
Worst-Case Adaptive Submodular Cover
Jing Yuan

University of North Texas

Denton, United States

jing.yuan@unt.edu

Shaojie Tang

University of Texas at Dallas

Richardson, United States

shaojie.tang@utdallas.edu

ABSTRACT
In this paper, we study the adaptive submodular cover problem

under the worst-case setting. This problem generalizes many previ-

ously studied problems, namely, the pool-based active learning and

the stochastic submodular set cover. The input of our problem is a

set of items (e.g., medical tests) and each item has a random state

(e.g., the outcome of a medical test), whose realization is initially

unknown. Onemust select an item at a fixed cost in order to observe

its realization. There is a utility function which maps a subset of

items and their states to a non-negative real number. We aim to

sequentially select a group of items to achieve a “target value” while

minimizing the maximum cost across realizations (a.k.a. worst-case

cost). To facilitate our study, we assume that the utility function

is worst-case submodular, a property that is commonly found in

many machine learning applications. With this assumption, we

develop a tight (log(𝑄/[) + 1)-approximation policy, where 𝑄 is

the “target value” and [is the smallest difference between 𝑄 and

any achievable utility value �̂� < 𝑄 . We also study a worst-case

maximum-coverage problem, a dual problem of the minimum-cost-

cover problem, whose goal is to select a group of items to maximize

its worst-case utility subject to a budget constraint. To solve this

problem, we develop a (1 − 1/𝑒)/2-approximation solution.

KEYWORDS
Adaptive submodular maximization; Worst-case analysis; Approxi-

mation algorithms

ACM Reference Format:
Jing Yuan and Shaojie Tang. 2023. Worst-Case Adaptive Submodular Cover.

In Proc. of the 22nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 – June
2, 2023, IFAAMAS, 8 pages.

1 INTRODUCTION
In this paper, we study a fundamental problem of minimum cost

adaptive submodular cover under the worst-case setting. The prob-

lem can be formulated as follows: Given a set of items, each item

has a state whose value is random and unknown initially, one must

select an item at a fixed cost before observing its realized state. In

addition, there is a utility function that depends on both the set

of selected items and their realized states. Our goal is to sequen-

tially select a group of items based on feedback, in the form of the

realized states of the selected items, to achieve a threshold func-

tion value at the minimum worst-case cost. Here the worst-case

cost of a solution (a.k.a. policy) refers to the maximum incurred

cost across realizations. This formulation captures many real-world

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

applications, namely, active learning, viral marketing and sensor

placement [4]. As a motivating example, consider the application

of medical diagnosis. Here each item represents a medical test and

the state of an item refers to the outcome from corresponding med-

ical test. Clearly, we can not observe the outcome of a test before

performing that test. We define the utility function, in terms of a

set of performed tests and their outcomes, as the number of false

hypotheses (e.g., diseases) ruled out by these tests. Suppose each

test has a fixed cost, we aim to perform a sequence of tests (based

on the outcomes from past tests) to eliminate all false hypotheses
at the minimum worst-case cost.

The minimum-cost adaptive submodular cover problem has re-

ceived significant attention in the literature, however, most of the

existing studies focus on minimizing the expected cost of a policy

[3, 4]. In particular, they often assume that there is a known prior

distribution over realizations, hence, they aim to find a policy that

achieves a threshold function value while minimizing the expected

cost with respect to this distribution. In contrast, we focus on min-

imizing the worst-case cost of a policy, this is because in many

real-world applications, it is often difficult or impossible to get an

accurate prediction of how likely certain outcomes are. Moreover,

in many time-critical diagnostic applications, such as emergency

response, one must rapidly identify a cause through a series of

queries. In these applications, violation of a cost-constraint (such

as time-constraint) may lead to fatal consequences; therefore, it is

preferable to have a policy that has a small worst-case cost.

To solve this problem, we first introduce the concept ofworst-case
submodularity [11], extending the classic notation of submodularity
from sets to policies. We say a function is worst-case submodular if

the worst-case marginal utility of an item satisfies the diminishing

returns property (Definition 2.1). This property is prevalent across a

diverse range of applications such as the pool-based active learning

and the stochastic submodular set cover. Our main contribution is

to develop a best possible (log(𝑄/[) + 1)-approximation policy for

the worst-case adaptive submodular cover problem, where 𝑄 is the

“target value” and [is the smallest difference between 𝑄 and any

achievable utility value �̂� < 𝑄 . In addition, we study a worst-case

maximum-coverage problem, whose goal is to sequentially select a

group of items to maximize its worst-case utility subject to a budget

constraint. We develop a (1 − 1/𝑒)/2-approximation solution for

this problem.

Additional related works. There is some work on minimizing the

worst-case cost in active learning; see e.g., [1, 8]. Our results can

be viewed as a generalization of their results because we can show

that the utility function of pool-based active learning (or optimal

decision tree design in general) is worst-case submodular. Recently,

[4] introduced the concept of adaptive submodularity. Similar to

our notation of worst-case submodularity, adaptive submodularity

is another way of extending submodularity from sets to policies.

Session 6A: Deep Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1915

However, their property depends on the prior distribution of realiza-

tions, whereas there is no such dependence in defining worst-case

submodularity. More importantly, our proposed notation allows for

better approximation bounds in many real-world applications. In

particular, [4] developed a (1 + log 𝑄
[𝑝min

)-approximation policy for

the minimum-cost coverage problem under the worst-case setting if

the utility function is adaptive submodular, where 𝑝min is the mini-

mum probability of any realization. In contrast, our policy achieves

the (1 + log(𝑄/[))-approximation bound; 1/𝑝min can be exponen-

tially larger than 𝑄 . It is also worth noting that one must know

the prior distribution over realizations in order to implement [4]’s

policy whereas ours does not need such information. Finally, [5, 6]

studied the simultaneous learning and covering problem, whereas

we focus on the covering problem. The problem of constrained

adaptive submodular maximization has been widely researched in

the literature. Most of the existing studies center on maximizing the

average-case utility [4, 9, 10, 13–17] whereas our focus is on maxi-

mizing worst-case utility. The concept of worst-case submodularity

was recently introduced by [11] where they studied the worst-case

submodular maximization problem subject to matroid constraints,

we examine the same problem subject to a different constraint, such

as budget constraints, instead.

2 PRELIMINARIES
In the rest of this paper, we use [𝑚] as shorthand notation for the

set {1, 2, · · · ,𝑚}.

2.1 Items and States.
The input is a set 𝐸 consisting of 𝑛 items. Each item 𝑒 ∈ 𝐸 is in

an undetermined state from a set 𝑂 of possible states. We use a

function 𝜙 : 𝐸 → 𝑂 , called a realization, to represent the item states,

where function 𝜙 maps each item in the ground set 𝐸 to a state in𝑂 .

Therefore, we can say that 𝜙 (𝑒) represents the state of 𝑒 under the
realization 𝜙 . In the example of diagnosis, each item 𝑒 represents a

medical test and 𝜙 (𝑒) is the outcome of 𝑒 . We use Φ to represent

a randomly determined realization. One must select one item in

order to uncover its realized state. We assume that selecting an item

𝑒 incurs a fixed cost 𝑐 (𝑒). For convenience, let 𝑐 (𝑆) = ∑
𝑒∈𝑆 𝑐 (𝑒).

For any subset of items 𝑆 ⊆ 𝐸, we use the notation 𝜓 : 𝑆 → 𝑂

to represent a partial realization of 𝑆 . Let dom(𝜓) = 𝑆 denote the

domain of 𝜓 . Consider a realization 𝜙 and a partial realization 𝜓 ,

we say that 𝜙 is consistent with 𝜓 (denoted as 𝜙 ∼ 𝜓) if 𝜙 and 𝜓

are equal everywhere in dom(𝜓). We say that a partial realization

𝜓 is a subrealization of another partial realization 𝜓 ′ (denoted as

𝜓 ⊆ 𝜓 ′) if the two realizations are identical in the domain of𝜓 (i.e.,

dom(𝜓)) and dom(𝜓) is a subset of dom(𝜓 ′).

2.2 Policy and Worst-Case Submodularity
Under the adaptive setting, we aim to find an adaptive solution

which selects items sequentially and adaptively, with each selec-

tion being based on the previously obtained feedback. Formally,

any adaptive solution can be represented as a policy 𝜋 that maps

the current partial realization to the next item to be selected. For

example, suppose we observe a partial realization ∪𝑒∈𝑆 {(𝑒,Φ(𝑒))}
after selecting a set 𝑆 of items and assume 𝜋 (∪𝑒∈𝑆 {(𝑒,Φ(𝑒))}) = 𝑤 .

Then 𝜋 selects𝑤 as the next item. It is certainly possible to define

a randomized policy by mapping the current observation to some

distribution of items. However, because every randomized policy

can be considered as a distribution of a set of deterministic policies,

we focus on deterministic policies without loss of generality.

