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ABSTRACT
Agent-based Simulation Modelling focuses on the agents’ decision
making in their individual context. The decision making details
may substantially affect the simulation outcome, and therefore need
to be carefully designed.

In this paper we contrast two decision making architectures: a
process oriented approach in which agents generate expectations
and a reinforcement-learning based architecture inspired by evo-
lutionary game theory. We exemplify those architectures using a
technology uptake model in which agents decide about adopting
automation software. We find that the end result is the same with
both decision making processes, but the path towards full adoption
of software differs. Both sets of simulations are robust, explainable
and credible. The paper ends with a discussion what is actually
gained from replacing behaviour description by learning.
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1 INTRODUCTION
The advantage of agent-based simulation comes from the possibility
to explicitly formulate the individual agents’ decision making in
its local context. This context may consists of a spatial, economic,
organisational or ecologic environment –, and of other agents to
interact with. A modeller takes the perspective of an individual
agent for capturing the agents’ decision making. What does the
agent perceive? What does the agent know at a particular point in
time? How does the agent decide which goal to pursue and which
action to take next? Finally the agent may evolve as well as change
its environment.

One of the challenges of developing agent-based simulation
models concerns the different perspectives that a modeller needs
to match during development: The agent’s ego-perspective versus
the population perspective often in form of aggregate values or
bird’s eye type of observations. The individual agent behaviour
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must be formulated in a way that together with all the other agents’
behaviour the intended system-level phenomenon is (re-)produced
during simulation run-time. Previous studies on how to meet this
challenge include [3],[18],[8] or [22].However, the actual agent-
level behaviour formulation still requires creativity and experience.
An agent architecture hereby provides an underlying framework
or pattern and as such guidance to structure the behaviour descrip-
tion. Although theoretically independent, some behaviour is more
suitable to be formulated using a particular architecture than other
behaviour.

During the last years, machine learning based approaches have
been suggested and presented as successful alternatives to care-
fully craft agent behaviour models [11], [10], [21]. Yet, it remains
unclear what is the actual advantage of a machine learning based
approach to a conventional behaviour formulation. This paper is a
first attempt to contrast two versions of the same model, one with
a carefully elaborated decision making process and one using a
simple Reinforcement Learning approach – as the most prominent
form of machine learning for agents’ decision making. The model
that we use for our analysis, is a non-trivial agent-based simula-
tion model of technology adoption[14] where two types of agents
co-adapt, so that technology demand is matched with technology
provision.

We created two variants of the same model, one in which agents
decide based on a prediction of individual future profit and one in
which they learn to take that decision using Reinforcement Learn-
ing. The questions that are addressed in this paper, concern the
consequences of using those different decision making approaches
or agent architectures. Do both model variants produce similar
results? What are the advantages and disadvantages of a learning-
based agent architecture in contrast to a direct formulation of the
decision making processes?

In the remainder of this paper, we first summarise relevant back-
ground and related work. This is followed by a more detailed de-
scription of the technology uptake model that we use for this anal-
ysis. Section 4 gives a glance on simulation results, while Section
5 provides an in-depth qualitative discussion of the different tech-
nology adoption paths under the two versions of the model. The
paper ends with a conclusion and some thoughts on future work.

2 DECISION MAKING PROCESS AND AGENT
ARCHITECTURES

Agent decision making is a central element of any agent-based sim-
ulation model. It is therefore surprising that there is not more litera-
ture that systematically analyses which basic structures, patterns or
agent architectures are suitable for which type of decision making
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behaviour. The architecture describes the underlying structures, the
setup of components and their connections, while a component is
“an element that implements a coherent set of functionality” ([23],
p. 83). A component in such a decision making architecture can
be responsible for processing incoming sensor data, for handling
communication or for updating the internal belief state. Russell and
Norvig [20] use different agent architectures to categorise what
agents are able to do. Their categorisation is only of limited value
for agent-based simulation.

