 𝑛 bias pa-

rameters {𝑏𝑖 }𝑛𝑖=1
independently from B. The perceived scores of

the students are {𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1, . . . , 𝑥𝑁 }, where 𝑥𝑖 = 𝑏𝑖𝑥𝑖 . Now

imagine we are the admission committee. We know B, D, and

the perceived scores of the students. The goal is to approximately

recover the underlying true scores of the students. To do this, we

compute a posterior distribution for the bias factor of each disad-

vantaged student given B, the biased score of this student, and D.

Concretely, the density of the posterior distribution for the bias

factor of the 𝑖th disadvantaged student, which we denote by 𝒃𝒊 ,

is 𝑓𝒃𝒊
(𝑏) = 𝑓B (𝑏 ) 𝑓D (𝑥𝑖/𝑏 )∫ ∞

0
𝑓B (𝑢 ) 𝑓D (𝑥𝑖/𝑢 )𝑑𝑢

. Given {𝒃𝒊}𝑛𝑖=1
, we independently

draw 𝑞 sets of bias parameters for disadvantaged students, where

we denote the 𝑗 th set of bias parameters as {𝑏 ( 𝑗 )
𝑖
}𝑛
𝑖=1

, i.e. 𝑏 ( 𝑗 )
𝑖

iid∼ 𝒃𝒊 .

Let the ordinal relationship induced by {𝑏 ( 𝑗 )
𝑖
}𝑛
𝑖=1

be 𝜎 ( 𝑗 ) . We con-

sider the random priority {(𝜎 ( 𝑗 ) , 1

𝑞 )}
𝑞

𝑗=1
. We denote the random

priority induced by 𝑞 sets of bias parameters as Σ(𝑞) .

6.2 Algorithms for Comparison
To compare with CE and UTE, we consider four alternative solutions

to the allocation problem under implicit bias. Fix a set of biased

scores {𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1, . . . , 𝑥𝑁 }, let 𝜎 denote its induced ordinal

relationship. For a deterministic priority 𝜎 over the students and

ordinal preferences Π ≜ {𝜋𝑖 }𝑖∈[𝑁 ] of students over the seats, let

𝐺𝑆 (𝜎,Π) denote the deterministic assignment produced by the

Gale-Shapley algorithm [11] which produces a stable matching

between students and seats.

The algorithms that we compare with are as follows:

(1) Naive Stable Matching (N) takes deterministic priority 𝜎 and

returns the assignment 𝑃N (𝜎,Π) ≜ 𝐺𝑆 (𝜎,Π).
(2) Random Naive Stable Matching (RN) takes the random prior-

ity Σ(𝑞) = {(𝜎𝑖 , 𝑝𝑖 )}𝑞𝑖=1
and outputs a lottery based on (N),

namely {(𝑃N (𝜎𝑖 ,Π), 𝑝𝑖 )}
𝑞

𝑖=1
.

(3) Rooney Stable Matching (R) takes in the deterministic prior-

ity 𝜎 as input. Using the Rooney constraint in Theorem 3.3

of Celis et al. [7], it creates a new priority 𝜎R. We present

this formally in the full paper [22]. Using 𝜎R, Rooney Stable
Matching returns the assignment 𝑃R (𝜎R,Π) ≜ 𝐺𝑆 (𝜎R,Π).

(4) Random Rooney Stable Matching (RR) takes the random pri-

ority Σ(𝑞) = {(𝜎𝑖 , 𝑝𝑖 )}𝑞𝑖=1
and outputs a lottery based on (R),

namely {(𝑃R (𝜎𝑖 ,Π), 𝑝𝑖 )}
𝑞

𝑖=1
.

6.3 Prevalence of Stochastic Envy
We now demonstrate that with random priority induced by the

generative model described in Section 6.1, stochastic envy exists

for the bias mitigating algorithms N, RN, R, RR.

We consider an admission problem with ℓ schools each with

⌊ 𝑁
ℓ+1 ⌋ seats. Every student 𝑖 ∈ [𝑁 ] has a uniformly random prefer-

ence order over the ℓ schools. There is also a ”dummy school” with

𝑁 − ℓ ⌊ 𝑁
ℓ+1 ⌋ seats representing no admission. Every student prefers

seats in the dummy school the least. For seats in the same school,

all students have the same preference order. This represents the

situation in which schools may distribute educational resources to

students based on their rank when admitted.

We take 𝑁 = 35 and 𝑛 = 10, and experiment with ℓ = 1, 2, 3. For

each choice of𝑘 , we experiment with 𝛽 = 0.2, 0.5, 0.8. For multiplica-

tive bias, we takeD = Exponential(1) andB = Exponential(𝛽); for

additive bias, we take D = Uniform(0, 2) and B = Uniform(0, 𝛽).
Figure 1 presents the number of stochastic envy pairs for each al-

gorithm averaged over 100 experiments. For each experiment, the

random priority is computed with 1000 sets of bias parameters.

Except for RN in the one school setting, stochastic envy exists in

all other scenarios for N, RN, R, RR. While empirically Rooney-rule-

like constraints do significantly reduce the number of stochastic

envy pairs compared to applying no mitigation mechanism at all,

we still need CE or UTE to obtain guaranteed SEF.

7 CONCLUSION
We conclude with some open questions. First, even though SEF

and LEF are incompatible, we do not know whether they can be

compatible under certain natural generative assumptions on the

random priorities and agent preferences. Second, it is known [6] that

OE (and hence CE and UTE) is incompatible with strategyproofness

under natural assumptions. However, it is interesting to explore

whether SEF alone is also incompatible with strategy-proofness.

Finally, can our framework be extended to the scenario where the

agent preferences are random as well, i.e. each agent reports a

distribution over preferences instead of a deterministic preference?
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