There is a utility function 𝑓 : 2
𝐸 × 𝑂𝐸 → R≥0 which maps a

subset of items and their states to a non-negative real number. Let

𝐸 (𝜋, 𝜙) denote the subset of items selected by the policy 𝜋 under

the realization 𝜙 . Let𝑈 + denote the set of all realizations that have
a positive probability of occurring. The worst-case utility, 𝑓𝑤𝑐 (𝜋),
of a policy 𝜋 is defined as the minimum utility that can be achieved

by 𝜋 over all possible realizations, it can be written as

𝑓𝑤𝑐 (𝜋) = min

𝜙∈𝑈 +
𝑓 (𝐸 (𝜋, 𝜙), 𝜙) .

For ease of presentation, we extend the definition of 𝑓 by letting

𝑓 (𝜓) = EΦ [𝑓 (dom(𝜓),Φ) | Φ ∼ 𝜓] denote the expected utility of

dom(𝜓) conditioned on the partial realization𝜓 . We now present

the concept of worst-case marginal utility Δ𝑤𝑐 (𝑒 | 𝜓) of item 𝑒

when added to a partial realization 𝜓 . Let 𝑝 (𝜙 | 𝜓) = Pr[Φ =

𝜙 | Φ ∼ 𝜓] denote the conditional distribution over realizations

conditioned on a partial realization𝜓 . Define

Δ𝑤𝑐 (𝑒 | 𝜓) = min

𝑜∈𝑂 (𝑒,𝜓)
{𝑓 (𝜓 ∪ {(𝑒, 𝑜)}) − 𝑓 (𝜓)},

where 𝑂 (𝑒,𝜓) = {𝑜 ∈ 𝑂 | ∃𝜙 : 𝑝 (𝜙 | 𝜓) > 0, 𝜙 (𝑒) = 𝑜} denotes the
set of possible states that 𝑒 can take on, given the partial realization

𝜓 .

Now we are ready to introduce the notations of worst-case sub-

modularity and worst-case monotonicity [11].

Definition 2.1. [Worst-case Submodularity and Worst-case Mono-
tonicity] A function 𝑓 is worst-case submodular if

Δ𝑤𝑐 (𝑒 | 𝜓) ≥ Δ𝑤𝑐 (𝑒 | 𝜓 ′) (1)

for any two partial realizations𝜓 and𝜓 ′ such that𝜓 ⊆ 𝜓 ′ and for

any item 𝑒 ∈ 𝐸\dom(𝜓 ′). A function 𝑓 is worst-casemonotone if for

every partial realization𝜓 and any 𝑒 ∈ 𝐸 \ dom(𝜓), Δ𝑤𝑐 (𝑒 | 𝜓) ≥ 0.

Lastly, we introduce the concept of minimal dependency [2],

which states that the utility of any collection of items is only de-

pendent on the state of the items within that group.

Definition 2.2. [Minimal Dependency] We say a function 𝑓 is

minimal dependent with respect to 𝑝 (𝜙) if for any partial realiza-

tion 𝜓 and any realization 𝜙 such that 𝜙 ∼ 𝜓 , we have 𝑓 (𝜓) =
𝑓 (dom(𝜓), 𝜙).

The properties of worst-case submodular, worst-case monotone

and minimal dependent can be observed in a wide range of applica-

tions, such as pool-based active learning, stochastic submodular set

cover, and adaptive influence maximization. Therefore, all results

derived in this paper are applicable to these types of applications.

3 PROBLEM FORMULATION
Given a policy 𝜋 , let 𝑐𝑤𝑐 (𝜋) denote the worst-case cost of 𝜋 , for-
mally, 𝑐𝑤𝑐 (𝜋) = max𝜙∈𝑈 + 𝑐 (𝐸 (𝜋, 𝜙)). We assume there is a “target

value” 𝑄 such that 𝑓 (𝐸, 𝜙) = 𝑄 for all 𝜙 . The worst-case adaptive

submodular cover problem is formally defined as follows:

min

𝜋 :𝑓𝑤𝑐 (𝜋)≥𝑄
𝑐𝑤𝑐 (𝜋).

Session 6A: Deep Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1916

For the case if 𝑓 (𝐸, 𝜙) varies across 𝜙 , we can define a new

function
ˆ𝑓 (𝑆, 𝜙) = min{𝑄 ′, 𝑓 (𝑆, 𝜙)}, where 𝑄 ′ is some threshold

that is no larger than min𝜙 𝑓 (𝐸, 𝜙); that is, 𝑄 ′ is achievable under
all realizations. Fortunately, this variation does not add additional

difficulty to our problem because Lemma 3.1 shows that if 𝑓 is worst-

case monotone, worst-case submodular and minimal dependent

with respect to 𝑝 (𝜙), then ˆ𝑓 is also worst-case monotone, worst-

case submodular and minimal dependent with respect to 𝑝 (𝜙),
indicating that our results still hold if we replace the original utility

function 𝑓 and the “target value” 𝑄 with
ˆ𝑓 and 𝑄 ′, respectively.

Lemma 3.1. Let ˆ𝑓 (𝑆, 𝜙) = min{𝑄 ′, 𝑓 (𝑆, 𝜙)} for some constant 𝑄 ′.
If 𝑓 is worst-case monotone, worst-case submodular and minimal
dependent with respect to 𝑝 (𝜙), then ˆ𝑓 is also worst-case monotone,
worst-case submodular and minimal dependent with respect to 𝑝 (𝜙).

Proof: It is trivial to show that if 𝑓 is worst-case monotone and

minimal dependent, then
ˆ𝑓 is also worst-case monotone and min-

imal dependent. We next focus on proving that if 𝑓 is worst-case

submodular, then
ˆ𝑓 is also worst-case submodular. We start by pre-

senting a useful technical lemma in Lemma 3.2. Its proof is provided

in appendix.

Lemma 3.2. Consider any five constants 𝑐1, 𝑐2, 𝑐3, 𝑐4 and 𝑥 such
that 𝑐1 ≥ 𝑐2 and 𝑐3 ≥ 𝑐4, 𝑐1 − 𝑐2 ≥ 𝑐3 − 𝑐4 and 𝑐2 ≤ 𝑐4, we have
min{𝑐1, 𝑥} −min{𝑐2, 𝑥} ≥ min{𝑐3, 𝑥} −min{𝑐4, 𝑥}.

Consider any two partial realizations𝜓 and𝜓 ′ such that𝜓 ⊆ 𝜓 ′
and any 𝑒 ∈ 𝐸 \ dom(𝜓 ′),

min

𝑜∈𝑂 (𝑒,𝜓)

{
ˆ𝑓 (𝜓 ∪ { (𝑒, 𝑜) }) − ˆ𝑓 (𝜓)

}
− min

𝑜∈𝑂 (𝑒,𝜓 ′)

{
ˆ𝑓 (𝜓 ′ ∪ { (𝑒, 𝑜) }) − ˆ𝑓 (𝜓 ′)

}
= min

𝑜∈𝑂 (𝑒,𝜓)

{
min{𝑄 ′, 𝑓 (𝜓 ∪ { (𝑒, 𝑜) }) } − min{𝑄 ′, 𝑓 (𝜓) }

}
− min

𝑜∈𝑂 (𝑒,𝜓 ′)

{
min{𝑄 ′, 𝑓 (𝜓 ′ ∪ { (𝑒, 𝑜) }) } − min{𝑄 ′, 𝑓 (𝜓 ′) }

}
=

(
min{𝑄 ′, min

𝑜∈𝑂 (𝑒,𝜓)
𝑓 (𝜓 ∪ { (𝑒, 𝑜) }) } − min{𝑄 ′, 𝑓 (𝜓) }

)
−

(
min{𝑄 ′, min

𝑜∈𝑂 (𝑒,𝜓 ′)
𝑓 (𝜓 ′ ∪ { (𝑒, 𝑜) }) } − min{𝑄 ′, 𝑓 (𝜓 ′) }

)
.

To prove the worst-case submodularity of
ˆ𝑓 , it suffices to show

that (
min{𝑄 ′, min

𝑜∈𝑂 (𝑒,𝜓)
𝑓 (𝜓 ∪ { (𝑒, 𝑜) }) } − min{𝑄 ′, 𝑓 (𝜓) }

)
(2)

−
(
min{𝑄 ′, min

𝑜∈𝑂 (𝑒,𝜓 ′)
𝑓 (𝜓 ′ ∪ { (𝑒, 𝑜) }) } − min{𝑄 ′, 𝑓 (𝜓 ′) }

)
≥ 0.