Agent architecture has been studied in general Multi-Agent Sys-
tems (e.g. see [16], [29]) and Siebers and Klügl [22] list agent ar-
chitectures as a contribution of agent-based software engineering
to agent-based simulation. The well-known BDI (Belief-Desire-
Intention) agent architecture [9] has been used in agent-based
simulation due to its resemblance of practical human-like means-
end reasoning. Examples can be found in [17], [25]. Also, some
layered architectures have been suggested for specific domains
for example in mobility simulations: One component is respon-
sible for the actual movement and a higher-level component for
navigation (e.g. in [7]). Bandini et al. [2] also list different agent
architectures in their overall treatment of software engineering
aspects related to agent-based simulation. Klügl [13] distinguishes
between behaviour-generating (first-principle planners), behaviour-
configuring (BDI) and behaviour-describing (rules, processes) ap-
proaches. Cummings and Crooks [5] list a) reactive agent archi-
tectures – simple agents just react to short-term stimuli; b) finite
state machines that require full specification and complex cognitive
architectures that give more flexibility by integrating goal- and
plan-based behaviour.

There are a number of more elaborated architectures specifically
developed for generating complex social behaviour. Examples are
cognitive science architectures such as Soar (e.g. used in [27]) that
were originally designed as elaborated models of human decision
making. Other were specifically developed for agent-based simula-
tions, such as PECS [28] or BEN [4] integrating emotions, normative
behaviour, values, culture, etc. Balke and Gilbert [1] review 14 deci-
sion making architectures relevant for computational social science
comparing architectures along five dimensions: cognitive, affective,
social, norm consideration and learning.

During the last years, the use of learning approaches for con-
structing agent decision making models in simulations has in-
creased. Already in 2005, Takedama and Fujita compared different
Reinforcement Learning architectures in a simulation of a bargain-
ing game [26]. Another early example – not in a game theoretic
setting – can be found in Junges and Klügl [11] for learning pedes-
trian behaviour instead of programming it directly. They looked
into the dependency of simulation results from particular config-
uration of the learning approach, including details of the reward
function. Kamwoo et al. [15] use (inverse) reinforcement learning
to identify behavioural rules from data that then serve as an input
to modelling agent decision making. Their example scenario was an
(artificial) kind-of party scenario with agents moving around and
talking to each other. Cummings and Crooks [5] develop this idea
further suggesting to use the optimisation capabilities of Machine
Learning to find optimal decision making strategies of simulated
agents in complex scenarios. They combine an actor model that
learns using Deep Q-Learning with an interpreter that predicts the

actors behaviour in a human readable finite state machine to ensure
behaviour explainability.

Sert et al. [21] use Deep-Q-Networks for building an agent-based
segregation model. The idea is here to enable to explore the space
of potential agent strategies, testing different rules of interaction.
Källström and Heintz [12] combine reinforcement learning and
agent decision making in simulated settings to generate behaviours
that are tunable towards for example higher risk taking or com-
petitiveness in simulated opponents. De Oliveira et al. [6] compare
Q-Learning and Multi-Armed Bandit algorithms for learning route
choice decision making models. None of those publications actually
contrasts rule-based behaviour descriptions versus learning-based
approach.

Despite an increasing interest in combining Reinforcement Learn-
ing with agent based simulation, there is not muchwork on complex
decision making models comparing traditional behaviour specifi-
cation with learning specifications. Learning-based approaches
are seen as effortful, with partially unpredictable outcomes, while
traditional direct behaviour modelling need extensive sensitivity
analysis to exclude hidden artifacts. For more complex agent-based
simulation models, the effect of learning for the agents’ decision
making cannot be separated from a complex environmental model
including other types of agents which may also learn. Modelling
the effects of an agents’ action is not simple. Thus the impact of the
actual learning architecture is hard to capture. Anyway, calibration
and sensitivity analysis cannot be avoided when using learning-
based approaches. The question is then, what is actually gained
from replacing behaviour description by learning?

3 ILLUSTRATIVE MODEL: TECHNOLOGY
UPTAKE

We illustrate our analysis using a dynamic model of joint technol-
ogy uptake in manufacturing and engineering [14]. This model
was chosen as it exhibits a good level of agent decision making
complexity, it is not as simple as some game theory inspired model,
but also does not have the decision model complexity of some social
science models. During model analysis, it turned out that outcomes
depend on details of the decision making. This triggered the idea
to test a alternative for instead of programming decision making
details, enabling the agents to learn the particularities.

