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ABSTRACT
Humans have the ability to acquire, retain and transfer knowledge
over their lifespan. For intelligent agents to achieve fluent longitu-
dinal interaction, they need to continually retain, refine and acquire
new knowledge. However, current learning approaches, in partic-
ular Deep Neural Networks, are prone to catastrophic forgetting,
a phenomenon where the network forgets its past representation
as the data distribution changes. To address this challenge, in this
work, we propose CoRaL, a novel continual learning framework
that considers the past response of the network when learning
a new task. CoRaL comprises a Representation Learning module
that learns representations that are robust to distribution shifts
and a Knowledge Distillation module that encourages the network
to retain past knowledge. The Representation Learning module is
a Siamese Network setup that maximizes the similarity between
two augmented versions of the input. The Knowledge Distillation
module buffers past inputs and penalizes divergence between past
and current network output. We evaluated CoRaL on three chal-
lenging Continual Learning scenarios across four datasets. The
results suggest that CoRaL outperformed all evaluated state-of-the-
art methods, achieving the highest accuracy and lowest forgetting.
Finally, we conducted extensive ablation studies to highlight the
importance of the proposed modules in addressing catastrophic
forgetting.
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1 INTRODUCTION
Intelligent agents have to adapt and interact with their environ-
ment using a continuous stream of observations, which requires
that representations be learned in a continual manner [43]. How-
ever, continual learning does not suit current learning paradigms,
which involve training Deep Neural Networks with the assumption
that the training distribution is stationary and that the data samples
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are independent and identically distributed (i.i.d.) [41]. As such, cur-
rent optimization strategies for training these networks focus on
learning a representation from the existing data only and do not ac-
count explicitly for past observed data [23, 40]. As such, when these
networks are tasked to learn from a sequential non-stationary data
stream, they suffer from catastrophic forgetting, when the network
forgets representation salient to the past task/data distribution [46].

Continual or Lifelong Learning approaches try to address the
problem of catastrophic forgetting by acquiring new knowledge and
refining existing representations from continuous non-stationary
data such that the past knowledge is not completely overwritten
[19, 26, 54, 57, 58]. Prior methods for addressing this problem can
be grouped into three categories: regularization-based, network
expansion-based, and rehearsal-based approaches. Regularization-
based approaches induce a stability-plasticity trade-off in the net-
work by penalizing the updates of specific parameters that are
deemed important for past tasks [37, 55, 64]. Network expansion-
based approaches instantiates new networks or modules for each
new task [42, 51]. Lastly, rehearsal-based approachesmitigate forget-
ting by using a memory buffer of past data samples. These data are
then replayed along with the samples of the current task to build op-
timization constraints during backpropagation [6, 8, 10, 44, 49, 50].

Although the previous works have all contributed to reducing
catastrophic forgetting, their performances have yet to match of-
fline learning. These methods predominantly focus on reducing the
negative backward transfer of past tasks without explicitly improv-
ing the Representation Learning of the network, which is crucial for
intelligent agents to generalize in incremental settings. However,
we posit that the key to reducing backward transfer is to learn rich
representations that can be shared among all tasks. Recently, work
on self-supervised learning has shown promising results in learn-
ing robust representations using a pretext task [11, 13, 16, 27, 36].
While these methods can generate robust representations, they are
prone to catastrophic forgetting when a new task is introduced.

To reduce catastrophic forgettingwhilemaintaining performance,
we propose CoRaL, a Continual Representation Learning approach
for Overcoming Catastrophic Forgetting, that unifies Representa-
tion Learning with Continual Learning (CL). Our approach tack-
les the problems of CL from two different aspects: learning effec-
tive representations that can be retained, refined, and transferred
in incremental settings; and encouraging the model to retain its
past responses. CoRaL introduces Representation Learning for non-
stationary distributions to learn a robust representation. The Rep-
resentation Learning module is a Siamese network setup [7, 11]
comprising an encoder, projection, and predictor network. This is
trained using the Cosine Similarity loss, which is used to minimize
the distance between representations of the same class.
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While learning transferable features can mitigate catastrophic
forgetting, it may not explicitly direct the network to retain its
past response to old training samples. To address this issue, we in-
troduce a knowledge-distillation loss that compares the network’s
current output to its past output and penalizes divergence. The dis-
tillation loss imposes constraints on the parameter update, which
prevents the network from forgetting the weights on the past sam-
ples. Thus, our overall framework unifies Representation Learning
with Knowledge Distillation and is trained end-to-end with a novel
objective function. The proposed objective function balances stabil-
ity using the distillation loss and plasticity via the Representation
Learning loss, which is now added to the existing Cross-Entropy
loss. CoRaL is the first approach to efficiently combine Supervised
Learning, Representation Learning, and Knowledge Distillation in
an end-to-end manner through a novel objective function.