Let 𝑐1 = min𝑜∈𝑂 (𝑒,𝜓) 𝑓 (𝜓 ∪ {(𝑒, 𝑜)}), 𝑐2 = 𝑓 (𝜓),
𝑐3 = min

𝑜∈𝑂 (𝑒,𝜓 ′)
𝑓 (𝜓 ′ ∪ {(𝑒, 𝑜)}), 𝑐4 = 𝑓 (𝜓 ′),

we have 𝑐1 ≥ 𝑐2 (by worst-case monotonicity), 𝑐3 ≥ 𝑐4 (by worst-

case monotonicity), 𝑐1 −𝑐2 ≥ 𝑐3 −𝑐4 (by worst-case submodularity)

and 𝑐2 ≤ 𝑐4 (by worst-case monotonicity). Hence, apply Lemma 3.2

with these parameters and 𝑥 = 𝑄 ′ gives inequality (2). □

4 ALGORITHM DESIGN AND ANALYSIS
We first introduce a Worst-Case Density-Greedy Policy (labeled

as 𝜋𝑔) for the worst-case adaptive submodular cover problem. In

Algorithm 1 Worst-Case Density-Greedy Policy 𝜋𝑔

1: 𝑡 = 1;𝜓0 = ∅.
2: while 𝑓 (𝜓𝑡) < 𝑄 do
3: select 𝑒𝑡 ∈ argmax𝑒∈𝐸

Δ𝑤𝑐 (𝑒 |𝜓𝑡−1)
𝑐 (𝑒) ;

4: observe Φ(𝑒𝑡) and update𝜓𝑡 ← 𝜓𝑡−1 ∪ {(𝑒𝑡 ,Φ(𝑒𝑡))};
5: 𝑡 ← 𝑡 + 1;

each step 𝑡 of 𝜋𝑔 , it selects an item 𝑒𝑡 that maximizes the worst-case

“benefit-to-cost” ratio on top of the current observation, i.e.,

𝑒𝑡 ∈ argmax

𝑒∈𝐸

Δ𝑤𝑐 (𝑒 | 𝜓𝑡−1)
𝑐 (𝑒) , (3)

where𝜓𝑡−1 denotes the partial realization observed at step 𝑡 . Then

it updates the observation using 𝜓𝑡 ← 𝜓𝑡−1 ∪ {(𝑒𝑡 ,Φ(𝑒𝑡))}. We

follow this density-greedy rule to select items recursively until

the utility of selected items achieves the quality threshold 𝑄 , i.e.,

𝑓 (𝜓𝑡) ≥ 𝑄 . With the assumption that 𝑓 is minimal dependent, it

is easy to verify that 𝑓𝑤𝑐 (𝜋𝑔) ≥ 𝑄 . A detailed description of 𝜋𝑔 is

listed in Algorithm 1.

We conduct our analysis based on the concept of virtual slot,
which was originally proposed in [4]. Assume after a policy 𝜋

selects an item 𝑒 , it starts to “run” 𝑒 , and terminates after 𝑐 (𝑒)
virtual slots. It is worth noting that virtual slot is only defined for

analytical purposes and does not consume actual time. Based on

this notation, we introduce the level-𝑙-truncation 𝜋𝑙 of a policy 𝜋

over virtual time as follows.

Definition 4.1 (Level-𝑙-truncation of 𝜋 over virtual time). Run 𝜋

for 𝑙 virtual slots, and for every item 𝑒 ∈ 𝐸, if 𝑒 has been running for

𝛾 virtual slots, selecting 𝑒 independently with probability 𝛾/𝑐 (𝑒).

For example, assume a policy 𝜋 selects three items 𝑒1, 𝑒2, 𝑒3 in

the end with 𝑐 (𝑒1) = 2, 𝑐 (𝑒2) = 2 and 𝑐 (𝑒3) = 3. Then its level-5-

truncation 𝜋5 selects 𝑒1 and 𝑒2 deterministically, and selects 𝑒3 with

probability 1/3; its level-3-truncation 𝜋3 selects 𝑒1 deterministically,

and selects 𝑒2 with probability 1/2.
Given a realization 𝜙 and a policy 𝜋 , for any 𝑙 ∈ Z+, let 𝑡 [𝑙, 𝜙, 𝜋]

denote the number of items that have a positive probability of

being selected by 𝜋𝑙 conditioned on 𝜙 . For convenience, we use 𝑡 [𝑙]
to denote 𝑡 [𝑙, 𝜙, 𝜋] if it is clear from the context. In the previous

example, we have 𝑡 [3] = 2 because both 𝑒1 and 𝑒2 have a positive

probability of being selected by 𝜋3; we have 𝑡 [5] = 3 because all

three items have a positive probability of being selected by 𝜋5.

We denote with ℎ(𝜋𝑙 | 𝜙) the expected utility of 𝜋𝑙 conditioned

on a realization 𝜙 . Assume𝜓0 = ∅. With the above notations and

the definition of 𝜋𝑙 , ℎ(𝜋𝑙 | 𝜙) is formally defined as follows:

ℎ (𝜋𝑙 | 𝜙) = 𝑓 (𝜓𝑡 [𝑙]−1) + (4)

min{𝑙 − 𝑐 (dom(𝜓𝑡 [𝑙]−1)), 𝑐 (𝑒𝑡 [𝑙]) }
𝑐 (𝑒𝑡 [𝑙])

(
𝑓 (𝜓𝑡 [𝑙]) − 𝑓 (𝜓𝑡 [𝑙]−1)

)
,

where 𝑓 (𝜓𝑡 [𝑙]−1) is the utility of the first 𝑡 [𝑙] − 1 items (i.e.,

dom(𝜓𝑡 [𝑙]−1)) that are selected by 𝜋𝑙 deterministically, the term

min{𝑙 − 𝑐 (dom(𝜓𝑡 [𝑙]−1)), 𝑐 (𝑒𝑡 [𝑙])}
𝑐 (𝑒𝑡 [𝑙])

is the selection probability of the 𝑡 [𝑙]-th item, and the term

𝑓 (𝜓𝑡 [𝑙]) − 𝑓 (𝜓𝑡 [𝑙]−1)

Session 6A: Deep Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1917

is the utility of the 𝑡 [𝑙]-th item.

Before providing the main theorem, we first present two techni-

cal results.

Lemma 4.2. Given any realization 𝜙 and a policy 𝜋 , for any 𝑙 ≤
𝑐 (𝐸 (𝜋, 𝜙)), we have

ℎ(𝜋𝑙 | 𝜙) − ℎ(𝜋𝑙−1 | 𝜙) =
1

𝑐 (𝑒𝑡 [𝑙])

(
𝑓 (𝜓𝑡 [𝑙]) − 𝑓 (𝜓𝑡 [𝑙]−1)

)
.

Proof: Observe that if 𝑙 ≤ 𝑐 (𝐸 (𝜋, 𝜙)), then
𝑐 (dom(𝜓𝑡 [𝑙]−1)) + 𝑐 (𝑒𝑡 [𝑙]) = 𝑐 (dom(𝜓𝑡 [𝑙])) ≥ 𝑙 . (5)

Hence, min{𝑙 − 𝑐 (dom(𝜓𝑡 [𝑙]−1)), 𝑐 (𝑒𝑡 [𝑙])} = 𝑙 − 𝑐 (dom(𝜓𝑡 [𝑙]−1)).
It follows that (4) can be simplified to

ℎ (𝜋𝑙 | 𝜙) = (6)

𝑓 (𝜓𝑡 [𝑙]−1) +
𝑙 − 𝑐 (dom(𝜓𝑡 [𝑙]−1))

𝑐 (𝑒𝑡 [𝑙])
(
𝑓 (𝜓𝑡 [𝑙]) − 𝑓 (𝜓𝑡 [𝑙]−1)

)
.

To prove this lemma, we consider two cases:

Case 1: We first consider the case when 𝑡 [𝑙] = 𝑡 [𝑙 − 1]. Observe
that for any 𝑙 ≤ 𝑐 (𝐸 (𝜋, 𝜙)), it holds that

ℎ (𝜋𝑙 | 𝜙) − ℎ (𝜋𝑙−1 | 𝜙) =(
𝑓 (𝜓𝑡 [𝑙]−1) +

𝑙 − 𝑐 (dom(𝜓𝑡 [𝑙]−1))
𝑐 (𝑒𝑡 [𝑙])

(
𝑓 (𝜓𝑡 [𝑙]) − 𝑓 (𝜓𝑡 [𝑙]−1)

))
−
(
𝑓 (𝜓𝑡 [𝑙−1]−1) +

𝑙 − 1 − 𝑐 (dom(𝜓𝑡 [𝑙−1]−1))
𝑐 (𝑒𝑡 [𝑙−1])

(
𝑓 (𝜓𝑡 [𝑙−1]) − 𝑓 (𝜓𝑡 [𝑙−1]−1)

))
=

1

𝑐 (𝑒𝑡 [𝑙])
(
𝑓 (𝜓𝑡 [𝑙]) − 𝑓 (𝜓𝑡 [𝑙]−1)

)
,

where the first equality is from (6) and the second equality is from

the assumption that 𝑡 [𝑙] = 𝑡 [𝑙 − 1].
Case 2: We next consider the case when 𝑡 [𝑙] = 𝑡 [𝑙 − 1] + 1, that

is, 𝑙 − 1 is the last virtual slot in round 𝑡 [𝑙 − 1] and 𝑙 is the first

virtual slot in round 𝑡 [𝑙]. In this case, we can rewrite ℎ(𝜋𝑙 | 𝜙) as

ℎ (𝜋𝑙 | 𝜙) = 𝑓 (𝜓𝑡 [𝑙]−1) +
1

𝑐 (𝑒𝑡 [𝑙])
(
𝑓 (𝜓𝑡 [𝑙]) − 𝑓 (𝜓𝑡 [𝑙]−1)