3.1 Basic Economic Model
The dynamic model includes two types of active agents, manufac-
turers and engineering firms and one type of passive entities, engi-
neers. The active agents chose between two alternative business
models. In the first, denoted as “consultancy” model, manufacturers
engage engineers as consultants to provide services necessary for
production. In the second, labelled “automation”, manufacturers
license AI-enabled systems integration software from engineering
firms.

At the start of the simulation, all agents apply the consultancy
model. At each simulation cycle they decide whether to switch
from consultancy to automation, from automation to consultancy
or stay with its previous choice. For both types of agents, switching
involves a change in the way they operate. Manufacturers must
upgrade skills and employ systems integration engineers to work
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with the software. Engineering firms must re-deploy their staff
from consultancy to R&D where they develop AI-enabled software
applications that automate the services they previously offered as
consultants. For both types of agents, the cost and benefits of the
technology shift is uncertain at the time they make the decision
to shift. The switch is not one-way, but both manufacturer and
engineering company agents may return to the consultancy model
again, if deemed more profitable in a changed environment.

Technically, the two business models are represented by differ-
ent production functions with corresponding unit cost and profit
functions. Manufacturing agents differ as far as productivity is
concerned. A Pareto distribution of productivity across firms is as-
sumed. More productive firms have lower unit costs. The functional
forms of the manufacturing production functions are such that unit
costs fall more steeply with productivity in the automation model.
Thus, the most productive firms will be the first to benefit from
switching to automation, while the less productive firms will be
better off when remaining in the consultancy model for longer [14].

During initialisation, a fixed pool of engineers are allocated at
random to engineering firms. The engineers are mobile across firms,
activities and type of agents as the model simulations progresses.
The engineering firms observe the productivity of manufacturers
and form expectations about how many of them are ready to switch
to software. Each individual engineering firm agent randomly pre-
dicts what market share it might be able to capture. Based on that
prediction, the engineering firm agents estimate their future profit
and use this expected profit in their decision making.

The dynamics of the model stem from network effects from
adopting automation software on the part of manufacturers and
learning from experience on the part of consulting engineers. As
more manufacturers use software, software producers can harvest
more data from them, build better software and offer better cus-
tomer services. This reduces the switching costs for manufacturers,
and thus shifts the productivity threshold for which unit costs are
lower in the automation scenario downwards.

Engineering company agents, who offer engineering consultants,
learn from working with clients. The accumulated experience helps
them identify commonalities across clients, which enables them
to standardise and ultimately automate the services they provide –
reducing costs for software development. Thus, engineering firms
with long experience from working with highly productive manu-
facturers will be the first to develop software. Both types of agents
decide on switching to automation by comparing expected costs
and profits in the two business models.

In a standard economic model, the agents would have full infor-
mation on market conditions, costs and profits, while production,
costs- and input demand functions would be smooth and continu-
ous. This approach misses some of the dynamics and constraints
related to technology adoption in the real world. Development of
the test model was aimed at more realistic settings with agents
that have bounded rationality and transactions are lumpy[14]. The
following list summarises relevant model features:

• All agents operate in competitive markets where input and
output prices are given.

• Manufacturers buy consultancy services or software from
one engineering firm only.

• The shift from consultancy to automation is irreversible for
manufacturers.

• Engineering firms may sell consultancy services or software
to many manufacturers.

• Engineering firms sell either consultancy services or soft-
ware, not both.

• The shift from consultancy to automation is reversible for
engineering firms.

In the following, we first describe the original agents’ decision
making using a process-oriented architecture for both simulated
agents types - the engineering firms and the manufacturers. This
is followed by a description of our re-implementation using Rein-
forcement Learning.

3.2 Process-oriented Decision Making
The process-oriented decision making involves agents deciding
individually on which business model to pursue - consultancy or
automation. Each agent decides based on which alternative yields
the highest expected profits in the current period. Manufacturers
know their own costs, productivity and production capacity in both
business models, but the switching cost to automation is stochastic.
Similarly, engineering firms know their own costs in both business
models. They observe the productivity of manufacturers, but they
do not know for sure how many manufacturers are ready to take
up automation software, let alone what will be their future share
of the software market, at the point when they decide whether to
develop it.