We performed extensive experiments to evaluate the efficacy
of CoRaL, across three CL scenarios: incremental task, incremen-
tal class and incremental domain, on four widely used datasets in
Continual Learning: permuted-MNIST [64], rotated-MNIST [44],
Split-TinyImageNet [14] and split-CIFAR10 [64]. The results under-
line CoRaL’s effectiveness in addressing catastrophic forgetting, as
it outperformed all evaluated CL algorithms across all benchmarks
attaining the highest accuracy with low standard deviation and the
lowest forgetting. Furthermore, through extensive experiments, we
demonstrated that these three objectives could be combined in a
complementary manner for Continual Learning (CL). Finally, we
conducted extensive ablation and stability-plasticity analyses to
assess the efficacy of each of our modules across different scenar-
ios and datasets. The ablation studies underline the importance of
CoRaL’s learning modules and provide empirical support for the
objective function for Representation Learning. Our results provide
promising direction for intelligent agents to learn continually.

2 RELATEDWORK
Continual Learning Strategies: Prior works in CL have com-
monly been evaluated in three scenarios: incremental task, incre-
mental class and incremental domain. In incremental task, the output
spaces (and task-learning layers) are disjoint, and task boundaries
are explicitly stated [29]. Dissolving the class-boundaries leads to
incremental class, where the model needs to infer both classes (new
and old) and the shift in task. Finally, in incremental domain, the
classes remain the same, but the inputs undergo a distribution shift.

Towards addressing the challenges brought about by these sce-
narios, recent work in CL can be grouped into regularization-based,
network expansion-based, and rehearsal-basedmethods. Regularization-
based approaches aim to address catastrophic forgetting by impos-
ing constraints on the update of specific model parameters via addi-
tional regularization terms [2, 21, 37, 52, 55, 64]. For example, Elastic
Weight Consolidation (EWC) identifies important parameters using
the diagonal values of the Fisher information matrix, which are
then regularized when learning on new tasks [37, 55]. Synaptic
Intelligence takes a different approach to identify important param-
eters for each task, relying on loss sensitivity with respect to the
particular parameters [64]. While regularization-based approaches
have shown promising results, they are known to perform poorly
when the number of tasks is high or in incremental-class settings.

While regularization approaches focus on constraining the up-
dates of a fixed-capacity network, network expansion-based tech-
niques add to the existing architecture every time there is a change
in task [42, 51, 53, 62, 63]. For example, Progressive Neural Net-
works expand the architecture by allocating new sub-networks with
fixed capacity for each new task while freezing previously trained
networks [51]. Li et al. [42] proposed a learn to grow framework
that employs a neural architecture search to find the optimal archi-
tecture for each sequential task. The key limitation with network
expansion approaches is the increase in computational overhead,
and the added complexity of performing a hyper-parameter search
for each new task.

Lastly, rehearsal-based methods use a memory buffer of past data
which is replayed when learning new tasks [6, 8, 10, 44, 49, 50].
Buzzega et al. [8] proposed Dark Experience Replay, which added
distillation loss and cross-entropy on previous task samples to re-
duce forgetting. Lopez-Paz et al. [44] proposed Gradient Episodic
Memory, which uses past data to recall gradient directions and then
project new gradients in a region that ensures that past representa-
tion is not over-written. These past data can also be used to add an
additional objective term that can limit the forgetting on pivotal
learned data points, as proposed in Hindsight Anchor Learning
[9]. Sokar et al. [56] proposed a self-attention meta-learner, which
incorporates an attention mechanism that learns to select partic-
ular representation for each task. Cha et al. [20] proposed Co2L,
that combines knowledge distillation with representation learning
using the supervised Contrastive Learning objective [36]. The au-
thors used a two-phase approach to train their framework, first for
learning the representation and second for training the classifier.
Continual Learning in Intelligent Agents: For intelligent agents
to become fully autonomous, they need to perceive and adapt to
the changes in environmental dynamics [18, 24, 30, 60, 61]. Along
this line, progress has been made in detecting changes and general-
izing to new environments [1, 31–35, 45]. Recently, CL techniques
have been introduced to applications ranging from object detec-
tion [4, 5, 15] to knowledge embeddings [17] to motion prediction
[38, 59]. To mitigate catastrophic forgetting in object classification,
Ayub et al. [4] proposed a centroid-based concept learning approach
(CBCL), which uses a pre-trained feature extractor to obtain fea-
tures for every input, on which an AggVar clustering algorithm is
applied to generate centroids. Knoedler et al. [38] proposed a self-
supervised approach to predicting pedestrian trajectories that uses
online streams of data of pedestrian trajectories to continuously
refine the model’s prediction. Pellegrini et al. [47] proposed the use
of latent replay, which combines with naive rehearsal, to classify
objects on video benchmarks.