)
= 𝑓 (𝜓𝑡 [𝑙−1]) +

1

𝑐 (𝑒𝑡 [𝑙])
(
𝑓 (𝜓𝑡 [𝑙]) − 𝑓 (𝜓𝑡 [𝑙−1])

)
, (7)

where the first equality is by (6) and the observation that 𝑙 is the

first virtual slot in round 𝑡 [𝑙] and the second equality is by the

assumption that 𝑡 [𝑙] = 𝑡 [𝑙 − 1] + 1. Meanwhile,

ℎ (𝜋𝑙−1 | 𝜙) =
𝑓 (𝜓𝑡 [𝑙−1]−1) +

𝑙 − 𝑐 (dom(𝜓𝑡 [𝑙−1]−1))
𝑐 (𝑒𝑡 [𝑙−1])

(
𝑓 (𝜓𝑡 [𝑙−1]) − 𝑓 (𝜓𝑡 [𝑙−1]−1)

)
= 𝑓 (𝜓𝑡 [𝑙−1]−1) +

𝑐 (𝑒𝑡 [𝑙−1])
𝑐 (𝑒𝑡 [𝑙−1])

(
𝑓 (𝜓𝑡 [𝑙−1]) − 𝑓 (𝜓𝑡 [𝑙−1]−1)

)
= 𝑓 (𝜓𝑡 [𝑙−1]), (8)

where the second equality is because 𝑙 − 1 is the last virtual slot in
round 𝑡 [𝑙 − 1], indicating that 𝑙 − 𝑐 (dom(𝜓𝑡 [𝑙−1]−1)) = 𝑐 (𝑒𝑡 [𝑙−1]).
Equalities (7) and (8) together imply that ℎ(𝜋𝑙 | 𝜙) − ℎ(𝜋𝑙−1 | 𝜙) =

1

𝑐 (𝑒𝑡 [𝑙])

(
𝑓 (𝜓𝑡 [𝑙]) − 𝑓 (𝜓𝑡 [𝑙]−1)

)
. □

Throughout the rest of this paper, let 𝑐∗ = 𝑐𝑤𝑐 (𝜋∗) denote the
worst-case cost of the optimal solution 𝜋∗.

Theorem 4.3. If the utility function 𝑓 is worst-case monotone and
worst-case submodular with respect to 𝑝 (𝜙), then for any 𝐿 ∈ Z+ and
any realization 𝜙 , it holds that

ℎ(𝜋𝑔
𝐿
| 𝜙) > (1 − 𝑒−𝐿/𝑐

∗
)𝑄, (9)

where 𝜋𝑔
𝐿
is the level-𝐿-truncation of 𝜋𝑔 .

Proof: We first recall some notations. For each 𝑡 ∈ [𝑛], let 𝜓𝑡
represent the partial realization of the first 𝑡 items picked by 𝜋𝑔

conditioned on 𝜙 . We use 𝑡 [𝑙] to denote the number of items that

have a positive probability of being selected by 𝜋
𝑔

𝑙
conditioned on 𝜙 .

Hence,𝜓𝑡 [𝑙]−1 represents the partial realization of the first 𝑡 [𝑙] − 1
items selected by 𝜋

𝑔

𝑙
conditioned on 𝜙 .

The case when 𝐿 > 𝑐 (𝐸 (𝜋𝑔, 𝜙)) is trivial. If 𝐿 > 𝑐 (𝐸 (𝜋𝑔, 𝜙)),
then 𝑡 [𝐿] = |𝐸 (𝜋𝑔, 𝜙) | by the definition of 𝑡 [𝐿]. It follows that
ℎ(𝜋𝑔

𝐿
| 𝜙) = 𝑓 (𝜓𝑡 [𝐿]) = 𝑄 , where the first equality is by the

definition of ℎ and the assumption that 𝐿 > 𝑐 (𝐸 (𝜋𝑔, 𝜙)); the second
equality is by the observation that 𝜋𝑔 achieves the target value

𝑄 after selecting all 𝑡 [𝐿] items. Next we focus on the case when

𝐿 ≤ 𝑐 (𝐸 (𝜋𝑔, 𝜙)).
Given any 𝜓𝑡 [𝑙]−1, we create a realization 𝜙∗ in the following

way. First, we make sure that 𝜙∗ is consistent with𝜓𝑡 [𝑙]−1 by defin-
ing 𝜙∗ (𝑒) = 𝜙 (𝑒) for each 𝑒 ∈ dom(𝜓𝑡 [𝑙]−1). For the rest of the

items, we decide their states in 𝜙∗ incrementally by simulating the

execution of the optimal policy 𝜋∗ conditioned on𝜓𝑡 [𝑙]−1. Let𝜓
∗
𝑖

denote the partial realization after running 𝜋∗ for 𝑖 rounds. Starting
with 𝑖 = 1 and let 𝜓∗

0
= ∅, in each subsequent round 𝑖 , assume 𝜋∗

selects 𝑒∗
𝑖
as the 𝑖-th item after observing𝜓∗

𝑖−1, we define the state
of 𝑒∗

𝑖
in 𝜙∗ as follows:

𝜙∗ (𝑒∗𝑖) = argmin

𝑜∈𝑂 (𝑒∗
𝑖
,𝜓𝑡 [𝑙]−1∪𝜓 ∗𝑖−1)

𝑓 (𝜓𝑡 [𝑙]−1 ∪𝜓∗𝑖−1 ∪ {(𝑒
∗
𝑖 , 𝑜)}) .

The observation 𝜓∗
𝑖
is updated by adding new information from

(𝑒∗
𝑖
, 𝜙∗ (𝑒∗

𝑖
)) and the previous observation 𝜓∗

𝑖−1, and then 𝜋∗ pro-
ceeds to the next round. This continues until 𝜋∗ terminates, at

which point the states of all items selected by 𝜋∗ have been de-

termined. The intuition behind creating such 𝜙∗ is that in each

round 𝑖 , we pick a state that is the least favorable for 𝑒∗
𝑖
, in order to

decrease the marginal utility of adding 𝑒∗
𝑖
to the partial realization

𝜓𝑡 [𝑙]−1 ∪𝜓∗𝑖−1 as much as possible. Without loss of generality, it

can be assumed that 𝜋∗ ends up choosing 𝑘 items. It is possible that

there are multiple realizations that fit this description, one of them

is arbitrarily chosen as 𝜙∗; in particular, 𝜙∗ could be any realization
that is consistent with𝜓𝑡 [𝑙]−1 ∪𝜓∗𝑘 .

To prove this theorem, it suffices to show that for all 𝑙 ∈ [𝐿], it
holds that

ℎ(𝜋𝑔
𝑙
| 𝜙) − ℎ(𝜋𝑔

𝑙−1 | 𝜙) ≥
𝑄 − ℎ(𝜋𝑔

𝑙−1 | 𝜙)
𝑐∗

. (10)

This is because by induction on 𝑙 , we have that for any 𝐿 ∈ Z+,

ℎ(𝜋𝑔
𝐿
| 𝜙) =

∑︁
𝑙∈[𝐿]

(
ℎ(𝜋𝑔

𝑙
| 𝜙) − ℎ(𝜋𝑔

𝑙−1 | 𝜙)
)

> (1 − 𝑒−𝐿/𝑐
∗
)𝑄. (11)

Session 6A: Deep Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1918

We will concentrate on demonstrating (10) for the remainder

of the proof. Let 𝑒𝑡 [𝑙] denote the 𝑡 [𝑙]-th item selected by 𝜋𝑔 condi-

tioned on 𝜙 , the following chains proves (10):

ℎ(𝜋𝑙 | 𝜙) − ℎ(𝜋𝑙−1 | 𝜙) =
1

𝑐 (𝑒𝑡 [𝑙])

(
𝑓 (𝜓𝑡 [𝑙]) − 𝑓 (𝜓𝑡 [𝑙]−1)

)
=

1

𝑐 (𝑒𝑡 [𝑙])

(
𝑓 (𝜓𝑡 [𝑙]−1 ∪ {(𝑒𝑡 [𝑙] , 𝜙 (𝑒𝑡 [𝑙]))}) − 𝑓 (𝜓𝑡 [𝑙]−1)

)
≥ min

𝑜∈𝑂 (𝑒𝑡 [𝑙] ,𝜓𝑡 [𝑙]−1)

(
𝑓 (𝜓𝑡 [𝑙]−1 ∪ {(𝑒𝑡 [𝑙] , 𝑜)}) − 𝑓 (𝜓𝑡 [𝑙]−1)

)
𝑐 (𝑒𝑡 [𝑙])