The decision making process flows as follows:

(1) Manufacturers compare their expected profits in the two
business models and decide which business model to pursue
in the current period based on the highest expected profits.
• The consultancy model: Each manufacturer announces a
request for consultancy services. The quantity of services
requested depends on the manufacturer’s productivity.

• The automation model: Each manufacturer announces
vacancies for process integration engineers and a request
for an automation software license.

(2) Engineering firms compare expected profits in the two busi-
ness models and decide which business model to pursue.
• The consultancy model: The engineering firm responds
to manufacturers’ requests for consultants by making an
offer.

• The automation model: The engineering firm develops
automation software and offers software licenses to man-
ufacturers.

(3) Both manufacturers and engineering firms recruit engineers
as either consultants employed in engineering firms, soft-
ware developers employed in engineering firms or systems
integration engineers employed in manufacturing firms.

(4) Manufacturers select engineering firms who offer consul-
tants or software depending on the business model they
decided on and produce.

With individual, uncoordinated decision making, supply and de-
mand of engineers in each activity may not match. Manufacturers

Session 5F: Simulations
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1905



without an appropriate number of engineers employed cannot pro-
duce. That means they face costs, but without income. This leads to
an unconditional decision for consultancy in the next update cycle.

After synchronising the agents’ decisions, the consultancy en-
gineers’ experience is updated and the new manufacturing firms
having adopted the automation software, if any, are added to the
network of manufacturer agents using automation, and a new cy-
cle begins as illustrated in Figure 1 which shows the coordinated
decision making process of both types of agents.

The implementation platform uses a random shuffle of all agents
for update. So, themodeller has no control over which agent updates
first. The vertical lines in Figure 1 show when update of all agents
is explicitly synchronised.

Actually, this is a rather complicated, synchronised process be-
cause decisions are explicitly depending on each other: A manufac-
turer agent will just decide for using software, if there is software
on the market. An engineering company agent will not decide for
developing software, if there is no signal from a manufacturer agent
that it would be actually interested in automation. If there are no
system integrators that can be employed, a manufacturer agent
would select to hire consultants. Also details of decision making
matter. In [14] cost minimisation was used as decision criterion –
manufacturer agents compare costs associated with both business
models. Here, cost minimisation is replaced by profit maximisa-
tion, as profit can be easier matched with reward in Reinforcement
Learning. Although economic theory indicates that both should
lead to the same results, this leads to a slower technology uptake
compared to the original implementation.

3.3 Learning Replaces Reasoning
Reinforcement learning is accepted as an approach for learning
sequential decision making models [24]. It became popular during
the last years, mainly due to the development of Deep Q-Learning
approaches that do not require explicit formulation of state repre-
sentations. For the endeavour here, we apply stateless Q-learning,
which is one of the simplest Reinforcement Learning architectures
available.

All agents learn individually. Both manufacturer agents and en-
gineering company agents select one out of two alternative actions
consultancy or software: Using/providing consultants versus in-
tegrating/developing software. Each agent associates those two
actions with a Q-Value, that forms an estimate of the reward that
the agent may receive when actually executing this action. Here,
reward 𝑟𝑡 is the profit that the agent makes in learning episode 𝑡
from selling software/consultancy or from producing with consul-
tants/software. After action execution, that means at the end of
the production round, every agent receives this reward and uses it
to update the Q-Value associated with the selected action 𝑎 in the
following way. If no production is possible – for example if the man-
ufacturer agent fails in recruiting engineers as system integrators –
the reward 𝑟𝑡 is negative as the agent still faces cost.