Although the aforementioned works have shown promising re-
sults for CL, learning effective representations that can be retained,
refined, and transferred incrementally remains a long-standing chal-
lenge. Furthermore, certain approaches are only effective in specific
scenarios, such as regularization-based approaches perform best
on incremental-task and fail to achieve competitive results in other
settings. Although recent works on improving representation learn-
ing have shown promising results [20, 22, 48], they require several
changes which in turn relaxes the Continual Learning assumption,
such as a two-phase training scheme for CL, class-balancing [20, 22].
To address these shortcomings, we propose a novel framework that
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Figure 1: CoRaL: Continual Representation Learning for
Overcoming Catastrophic Forgetting. The Representation
Learning module maximizes the similarity between two aug-
mented views of the input, which leads to more robust fea-
tures. The Knowledge Distillation module distills the knowl-
edge of previous tasks by buffering past input-output tuples
of the network from memory. The two modules combine to
reduce catastrophic forgetting.

unifies the Representation Learning for learning robust representa-
tion with a memory buffer that allows replaying of past samples
and enables the network to optimize over a small set of past data.
3 PROBLEM FORMULATION
Formally defined, a Continual Learning problem comprises a se-
quence of𝑇 distinct tasks containing non-overlapping input-output
pairs. The overall goal for the agent is to accurately predict new
classes as they appear without forgetting the discriminative abil-
ity of past classes. We use superscripts to represent the task and
subscripts to represent the index in all our formulations.

Let us denote inputs as 𝑋 and labels as 𝑌 . As such, (𝑥𝑡
𝑖
, 𝑦𝑡

𝑖
) repre-

sent an input-label tuple for a given task 𝑡 . For incremental task (IL-
Task) scenarios, the output (or label) space is disjoint, i.e., 𝑌𝑛

𝑖
≠ 𝑌𝑚

𝑖
for two different tasks𝑚 and 𝑛. The same also applies for incremen-
tal class (IL-Class) scenarios. In incremental domain (IL-Domain)
settings, the output space remains the same but the input space
changes with each domain, i.e., 𝑌𝑛

𝑖
= 𝑌𝑚

𝑖
and 𝑋𝑛

𝑖
≠ 𝑋𝑚

𝑖
.

For each task, input-label (𝑥𝑡
𝑖
, 𝑦𝑡

𝑖
) ∼ 𝐷𝑡 pairs are independently

drawn from some task-specific distribution𝐷𝑡 . The learner is tasked
to learn a non-linear mapping function using an encoder 𝑓𝜃 and
a 𝑔𝜃 , which would correctly predict the output label for the input.
Here, 𝜃 represents the parameters of the non-linear functions. For
IL-Task settings, the learner is trained using the following objective:

L(𝜃 ) :=
𝑇∑︁
𝑡=1

E𝐷𝑡 [𝑙 (𝑦𝑡 , 𝑔𝜃 (𝑓𝜃 (𝑥𝑡 , 𝑡)))] (1)
Here, the learner has access to the task label and will have different
task-learning layers per task. 𝑙 (.,. ) represents the loss function that
needs to be minimized. For IL-Class and IL-Domain, the learner has
one task-specific layer and is trained as follows:

L(𝜃 ) :=
𝑇∑︁
𝑡=1

E𝐷𝑡 [𝑙 (𝑦𝑡 , 𝑔𝜃 (𝑓𝜃 (𝑥𝑡 )))] (2)

4 CORAL: CONTINUAL REPRESENTATION
LEARNING

We now introduce our proposed framework, CoRaL: Continual
Representation Learning, an end-to-end representation learning
framework to tackle catastrophic forgetting in CL. The overall