= max

𝑒∈𝐸
1

𝑐 (𝑒) Δ𝑤𝑐 (𝑒 | 𝜓𝑡 [𝑙]−1) ≥ max

𝑖∈[𝑘]

Δ𝑤𝑐 (𝑒∗𝑖 | 𝜓𝑡 [𝑙]−1)
𝑐 (𝑒∗

𝑖
)

≥
∑
𝑖∈[𝑘] Δ𝑤𝑐 (𝑒∗𝑖 | 𝜓𝑡 [𝑙]−1)∑

𝑖∈[𝑘] 𝑐 (𝑒∗𝑖)

≥
∑
𝑖∈[𝑘] Δ𝑤𝑐 (𝑒∗𝑖 | 𝜓𝑡 [𝑙]−1)

𝑐∗

≥
∑
𝑖∈[𝑘] Δ𝑤𝑐 (𝑒∗𝑖 | 𝜓𝑡 [𝑙]−1 ∪𝜓

∗
𝑖−1)

𝑐∗

=
𝑓 (𝜓𝑡 [𝑙]−1 ∪𝜓∗𝑘) − 𝑓 (𝜓𝑡 [𝑙]−1)

𝑐∗
≥

𝑓 (𝜓∗
𝑘
) − 𝑓 (𝜓𝑡 [𝑙]−1)

𝑐∗

=
𝑄 − 𝑓 (𝜓𝑡 [𝑙]−1)

𝑐∗
≥ 𝑄 − ℎ(𝜋𝑙−1 | 𝜙)

𝑐∗
.

The first equality is from the assumption that 𝐿 ≤ 𝑐 (𝐸 (𝜋𝑔, 𝜙)) and
Lemma 4.2, the third equality is by the density-greedy selection rule

of 𝑒𝑡 [𝑙] , the first inequality is due to 𝜙 (𝑒𝑡 [𝑙]) ∈ 𝑂 (𝑒𝑡 [𝑙] ,𝜓𝑡 [𝑙]−1),
the fourth inequality is by the definition of 𝑐∗, the fifth inequality

is due to 𝑓 being worst-case submodular, the sixth inequality is due

to 𝑓 being worst-case monotone, the last equality is because 𝜋∗ is
a valid solution, indicating that 𝑓 (𝜓∗

𝑘
) = 𝑄 , and the last inequality

is by the definition of ℎ(𝜋𝑙−1 | 𝜙) (Eq. (4)). □
We next present the main theorem of this section.

Theorem 4.4. Suppose the utility function 𝑓 is worst-case mono-
tone, worst-case submodular with respect to 𝑝 (𝜙) and it satisfies
the property of minimal dependency. Let [be any value such that
𝑓 (𝜓) > 𝑄 − [implies 𝑓 (𝜓) = 𝑄 for all partial realization 𝜓 . Then
𝜋𝑔 is a feasible solution and 𝑐𝑤𝑐 (𝜋𝑔) ≤ (ln 𝑄

[+ 1)𝑐
∗.

Proof: Let 𝜙 ′ denote the worst-case realization with respect to

𝜋𝑔 , that is, 𝜙 ′ ∈ argmax𝜙∈𝑈 + 𝑐 (𝐸 (𝜋𝑔, 𝜙)). Apply Theorem 4.3 with

𝐿 = 𝑐∗ ln(𝑄/[) and 𝜙 = 𝜙 ′ to give

ℎ(𝜋𝑔
𝐿
| 𝜙 ′) > (1 − 𝑒−𝐿/𝑐

∗
)𝑄 = (1 − [

𝑄
)𝑄 = 𝑄 − [. (12)

Define 𝜋
𝑔

𝐿→ as a policy that is identical to 𝜋
𝑔

𝐿
except that 𝜋

𝑔

𝐿→
selects the 𝑡 [𝐿]-th item deterministically. Hence,

ℎ(𝜋𝑔
𝐿→ | 𝜙

′) ≥ ℎ(𝜋𝑔
𝐿
| 𝜙 ′) > 𝑄 − [, (13)

where the first inequality is because 𝜋
𝑔

𝐿→ selects the 𝑡 [𝐿]-th item

deterministically while 𝜋
𝑔

𝐿
might select this item probabilistically,

indicating that the utility of 𝜋
𝑔

𝐿→ is no less than that of 𝜋
𝑔

𝐿
; the

second inequality is from (12).

By the definition of [, we have

ℎ(𝜋𝑔
𝐿→ | 𝜙

′) = 𝑄, (14)

and moreover, 𝜋𝑔 must select 𝑡 [𝐿] items.

Hence, the worst-case cost of 𝜋𝑔 is 𝑐 (𝐸 (𝜋𝑔
𝐿→, 𝜙 ′)). To prove this

theorem, it suffices to show that 𝑐 (𝐸 (𝜋𝑔
𝐿→, 𝜙 ′)) is upper bounded

by (ln 𝑄
[+ 1)𝑐

∗
.

To prove this bound, we first show that the cost of every item

selected by 𝜋𝑔 is at most 𝑐∗. Consider any round 𝑡 of 𝜋𝑔 , (10) and

Lemma 4.2 jointly imply that

𝑓 (𝜓 ′
𝑡−1 ∪ {(𝑒

′
𝑡 , 𝜙
′ (𝑒′𝑡))}) − 𝑓 (𝜓 ′

𝑡−1)
𝑐 (𝑒′𝑡)

≥
𝑄 − 𝑓 (𝜓 ′

𝑡−1)
𝑐∗

, (15)

where𝜓 ′𝑡 represents the partial realization of the first 𝑡 items picked

by 𝜋𝑔 conditioned on 𝜙 ′; 𝑒′𝑡 is the 𝑡-th item selected by 𝜋𝑔 condi-

tioned on 𝜙 ′.
Because 𝑓 (𝜓 ′

𝑡−1 ∪ {(𝑒
′
𝑡 , 𝜙
′ (𝑒′𝑡))}) ≤ 𝑄 , we have

𝑓 (𝜓 ′𝑡−1 ∪ {(𝑒
′
𝑡 , 𝜙
′ (𝑒′𝑡))}) − 𝑓 (𝜓 ′𝑡−1) ≤ 𝑄 − 𝑓 (𝜓 ′𝑡−1) .

This, together with (15), implies that 𝑐 (𝑒′𝑡) ≤ 𝑐∗ for all 𝑡 . This implies

that the cost of the 𝑡 [𝐿]-th item selected by 𝜋𝑔 is at most 𝑐∗, i.e.,
𝑐 (𝑒′

𝑡 [𝐿]) ≤ 𝑐∗. It follows that

𝑐 (𝐸 (𝜋𝑔
𝐿→, 𝜙 ′)) ≤ 𝐿 + 𝑐∗ = 𝑐∗ ln(𝑄/[) + 𝑐∗ = (ln 𝑄

[
+ 1)𝑐∗, (16)

where the first equality is from the following observation: if 𝐿 >

𝑐 (𝐸 (𝜋𝑔, 𝜙 ′)), then 𝑐 (𝐸 (𝜋𝑔
𝐿→, 𝜙 ′)) ≤ 𝑐 (𝐸 (𝜋𝑔, 𝜙 ′)) < 𝐿; if

𝐿 ≤ 𝑐 (𝐸 (𝜋𝑔, 𝜙 ′)),
then 𝑐 (𝐸 (𝜋𝑔

𝐿→, 𝜙 ′)) ≤ 𝑐 (𝐸 (𝜋𝑔, 𝜙 ′)) ≤ 𝐿 + 𝑐 (𝑒′
𝑡 [𝐿]) ≤ 𝐿 + 𝑐∗. □

Tightness of Our Results: It is easy to verify that the classic

deterministic submodular cover problem [18] is a special case of

our problem. Given that the best approximation ratio for the de-

terministic submodular cover problem is ln
𝑄
[+ 1, the guarantee

provided in Theorem 4.4 is the best possible.

4.1 Pointwise submodularity is not sufficient
A function 𝑓 is called pointwise submodular if, 𝑓 (·, 𝜙) : 2𝐸 → R≥0
is submodular for all realizations 𝜙 ∈ 𝑈 +. This property can be

found in numerous applications. Unfortunately, we next construct

an example to show that the ratio of 𝑐𝑤𝑐 (𝜋𝑔) and 𝑐∗ could be ar-

bitrarily large even if 𝑓 is pointwise submodular and 𝑄/[= 1. In

other words, pointwise submodularity is not sufficient to guarantee

the performance bound from Theorem 4.4.