𝑄𝑡 (𝑎) = (1 − 𝛼)𝑄𝑡−1 + 𝛼𝑟𝑡 (1)

As given above, this is a stateless Q-learning update of the Q-value
for action 𝑎. That means, selecting an action is independent of the

state that the agent is currently in. In standard Q-learning, the Q-
value for action 𝑎 would depend on the agents’ state, so the agent
would learn which action is best in which state. Ignoring state,
the formula above becomes simpler than standard Q-learning. The
additional term expressing the estimation of optimal actions taken
in a future state is missing. 𝛼 is the learning rate (here 𝛼 = 0.5). We
use an 𝜖-greedy strategy for balancing exploration and exploitation.
During exploration, the agent randomly selects an action, during
exploitation, the agents selects the action with the higher Q-value.
We start with 𝜖 = 0.9 probability for exploration. This is reduced in
every round with a decay factor set to 0.99.

Our scenario is a clear co-adaptive scenario where many agents
learn at the same time. The learning problem for an individual
agent is consequently non-static, more in the beginning with a high
share of exploration. With more and more manufacturer agents
selecting software, the network of manufacturers grows and as
a consequence costs of automation decreases and profit for soft-
ware users increases. So, there is not just a feedback loop via the
increased availability of software/consultancy services, but also
related to direct cost calculations. To support continued learning in
such a dynamic environment, we set a lower bound for 𝜖 , so that
agents at any time can test alternatives with a very low probability.
The consequence is that there is always a small share of manufac-
turer agents which do not use software even when the system has
converged.

In the same manner as in the process-oriented decision model,
the learning-based decision making is embedded into the basic eco-
nomic model. The main difference is that while process-oriented
decisions are driven by partially random individual expectations
about the future, learning-based decisions are based on experience
from the current and the previous period. In either case a manufac-
turer agent which decides to produce with software, must employ
system integrators and find software on the market while an en-
gineering company deciding to offer consultancy needs to wait
for manufacturer agents to offer a contract. Figure 2 shows the
synchronised learning-based decision architecture. Basically, there
are three phases: The agents independently draw their decision,
prepare the execution and actually produce. In the third phase, the
agents evaluate their profit or loss and update the corresponding
Q-Values.

Implementation is done using agent-based simulation platform
SeSAm simsesam.org. Both implemented models will be available
on the platform’s webpage under “Contributed Models”.

4 EXPERIMENTS AND RESULTS
The following simulation results - identical parameter settings for
both model variants - contain 200 manufacturer agents and 60 engi-
neering company agents. Manufacturer agents have an individual
productivity drawn from a Pareto distribution. There are 3000 engi-
neers in the economy. Two thirds of them are initially employed
at engineering companies to be hired out as consultants while the
remaining third is freely available on the labour market to be hired
as consultants or integrators. All figures show averages over 30
runs.

We tested the effect of different learning parameter settings.
Different values of 𝛼 or the decay-factor for 𝜖 had only minor and
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Figure 1: Synchronised Decision Making Process

Figure 2: Synchronised Process with Learning

expectable impact on the convergence speed. The most important
setting was actually the decision to apply a non-zero lower bound
for 𝜖 . Therefore, there is no full convergence. On the other hand, the
parameter approaching zero, resulted on a premature convergence.
Initial bad (unrealistic) decisions that lead to not being able to
produce, resulted in highly negative rewards.

Figure 3 shows the results of the process-oriented decision mak-
ing. Manufacturer agents compare potential profits. Due to the
network effect, the more of them use software, the cheaper it be-
comes and thus the more manufacturers can afford replacing con-
sultants in the next period. The zick-zack of software development
at engineering company agents comes from overoptimism as agents
predict a higher income from software than they actually can realise.
Making a loss, leads them to return to the consultancy model. With
an increasing share of manufacturer using software, the share of
engineering companies making profit in software market increases.
As time passes, 100% of manufacturer agents as well as almost 100%
of engineering company agents use or develop software respec-
tively. Importantly, the S-shape of the manufacturer adoption rate
curve reflects stylised facts from the technology diffusion literature.