Algorithm 1: CoRaL : Continual Representation Learning
for Overcoming Catastrophic Forgetting
Input: Dataset 𝐷 , Networks: Encoder 𝑓𝜃 , Predictor ℎ𝜃 , Task

Layer 𝑔𝜃 , Memory Buffer𝑀 , Scalars: 𝛼 , 𝛽 , Learning
rate 𝛾

1 for 𝑥𝑡 , 𝑦𝑡 , 𝑡 in 𝐷𝑡 do
2 𝑥𝑡1, 𝑥

𝑡
2 ← 𝑎𝑢𝑔(𝑥𝑡 )

3 𝑦𝑡 ← 𝑔𝜃 (𝑓𝜃 (𝑥𝑡1))
4 # Representation Learning:
5 (𝑥𝜏 , 𝑦𝜏 ) ← 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑀)
6 𝑥𝜏1 , 𝑥

𝜏
2 ← 𝑎𝑢𝑔(𝑥𝜏 )

7 𝑥𝑡,𝜏 ← 𝑐𝑎𝑡 ( [𝑥𝑡1, 𝑥
𝑡
2], [𝑥

𝜏
1 , 𝑥

𝜏
2 ])

8 𝑧1, 𝑧2 ← 𝑓𝜃 (𝑥𝑡,𝜏 )
9 𝑝1, 𝑝2 ← ℎ𝜃 (𝑧1), ℎ𝜃 (𝑧2)

10 L𝑐𝑜𝑠_𝑠𝑦𝑚 ← 1
2L𝑐𝑜𝑠 (𝑝1, 𝑠𝑔(𝑧2)) +

1
2L𝑐𝑜𝑠 (𝑝2, 𝑠𝑔(𝑧1))

11 # Knowledge Distillation:
12 𝑦𝜏 ← 𝑔𝜃 (𝑓𝜃 (𝑥𝜏1 ))
13 L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 ← ||𝑦𝜏 − 𝑦𝜏 | |22
14 L𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ← L𝑐𝑒 (𝑦𝑡 , 𝑦𝑡 ) + 𝛼 · L𝑐𝑜𝑠_𝑠𝑦𝑚 + 𝛽 · L𝑑𝑖𝑠𝑡𝑖𝑙𝑙
15 𝜃 ← 𝜃 + 𝛾∇𝜃L
16 𝑀 ← 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 (𝑀, (𝑥𝑡 , 𝑦𝑡 ))
17 end

algorithm for our framework is provided in Algo. 1 and illustrated
in Fig. 1. There are two primary components of CoRaL, which work
in tandem with the supervised learning objective : i) Representation
Learning (Algo. 1, Lines 4-10), and, ii) Knowledge Distillation (Algo.
1, Lines 11-13).

The Representation Learning module is a Siamese network setup
comprising an encoder, a projection, and a prediction network. The
projection and prediction networks are MLPs, while the encoder
consists of a backbone (e.g., ResNet). To aid the Representation
Learning module, we propose a memory buffer that replays past
input samples using reservoir sampling [8]. The input samples
from the buffer undergo augmentations before being fed to the
Representation Learning module, which is trained using the Cosine
Similarity loss to encourage the encoder to minimize the embedding
distance between similar inputs under changing distributions.

The memory buffer also stores the model’s past output logits,
which is used in the second part of the framework: the Knowledge
Distillation module. The storing of past outputs ensures that even
when the encoder learns robust representations, the task learning
layer can map it to the correct class. In this module, past input
samples are fed to the overall network (encoder + task-learning
layer), and the output is compared to the past output from the buffer,
with the objective being to penalize divergence between the two
values. We will first describe the Representation Learning module
of our framework, followed by the Knowledge Distillation module,
and finally, the modified objective function.

4.1 Representation Learning
4.1.1 Objective Function. Contrastive learning [11, 27] have proven
to be an effective technique for learning instance discrimination
without labels. The core idea behind these works is the following:
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for every input, minimize the distance between the positive sample
pairs and maximize the distance between the negative sample pairs.
The positive sample pairs are the embeddings of the two augmented
versions of the input, while all other embeddings are considered
negative. Let (𝑖, 𝑗) be the positive pairs. The contrastive learning
objective can be defined using the InfoNCE loss:

L𝑖, 𝑗 = − log
exp(𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗 )/𝜏)∑2𝑁

𝑘=1 1[𝑘≠𝑖 ] exp(𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑘 )/𝜏)
(3)

Here, 𝑧𝑖 , 𝑧 𝑗 are the embeddings of the positive sample pairs, 1𝑘≠𝑖
is an indicator function which is 1 for the 2𝑁 − 1 negative sample
pairs, i.e., when 𝑘 ≠ 𝑖 . 𝜏 represents the temperature parameter used
to scale the gradient. 𝑠𝑖𝑚 represents the dot product between the 𝑙2
normalized embeddings.