Consider a set of three items 𝐸 = {𝑒1, 𝑒2, 𝑒3} with cost 𝑐 (𝑒1) = 𝜖𝑎
and 𝑐 (𝑒2) = 𝑐 (𝑒3) = 𝜖𝑏 . There are two possible states 𝑂 = {𝑜1, 𝑜2}.
Assume𝑈 + is composed of two possible realizations:

𝜙1 = {(𝑒1, 𝑜1), (𝑒2, 𝑜1), (𝑒3, 𝑜2)}, 𝜙2 = {(𝑒1, 𝑜1), (𝑒2, 𝑜2), (𝑒3, 𝑜1)}
Therefore, 𝑒1 has a deterministic state 𝑜1, whereas 𝑒2’s state is

different from 𝑒3’s state. We consider a modular utility function 𝑓

such that 𝑓 (𝑆, 𝜙) = ∑
𝑒∈𝑆 𝑣𝑒,𝜙 (𝑒) , where 𝑣𝑒,𝜙 (𝑒) is the value of 𝑒 in

state 𝜙 (𝑒). We assume that 𝑒1 has a deterministic value of𝑄 ; and 𝑒2
(resp. 𝑒3) has a value of 𝑄 (resp. 0) in state 𝑜1 and a value of 0 (resp.

𝑄) in state 𝑜2, that is, 𝑣𝑒2,𝑜1 = 𝑣𝑒3,𝑜2 = 𝑄 and 𝑣𝑒2,𝑜2 = 𝑣𝑒3,𝑜1 = 0.

First, because 𝑓 is a linear function, it is also pointwise submodular.

Moreover, it is easy to verify that 𝑓 is worst-case monotone and

minimal dependent. Second, [= 𝑄 in our example by the definition

of 𝑓 ; hence,𝑄/[= 1. According to the design of 𝜋𝑔 , it always selects

𝑒1 because the worst-case “benefit-to-cost” ratio of 𝑒1 (with respect

Session 6A: Deep Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1919

to an empty set) is 𝑄/𝜖𝑎 > 0, however, the worst-case “benefit-

to-cost” ratios of 𝑒2 and 𝑒3 are both 0. By contrast, the optimal

solution 𝜋∗ always picks 𝑒2 and 𝑒3 to achieve a value of 𝑄 . Hence,

the worst-case cost of 𝜋𝑔 is 𝜖𝑎 , whereas the optimal solution has

a cost of 2𝜖𝑏 . Hence, 𝑐𝑤𝑐 (𝜋𝑔) = 𝜖𝑎
2𝜖𝑏

𝑐∗; one can select 𝜖𝑎 and 𝜖𝑏 to

make
𝜖𝑎
𝜖𝑏

arbitrarily large.

5 WORST-CASE MAXIMIZATION PROBLEM
In this section, we study a dual problem of the worst-case cover

problem. We call this problem the worst-case adaptive submodular

maximization problem. Our goal is to find a policy 𝜋 to maximize

the worst-case utility 𝑓𝑤𝑐 (𝜋) subject to a budget constraint 𝐵, that

is,

max

𝜋 :𝑐𝑤𝑐 (𝜋)≤𝐵
𝑓𝑤𝑐 (𝜋) .

It is worth noting that the classic problem of maximizing a mono-

tone submodular function subject to a budget constraint [7] is a

special case of our problem.

Algorithm 2 Worst-Case Density-Greedy Policy 𝜋𝑔

1: 𝑡 = 1;𝜓0 = ∅.
2: while true do
3: let 𝑒𝑡 ∈ argmax𝑒∈𝐸

Δ𝑤𝑐 (𝑒 |𝜓𝑡−1)
𝑐 (𝑒) ;

4: 𝐵 = 𝐵 − 𝑐 (𝑒𝑡);
5: if 𝐵 ≥ 0 then
6: select 𝑒𝑡 and observe Φ(𝑒𝑡);
7: update𝜓𝑡 ← 𝜓𝑡−1 ∪ {(𝑒𝑡 ,Φ(𝑒𝑡))};
8: else
9: break; {Replace this line using “select 𝑒𝑡 ; break;” in the

relaxed greedy policy 𝜋𝑔+.}
10: 𝑡 ← 𝑡 + 1;

For simplicity, assume 𝑓 (∅) = 0. Our solution involves two

candidate policies: one is a density-greedy based policy (labeled as

𝜋𝑔 by abuse of notation) and the other one selects a best singleton 𝑒
′′

(i.e., 𝑒
′′ ∈ argmax𝑒∈𝐸 Δ𝑤𝑐 (𝑒 | ∅)). Our final algorithm (labeled as

𝜋𝑎) adopts the better one between these two candidates. Hence, the

worst-case utility of 𝜋𝑎 is 𝑓𝑤𝑐 (𝜋𝑎) = max{𝑓𝑤𝑐 (𝜋𝑔),Δ𝑤𝑐 (𝑒
′′ | ∅)}.

To complete the design of 𝜋𝑎 , we next explain 𝜋𝑔 in detail.

Design of 𝜋𝑔 . Starting with round 𝑡 = 1 and observation𝜓0 = ∅.
In each subsequent round 𝑡 , 𝜋𝑔 selects an item 𝑒𝑡 that has the largest

“benefit-to-cost” ratio, i.e.,

𝑒𝑡 ∈ argmax

𝑒∈𝐸
Δ𝑤𝑐 (𝑒 | 𝜓𝑡−1)

𝑐 (𝑒) .

Next, we update the observation using𝜓𝑡 ← 𝜓𝑡−1 ∪ {(𝑒𝑡 ,Φ(𝑒𝑡))}.
This process iterates until the budget constraint is violated. A de-

tailed description of 𝜋𝑔 is listed in Algorithm 2.

For the purpose of proof, we introduce a relaxed version of 𝜋𝑔

(labeled as 𝜋𝑔+). 𝜋𝑔+ is identical to 𝜋𝑔 except that 𝜋𝑔+ allows to
keep the first item that violates the budget constraint. Please refer

to our comments added to Line 9 in Algorithm 2 for a detailed

description of this difference.

We next analyze the performance of 𝜋𝑎 . Before presenting the

main theorem, we first provide a technical result.

Theorem 5.1. If the utility function 𝑓 is worst-case monotone and
worst-case submodular with respect to 𝑝 (𝜙), then for any 𝜙 and any
𝐿 ≤ 𝑐 (𝐸 (𝜋𝑔+, 𝜙)),

ℎ(𝜋𝑔+
𝐿
| 𝜙) ≥ (1 − 𝑒−𝐿/𝐵) 𝑓𝑤𝑐 (𝜋∗), (17)

where 𝜋∗ is the optimal policy.

Proof: We first recall some notations. Let 𝑡 [𝑙] be the number

of items that have a positive probability of being selected by 𝜋
𝑔+
𝑙

conditioned on 𝜙 . Let𝜓𝑡 [𝑙]−1 denote the partial realization of the

first 𝑡 [𝑙] − 1 items selected by 𝜋𝑔+ conditioned on 𝜙 . To prove this

theorem, it suffices to show that for all 𝑙 ∈ [𝐿],

ℎ(𝜋𝑔+
𝑙
| 𝜙) − ℎ(𝜋𝑔+

𝑙−1 | 𝜙) ≥
𝑓𝑤𝑐 (𝜋∗) − 𝑓 (𝜓𝑡 [𝑙]−1)

𝐵
. (18)

This is because by induction on 𝑙 , we have that for any 𝐿 ≤
𝑐 (𝐸 (𝜋𝑔+, 𝜙)),

ℎ(𝜋𝑔+
𝐿
| 𝜙) =

∑︁
𝑙∈[𝐿]

(
ℎ(𝜋𝑔+

𝑙
| 𝜙) − ℎ(𝜋𝑔+

𝑙−1 | 𝜙)
)

≥ (1 − 𝑒−𝐿/𝐵) 𝑓𝑤𝑐 (𝜋∗) .
Given 𝜓𝑡 [𝑙]−1, we adopt the same method as outlined in the

proof of Theorem 4.3 to construct 𝜙∗. Assuming 𝜋∗ selects 𝑘 items

conditioned on 𝜙∗ such that 𝑒∗
𝑖
represents the 𝑖-th item selected by

𝜋∗ conditioned on 𝜙∗. The following chain proves (18)

ℎ(𝜋𝑔+
𝑙
| 𝜙) − ℎ(𝜋𝑔+

𝑙−1 | 𝜙) ≥
𝑓𝑤𝑐 (𝜋∗) − 𝑓 (𝜓𝑡 [𝑙]−1)∑

𝑖∈[𝑘] 𝑐 (𝑒∗𝑖)

≥
𝑓𝑤𝑐 (𝜋∗) − 𝑓 (𝜓𝑡 [𝑙]−1)

𝐵
,

where the first inequality is derived from a similar proof as (10),

with the only difference being that 𝑄 is replaced with 𝑓𝑤𝑐 (𝜋∗); the
second inequality is because the worst-case cost of 𝜋∗ is no larger

than 𝐵. □
By the definition of 𝜋𝑔+, it always uses up the budget. This,

together with the assumption that 𝑓 is minimal dependent, implies

that 𝑓𝑤𝑐 (𝜋𝑔+) ≥ ℎ(𝜋𝑔+
𝐵
| 𝜙 ′) where 𝜙 ′ is the worst-case realization

of 𝜋𝑔+, i.e., 𝜙 ′ = argmin𝜙∈𝑈 + 𝑓 (𝐸 (𝜋𝑔+, 𝜙), 𝜙). This, in combination

with Theorem 5.1, leads to Corollary 5.2.