Also in Figure 4 the curve of manufacturer agents using soft-
ware shows an S-shape, at least after the initial phase in which
the agents mostly do exploration and thus a random decision. One
can see that the initial random exploration phase relatively fast

Figure 3: Process-oriented decision making: Percentage of
manufacturers and engineering companies having switched
to using/developing software.

changes to a phase with little software use. Only for the most pro-
ductive manufacturer agents does it pay off to use software. With
few manufacturers demanding software, the market is small and
only a few engineering companies actually register positive profit
from offering software. The share of software users never becomes
zero, so network effects come slowly into play and eventually an in-
creasing number of manufacturer agents can afford to use software,
reducing the potential profit that engineering companies can make
from offering consultancy. The lack of a zickzack curve for engi-
neering companies originates from that the learning architecture is
inherently backward-looking, agents do not generate expectations
and react on wrong expectations. Also in this scenario almost 100%
of all agents use/provide software after convergence.

Both curves have been generated by models with identical pa-
rameter settings. The only difference is the decision making model
of the individual agents. One can see that for a stable convergence
to occur, the learning architecture needed 1000 episodes, while the
process-oriented decision making just needed 50 simulation cy-
cles. This difference comes from that agents in the learning setting
learn based on randomly trying out actions; agents in the process-
oriented approach predict and only implement the selected option,
if it can be done. Learning agents adapt based on past experiences
that means they adapt to an environment in which less and less
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Figure 4: Learning-based decision making: Percentage of
manufacturers and engineering companies having switched
to using/developing software.

failures happen when the agent select to provide software. The
principle is similar, but it leads to the different curves. We also
tested other learning parameter settings only affecting the learning
speed, not convergence or general shape of the curve.

In the following, we show in two example tests in how far both
models behave similarly when particular parameters are changed.
Figures 5 and 6 show the dependency on system size. The smallest
tested system size consists of 10 manufacturer agents, 3 engineering
companies and 100 engineers (factor=1). The given factor reported
in the chart is a multiplicand to all system size numbers. Factor 20
corresponds to the baseline scenario used above. Thus, the learning-
based approach only works in larger scenarios with a sufficient
number of agents.

Figure 5: Effect of overall system size on technology uptake
in the process-oriented model version

Another set of tests done to compare whether the two agent
architectures react differently, concerns the price of a produced
unit. All experiments so far have been done with 𝑝 = 1. Raising
the price increases the absolute value of the profit in both models.
Costs of production do not depend on product price. Differences in
the production functions for consultancy versus automation result
with higher prices in higher revenues. In both architectures, (see
Figure 7 for the process-oriented and Figure 8 for the learning-based
approach) technology uptake is faster in scenarios with lower unit
prices

Figure 6: Effect of overall system size on technology uptake
in the learning-based model version

Figure 7: Effect of unit price on technology uptake in the
process-oriented model version

Figure 8: Effect of unit price on technology uptake in the
learning-based model version

In the following, we will discuss differences and observations in
more detail.

5 DISCUSSION
The experiments show that agent-based simulations with both
decision making architectures can produce qualitatively similar
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results. The curves for manufacturer agents show the same qual-
itative shape, if some initial drop due to initial exploration is ig-
nored. Differences observed for the engineering companies adap-
tation originate from that the learning architecture is inherently
backward-looking while the process-oriented architecture uses
forward-looking. Forward-looking agents form expectations about
future demandwhich becomemore realistic, the moremanufacturer
use software. Learning agents adapt based on past experiences that
means they adapt to an environment in which less and less failures
happen when the agent select to provide software. The principle
is similar, but it leads to the different curves. This demonstrates
that results are robust and independent from the actual decision
making architecture. Beyond that, there are some observations that
need to be discussed.

5.1 Simulation Runtime and Handling of
Simulated Time

We implemented both models using the same platform using the
same underlying basic economic model. We did not use a given
Q-Learning library or some other form of generic implementation,
but kept the learning architecture as simple as possible, without any
overhead. Every agent handles a table with two Q-values. Despite
the simplicity, Q-learning does not converge fast. Thus, the duration
of simulation experiments was significantly longer than using the
direct process-oriented architecture. Unfortunately, we missed to
take measurements of runtime using different computers.