Corollary 5.2. If the utility function 𝑓 is worst-case monotone,
worst-case submodular with respect to 𝑝 (𝜙) and it satisfies the prop-
erty of minimal dependency, then

𝑓𝑤𝑐 (𝜋𝑔+) ≥ (1 − 𝑒−1) 𝑓𝑤𝑐 (𝜋∗). (19)

We next present the main theorem of this section.

Theorem 5.3. If the utility function 𝑓 is worst-case monotone,
worst-case submodular with respect to 𝑝 (𝜙) and it satisfies the prop-
erty of minimal dependency, then 𝑓𝑤𝑐 (𝜋𝑎) ≥ 1−𝑒−1

2
𝑓𝑤𝑐 (𝜋∗).

Proof: By the design of 𝜋𝑎 , to prove this theorem, it suffices to

show that max{𝑓𝑤𝑐 (𝜋𝑔),Δ𝑤𝑐 (𝑒
′′ | ∅)} ≥ 1−𝑒−1

2
𝑓𝑤𝑐 (𝜋∗). Suppose

𝜙
′′
is the worst-case realization of 𝜋𝑔 , that is,

𝜙
′′
= argmin

𝜙

𝑓 (𝐸 (𝜋𝑔, 𝜙), 𝜙).

Let𝜓
′′
denote the partial realization of 𝐸 (𝜋𝑔, 𝜙 ′′) conditioned on

𝜙
′′
. Hence, 𝐸 (𝜋𝑔, 𝜙 ′′) = dom(𝜓 ′′) and 𝜙 ′′ ∼ 𝜓 ′′ . Assume 𝑒

′′
is the

Session 6A: Deep Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1920

Figure 1: Worst-case weighted cost vs. size of the version spaceH

Figure 2: Reduction in version space vs. budget 𝐵

last item selected by the relaxed greedy policy 𝜋𝑔+ after observing
𝜓
′′
, that is, 𝐸 (𝜋𝑔+, 𝜙 ′′) = 𝐸 (𝜋𝑔, 𝜙 ′′) ∪ {𝑒 ′′ }. Let 𝜙★(𝑒 ′′) be the least

favorable state for 𝑒
′′
conditioned on𝜓

′′
, i.e.,

𝜙★(𝑒
′′
) = argmin

𝑜∈𝑂 (𝑒′′ ,𝜓 ′′)
𝑓 (𝜓

′′
∪ {(𝑒

′′
, 𝑜)}) . (20)

By the definition of 𝑓𝑤𝑐 (𝜋𝑔+) and the assumption that 𝑓 is mini-

mal dependent, we have

𝑓

(
𝜓
′′
∪ {(𝑒

′′
, 𝜙★(𝑒

′′
))}

)
≥ 𝑓𝑤𝑐 (𝜋𝑔+). (21)

By the definition of 𝜙★(𝑒 ′′), we have

𝑓

(
𝜓
′′
∪ {(𝑒

′′
, 𝜙★(𝑒

′′
))}

)
= 𝑓 (𝜓

′′
) + Δ𝑤𝑐 (𝑒

′′
| 𝜓
′′
) . (22)

It follows that

𝑓

(
𝜓
′′
∪ {(𝑒

′′
, 𝜙★(𝑒

′′
))}

)
= 𝑓 (𝜓

′′
) + Δ𝑤𝑐 (𝑒

′′
| 𝜓
′′
)

= 𝑓𝑤𝑐 (𝜋𝑔) + Δ𝑤𝑐 (𝑒
′′
| 𝜓
′′
)

≤ 𝑓𝑤𝑐 (𝜋𝑔) + Δ𝑤𝑐 (𝑒
′′
| ∅), (23)

where the second equality is due to 𝜙
′′
being the worst-case real-

ization of 𝜋𝑔 and the assumption that 𝑓 is minimal dependent; the

inequality is due to 𝑓 being worst-case submodular with respect to

𝑝 (𝜙) and the fact that ∅ ⊆ 𝜓 ′′ .
Inequalities (21) and (23) jointly imply that

𝑓𝑤𝑐 (𝜋𝑔) + Δ𝑤𝑐 (𝑒
′′
| ∅) ≥ 𝑓𝑤𝑐 (𝜋𝑔+). (24)

This, together with Corollary 5.2, implies that 𝑓𝑤𝑐 (𝜋𝑔)+Δ𝑤𝑐 (𝑒
′′ |

∅) ≥ 𝑓𝑤𝑐 (𝜋𝑔+) ≥ (1 − 𝑒−1) 𝑓𝑤𝑐 (𝜋∗). Hence,

max{𝑓𝑤𝑐 (𝜋𝑔),Δ𝑤𝑐 (𝑒
′′
| ∅)} ≥ 1 − 𝑒−1

2

𝑓𝑤𝑐 (𝜋∗).

□
Note that the classic problem of maximizing a monotone sub-

modular function subject to a budget constraint [7] is a special case

of our problem. The best approximation ratio for that problem, and

therefore for ours, is 1 − 1/𝑒 .

6 PERFORMANCE EVALUATION
In this section, we conduct experiments to evaluate the perfor-

mance of our proposed Worst-Case Greedy (WCG) algorithms in

the context of active learning. Suppose we have a set of hypotheses

H and a set of unlabeled data points 𝐸, where each 𝑒 ∈ 𝐸 is selected

randomly from a distribution 𝐷 . In pool-based active learning, in

order to reduce the expense of acquiring labeled data from domain

experts, we select a sequence of data points to be labeled itera-

tively until the labels of all unlabeled examples can be inferred

from the obtained labels. The version space is defined as the set

of hypotheses that are consistent with the observed labels, and

the cost of labeling a data point 𝑒 is a fixed value 𝑐 (𝑒). Intuitively
our goal is to minimize the worst-case cost of reducing the prob-

ability mass of the version space until the target hypothesis ℎ∗ is
pinpointed. Reducing the version space is achieved by eliminating

false hypotheses through stochastic queries. For example, query

𝑒 ∈ 𝐸 eliminates all hypotheses that do not agree with ℎ∗ at 𝑒 . For
the budgeted version, our objective is to minimize the probability

mass of the version space within a specific budget constraint.

Our first set of experiments evaluate the performance of our

algorithm as measured by the worst-case cost with respect to the

changes in the size of the version spaceH , as shown in Figure 1.

Each data point 𝑒 is assigned a value chosen randomly from its set of

possible labels. The worst-case cost is calculated as the largest cost

of pinpointing the target hypothesis ℎ∗ after querying a sequence
of data points. We consider three cost settings in our experiments.

For the first setting, 𝑐 (𝑒) is drawn from (1, 20) uniformly at random.

The result is shown in the figure with label WCG_U. For the other
two settings, 𝑐 (𝑒) is drawn from 𝑁 (`, 𝜎2) with ` = 7, 𝜎 = 1.5 and

` = 7, 𝜎 = 2.5, respectively. Corresponding results are labeled as

WCG_N15 andWCG_N25, respectively, in the figure. To implement

our algorithm, in each round we select a query with the largest

conditional marginal utility over the cost until the target hypothesis

is pinpointed. The conditional marginal utility is determined by

the worst-case reduction in version space, given the labels from

Session 6A: Deep Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1921

past queries. A random algorithm is used as our baseline, which

outputs a random sequence of queries until the target is pinpointed.

For every set of experiments, we perform the simulation for 1,000

iterations and report the average results.

As shown in Figure 1, the 𝑥-axis refers to the size of the version

space, ranging from 10 to 3000. The 𝑦-axis refers to the worst-

case cost yielded by the corresponding algorithms. We evaluate

our algorithm by using 20 unlabeled data points and by varying

the size of the label set. Figure 1(a) shows the results where each

data point has binary labels. We observe that WCG significantly

outperforms the baseline in all test cases, yields a cost reduction

of 30% for binary labels. Note that our algorithm considers the

marginal utility as well as the cost associated with each query,

leading to a lower worst-case cost of the output sequence. We also

observe that for smaller version space, on average our algorithm

identifies the target hypothesis with fewer queries, and WCG_U
benefits from taking more low-cost queries since the algorithm

prefers a larger marginal utility to cost ratio. As the size of the

version space increases, however, WCG_U yields a much higher

cost as taking low-cost queries alone is not enough to pinpoint the

target and queries with potentially high cost are required to further

reduce the version space.

We observe a similar structure in Figure 1(b), (c) and (d), showing

the results for three-label data points, four-label data points and a

hybrid case, respectively. For the hybrid case, we randomly divide

our 20 unlabeled data points into three groups. The first group

contains 10 binary-label data points, the second group contains 5

three-label data points, and the third group contains 5 four-label

data points. We observe that our algorithm generates a lower worst-

case cost when each data point has more possible labels. The reason

is that queries with more possible labels tend to yield a higher mar-

ginal reduction in version space, therefore less queries are selected

in the output, leading to a lower worst-case cost.