While in the process-oriented approach a modeller can establish
a correspondence between one simulated decision making round
and time intervals at which companies normally take such eco-
nomic decisions. Due to the explore-exploit approach, this possible
correspondence between reality and simulation is impossible using
Reinforcement Learning. In reality no company would buy and
integrate software or decide to stop consulting business just to test
what would be the effect of selecting this action without checking
whether an action would actually make sense. The decision for
using software is only done, if there is somebody selling software
for example. So, a learning episode cannot correspond to for exam-
ple one “year” of simulated time. As a consequence, statements on
how long technology uptake may take absolutely are not feasible
with Reinforcement Learning - only relative to other settings. Thus,
numbers on the horizontal axis on Figures with process-oriented
architecture agents versus on Figures with learning-based architec-
ture agents have no relation.

5.2 Number of Parameters, Calibration and
Sensitivity

The underlying model is the same for the two decision making
architectures. Agents calculate their profits and costs in exactly the
same way. Thus, the number of parameters necessary for the un-
derlying economic model of production, consultancy and software
development is the same.

However, there are differences in the number of parameters be-
yond the basic economic model: There is a specific parameter in
the process-oriented architecture that do not appear in the Rein-
forcement Learning model. On the other hand, the Reinforcement
Learning setup comes with parameters for the actual learning.

The specific parameter in the process-based decision making
concerns the deliberation of agents when predicting profits while
missing experience: Every engineering company predicts its current
potential market share for software. This is done using a random
selection from a uniform distribution with a parameter for the
upper bound of market share. This upper bound is a parameter that
has a clear effect on the variation of the zick-zack shape.

Using a Reinforcement Learning based approach comes with a
set of learning parameters such as learning rate 𝛼 , initial 𝜖 value and
decay; these parameter were mentioned above. Another parameter
is the number of learning episodes and the lower bound for epsilon
applied.

While the learning parameters (except the lower bound for ep-
silon), had only effects on the convergence rate, the prediction re-
lated parameter in the process-oriented setting had dramatic effects:
engineering firms were either too optimistic about their potential
market share or did not dare to switch at all. Process-oriented mod-
els were highly sensitive to the actual value of this parameter. This
is typical for parameters impacting the agents’ decision making.

Variation of the other parameters - e.g. the size of the overall
system (Figure 5 and 6) or the value of the price parameter (Figure 7
and 8) show that both model variants react in a qualitatively similar
way to changes in the parameter values.

5.3 Expressiveness
An important question for modelling in general is about expressive-
ness of the decision making architecture. That means the question,
what complexity of reasoning can be formulated. The learning-
based approach is directed towards identifying the individually
optimal decision. As shown in Section 3, we could explicitly include
a lot of the decision making constraints and context into the model.
However, preconditions for decisions are not explicitly handled
beforehand, but needed to be integrated into the consequences of
a decision and eventually into the reward function. This makes
the full behaviour model of an agent simpler as the agent not ex-
plicitly checks whether prerequisites are fulfilled for coming to a
suitable decision that allows production. On the other hand, we had
to formulate what costs emerge, if a manufacturer cannot produce
- which is kind-of unrealistic. Consequences of actions that impact
future costs - such as networking effects - could be integrated into
the learning model. So, this shows that a Reinforcement Learning
based simulation model does not need to capture decisions in an
oversimplified context. Yet, the actual decision is binary, the context
determines the actual value of the reward given to the agent.

5.4 Transparency, Explainability, Credibility
Explicitly describing, how the agents decide based on which infor-
mation, can be clear and is direct. This way of modelling requires
an analysis what information each individual agent actually can
and does access for making decisions. In contrast to traditional
econometric modelling there is no market as “god’s hand” that au-
tomatically regulates everything so that an equilibrium is reached.
So, with direct behaviour formulation, the modeller is in full control,
yet has to specify the full agent behaviour.

With the learning settings, the modeller looses this direct formu-
lation. The context of the decision making with its impact on the
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reward becomes essential. On a technical level, the co-evolutionary
learning setting may not be so different from equilibrium searching
optimisation approaches. Nevertheless – depending on the sophis-
tication of the part of the overall model that determines the reward,
the actual outcome of the learning may be surprising.

Agent-based simulation with individual agents that decide in
parallel based on their local context in both settings may challenge
explainability of simulation results even without involving learning
agents. If there are many agents, it is not trivial to follow how a
particular phenomenon on the population level is actually gen-
erated from the local decisions and interactions. This is already
difficult with direct behaviour modelling, with a learning-based
approach one in addition needs to explain why an individual agent
has learnt to decide in its specific way. Given that exploration is
based on random choices and on changing overall context with
more or less competition for software or consultants, each individ-
ual history may differ. So, explaining why a particular simulation
setting produced a particular result may be even more challenging
with agents learning. For credibility of any agent-based simulation
model outcome, explanation and justification of every result facet
is inevitable [19].

One has to remark, that this particular example model is actually
rather benign – in both versions there is a strong global attractor
state. Despite of all the random processes involved, different runs
of the same setting show only small deviations. Results are clearly
sensitive to parameter settings, yet in a way that allows to explain
the impact of those parameter values. There is no chaotic model
behaviour.

5.5 Relevance of Data
Both presented variants of this model are theoretic abstractions,
not case studies of particular clearly defined real-world systems for
which relevant data could be collected. So, available, published data
is only to inspire typical parameter settings such as for example
markup costs for consulting services.

Agent learning is connected to data-driven approaches. So, the
learning setup would actually offer more opportunities to integrate
data on technology uptake. Agents then do not learn for optimising
their profits as in our model, but learn to reproduce given data
on how many manufacturer use service automation software. The
engineering company agents then could follow the data-driven
learning of the manufacturer agents. In this way, the reinforcement
learning architecture opens new possibilities to work with data that
may be available in the future.

6 SUMMARY, CONCLUSION AND FUTURE
WORK

In this paper, we present and analyse two different decision making
architectures applied for modelling agents in the same model of
technology uptake. Both architectures – a process-oriented direct
model of predicting profits and deciding for the more profitable
version and a model using an agent architecture in which agents
learn Q-values that predict reward (profit) in a stateless Q-Learning
setup – actually produced qualitatively similar results. In a rather
extensive discussion we compared the different approaches from
a model engineering point of view. The result of this discussion is

not a clear statement pro or contra one of the approaches, rather a
deliberation of consequences when deciding to either use a learning
or a direct modelling approach.

In current times of machine learning hype, direct modelling
has advantages related to explainability and transparency which
is important for credibility of simulation results. Learning may
be convenient as details of the decision making do not need to
be fixed and fully specified. Using agent learning instead of fully
specifying the agent behaviour may have the advantage that overall
model outcome does not depend on small details in the behaviour
specification, yet in details in the reward calculation.

So, there are advantages and disadvantages in both approaches.
A modeller needs to be aware of those. A relevant question is about
the generalisability of the analysis done here. The model that we
used to base our comparison on exhibits the following generic
features:

• Agents decide between discrete options (consultancy versus
automation).

• There is a clear concept of reward (profit) for an individual
agent depending on the option the agent and other agents
chose.

• Decision making is repeated in synchronised rounds.

We assume that any model with such features is possible to be
formulated in either process-oriented or learning based way. The
features listed above do not refer to Markov properties nor sophisti-
cation of the decision making. For being sure about generalisability
beyond identifying these rather obvious model features, other mod-
els need to be identified and compared in a similar way as we did
with the given technology uptake model.

In this regard, it is interesting to look into how a translation
from a process-oriented to a learning-based model formulation can
be done. The starting point must be the identification of the agents’
core decisions plus an analysis the conditions and consequences
of such actions. The process-oriented approach consists to a large
extend of preparing the core decisions. In a learning-based model,
the agents learn about those conditions. Implementing the con-
sequences of decisions, that means performing the actions could
be similar in both model versions. The consequences in form of
reward require deeper analysis. In the model here, this feedback
was straight forward, as with the concept of cost/profit a measure
for success was already build in. Nevertheless, before we can for-
mulate a methodology around translation, we need to actually test
translation of different models.

Another element of future work is to look into alternative learn-
ing architectures. Multi-armed bandits form a learning approach
which is similar to stateless Q-learning, yet instead of a Q-value,
a probability distribution is learnt for each action (arm). Another
alternative that enables the agents to learn a full policy instead of
just the suitability of one action is traditional, stateful Q-learning.
This brings the difficult question, what does an agent need to know
to make a good decision on the table, as this is the information that
needs to be captured in the state representation.
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