Our second set of experiments investigate how the budget affects

the reduction in version space, as illustrated in Figure 2. The 𝑥-axis

holds the value of the budget, and the 𝑦-axis holds the reduction in

version space generated by the algorithms. We consider 3000 hy-

pothesis with 20 unlabeled data points, and tight budget constraint

is enforced. Figure 2(a), (b), (c) and (d) plot the results for binary-

label data points, three-label data points, four-label data points and

the hybrid case as aforementioned, respectively. As anticipated,

the reduction in version space becomes greater as the budget in-

creases. Again, for smaller budgets, WCG yields a higher reduction

in version space under uniform cost model than it does under the

other two cost models. As the budget goes up, more queries are

included in the output sequence, and we observe that the reduction

in version space among different cost models converges.

7 APPENDIX
Proof of Lemma 3.2. For the case when 𝑐1 ≤ 𝑐3, this result has been

proved in Lemma 2 in [12]. We next focus on the case when 𝑐1 > 𝑐3.

We prove this lemma in five subcases depending on the relation

between 𝑥 and the other four constants. Notice that when 𝑐1 > 𝑐3,

𝑐1 ≥ 𝑐2, 𝑐3 ≥ 𝑐4, and 𝑐2 ≤ 𝑐4, we have 𝑐1 > 𝑐3 ≥ 𝑐4 ≥ 𝑐2.

• If 𝑥 ≥ 𝑐1 > 𝑐3 ≥ 𝑐4 ≥ 𝑐2, then min{𝑐1, 𝑥} = 𝑐1, min{𝑐2, 𝑥} =
𝑐2, min{𝑐3, 𝑥} = 𝑐3 and min{𝑐4, 𝑥} = 𝑐4. Thus, min{𝑐1, 𝑥} −

min{𝑐2, 𝑥} ≥ min{𝑐3, 𝑥} −min{𝑐4, 𝑥} due to the assumption

that 𝑐1 − 𝑐2 ≥ 𝑐3 − 𝑐4.
• If 𝑐1 > 𝑥 ≥ 𝑐3 ≥ 𝑐4 ≥ 𝑐2, then min{𝑐1, 𝑥} = 𝑥 , min{𝑐2, 𝑥} =
𝑐2, min{𝑐3, 𝑥} = 𝑐3 and min{𝑐4, 𝑥} = 𝑐4. Thus, min{𝑐1, 𝑥} −
min{𝑐2, 𝑥} = 𝑥 − 𝑐2 and min{𝑐3, 𝑥} − min{𝑐4, 𝑥} = 𝑐3 −
𝑐4. Because 𝑥 ≥ 𝑐3 and 𝑐2 ≤ 𝑐4, we have 𝑥 − 𝑐2 ≥ 𝑐3 −
𝑐4. It follows that min{𝑐1, 𝑥} − min{𝑐2, 𝑥} ≥ min{𝑐3, 𝑥} −
min{𝑐4, 𝑥}.
• If 𝑐1 > 𝑐3 > 𝑥 ≥ 𝑐4 ≥ 𝑐2, then min{𝑐1, 𝑥} = 𝑥 , min{𝑐2, 𝑥} =
𝑐2, min{𝑐3, 𝑥} = 𝑥 and min{𝑐4, 𝑥} = 𝑐4. Thus, min{𝑐1, 𝑥} −
min{𝑐2, 𝑥} = 𝑥 − 𝑐2 and min{𝑐3, 𝑥} − min{𝑐4, 𝑥} = 𝑥 − 𝑐4.
Because 𝑐2 ≤ 𝑐4, we have 𝑥 − 𝑐2 ≥ 𝑥 − 𝑐4, thus,min{𝑐1, 𝑥} −
min{𝑐2, 𝑥} ≥ min{𝑐3, 𝑥} −min{𝑐4, 𝑥}.
• If 𝑐1 > 𝑐3 ≥ 𝑐4 > 𝑥 ≥ 𝑐2, then min{𝑐1, 𝑥} = 𝑥 , min{𝑐2, 𝑥} =
𝑐2, min{𝑐3, 𝑥} = 𝑥 and min{𝑐4, 𝑥} = 𝑥 . Thus, min{𝑐1, 𝑥} −
min{𝑐2, 𝑥} = 𝑥 − 𝑐2 andmin{𝑐3, 𝑥} −min{𝑐4, 𝑥} = 𝑥 − 𝑥 = 0.

Because 𝑥 ≥ 𝑐2, we have 𝑥 − 𝑐2 ≥ 0, thus, min{𝑐1, 𝑥} −
min{𝑐2, 𝑥} ≥ min{𝑐3, 𝑥} −min{𝑐4, 𝑥}.
• If 𝑐1 > 𝑐3 ≥ 𝑐4 ≥ 𝑐2 > 𝑥 , then min{𝑐1, 𝑥} = 𝑥 , min{𝑐2, 𝑥} =
𝑥 , min{𝑐3, 𝑥} = 𝑥 and min{𝑐4, 𝑥} = 𝑥 . Thus, min{𝑐1, 𝑥} −
min{𝑐2, 𝑥} = 𝑥−𝑥 = 0 andmin{𝑐3, 𝑥}−min{𝑐4, 𝑥} = 𝑥−𝑥 =

0. Thus, min{𝑐1, 𝑥} −min{𝑐2, 𝑥} ≥ min{𝑐3, 𝑥} −min{𝑐4, 𝑥}.

REFERENCES
[1] Ferdinando Cicalese, Eduardo Laber, and Aline Saettler. 2017. Decision trees

for function evaluation: simultaneous optimization of worst and expected cost.

Algorithmica 79, 3 (2017), 763–796.
[2] Nguyen Viet Cuong, Wee Sun Lee, and Nan Ye. 2014. Near-optimal Adaptive

Pool-based Active Learning with General Loss.. In UAI. Citeseer, 122–131.
[3] Hossein Esfandiari, Amin Karbasi, and Vahab Mirrokni. 2021. Adaptivity in

adaptive submodularity. In Conference on Learning Theory. PMLR, 1823–1846.

[4] Daniel Golovin and Andreas Krause. 2017. Adaptive Submodularity: Theory and

Applications in Active Learning and Stochastic Optimization. CoRR abs/1003.3967

(2017). arXiv:1003.3967 http://arxiv.org/abs/1003.3967

[5] Andrew Guillory and Jeff Bilmes. 2010. Interactive submodular set cover. In

ICML. 415–422.
[6] Andrew Guillory and Jeff A Bilmes. 2011. Simultaneous learning and covering

with adversarial noise. In ICML.
[7] Samir Khuller, Anna Moss, and Joseph Seffi Naor. 1999. The budgeted maximum

coverage problem. Information processing letters 70, 1 (1999), 39–45.
[8] Mikhail Ju Moshkov. 2010. Greedy algorithm with weights for decision tree

construction. Fundamenta Informaticae 104, 3 (2010), 285–292.
[9] Shaojie Tang. 2021. Beyond pointwise submodularity: Non-monotone adaptive

submodular maximization in linear time. Theoretical Computer Science 850 (2021),
249–261.

[10] Shaojie Tang. 2021. Beyond pointwise submodularity: Non-monotone adaptive

submodular maximization subject to knapsack and k-system constraints. In Inter-
national Conference on Modelling, Computation and Optimization in Information
Systems and Management Sciences. Springer, 16–27.

[11] Shaojie Tang. 2022. Robust Adaptive Submodular Maximization. INFORMS
Journal on Computing (2022).

[12] Shaojie Tang and Jing Yuan. 2016. Optimizing ad allocation in social advertising.

In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. 1383–1392.

[13] Shaojie Tang and Jing Yuan. 2021. Adaptive Regularized Submodular Maximiza-

tion. In 32nd International Symposium on Algorithms and Computation (ISAAC
2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[14] Shaojie Tang and Jing Yuan. 2021. Non-monotone Adaptive Submodular Meta-

Learning. In SIAM Conference on Applied and Computational Discrete Algorithms
(ACDA21). SIAM, 57–65.

[15] Shaojie Tang and Jing Yuan. 2022. Group Equility in Adaptive Submodular

Maximization. arXiv preprint arXiv:2207.03364 (2022).
[16] Shaojie Tang and Jing Yuan. 2022. Optimal sampling gaps for adaptive submodular

maximization. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 36. 8450–8457.

[17] Shaojie Tang and Jing Yuan. 2023. Partial-monotone adaptive submodular maxi-

mization. Journal of Combinatorial Optimization 45, 1 (2023), 1–13.

[18] Laurence AWolsey. 1982. An analysis of the greedy algorithm for the submodular

set covering problem. Combinatorica 2, 4 (1982), 385–393.

Session 6A: Deep Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1922

https://arxiv.org/abs/1003.3967
http://arxiv.org/abs/1003.3967

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Items and States.
	2.2 Policy and Worst-Case Submodularity

	3 Problem Formulation
	4 Algorithm Design and Analysis
	4.1 Pointwise submodularity is not sufficient

	5 Worst-Case Maximization Problem
	6 Performance Evaluation
	7 Appendix
	References