While this formulation has proven effective in learning instance
discrimination in the absence of labels, methods based on this
contrastive formulation are sensitive to the choice of data augmen-
tations [25]. This motivates the need to develop techniques that
are robust to data augmentations and distribution shifts and is a
key component for Continual Representation Learning. Here, due
to the non-stationary data distribution, the encoder output for the
positive samples is continuously changing, along with the negative
samples, making the objective function in Eq. 3 challenging to op-
timize. Furthermore, such contrastive learning methods rely on a
large number of negative samples, which require a large batch size,
making their adoption intractable for a CL setup.

As our primary objective is to learn effective and robust represen-
tations under non-stationary settings, we introduce the modified
Cosine Similarity loss [13] for CL, which only relies on the posi-
tive samples. The task then reduces to maximizing the similarity
between two augmented versions of the same input, say 𝑧1, 𝑧2. As
such, our objective function is:

L𝑐𝑜𝑠 (𝑝1, 𝑧2) = −
𝑝1
| |𝑝1 | |2

· 𝑧2
| |𝑧2 | |2

(4)

Here, 𝑝1 is a non-linear transformation of 𝑧1, which is processed
through a predictor network.

4.1.2 Siamese Network Setup. We now describe our proposed rep-
resentation learning module, which is trained using the modified
Cosine Similarity loss (Eq. 4.) The input to the module is the aug-
mented image samples. We first apply data augmentation on each
input sample, in line with prior works [11, 12, 25, 27]. This augmen-
tation effectively doubles the input sample size. The augmented
samples are then passed to the Representation Learning module.

The Representation Learningmodule is a Siamese Network setup,
comprised of one encoder 𝑓𝜃 , one projection network 𝑑𝜃 , and a
prediction network ℎ𝜃 . Inspired from BYOL [25] and SimSiam [13],
our Siamese Network setup has one online network and one target
network. The target network (𝑓𝜃 & 𝑑𝜃 ) provides the regression
targets to train the online network, which is then used to update
the gradients of the online network (𝑓𝜃 , 𝑑𝜃 & ℎ𝜃 ). This is then
followed by swapping the roles, i.e., the previously online network
is now the target network and has to provide the regression targets,
leading to two passes of optimization.

We use the same encoder and projection network for both online
and target networks. For a given task 𝑡 , our architecture takes as
input two randomly augmented views from an image 𝑥𝑡1, 𝑥

𝑡
2, which

is processed by the encoder network 𝑓𝜃 , followed by the projection
network 𝑑𝜃 to get two embeddings 𝑧1, 𝑧2. As CoRaL is a rehearsal-
based approach, the image can come from the stream of the current
task 𝑡 or from the input buffer 𝜏 . For a given pass, the prediction
network ℎ𝜃 processes one of the embeddings, for example, 𝑧1, to
output 𝑝1 and matches it to the other embedding, 𝑧2.

The outputs, 𝑝1 and 𝑧2, are normalized before calculating the
Cosine Similarity loss (Eq. 4). Our framework uses symmetric loss,
whereby we update the gradient of one network in one pass and
then update the gradient of the other network in the next pass. In
either pass, only the online network (one with the predictor) is
updated end-to-end using backpropagation. The target network
is not updated and is tasked to provide regression targets. The
symmetric loss is an extension of Eq. 4 and is formulated below:

L𝑐𝑜𝑠_𝑠𝑦𝑚 =
1
2
L𝑐𝑜𝑠 (𝑝1, 𝑠𝑔(𝑧2)) +

1
2
L𝑐𝑜𝑠 (𝑝2, 𝑠𝑔(𝑧1)) (5)

This is performed for all input samples, and the total loss is averaged.
Here, 𝑠𝑔 refers to the stopgrad function and is used to prevent the
target network from getting updated [13], meaning that the encoder
on 𝑥2 receives no gradients from 𝑧2 and the encoder on 𝑥1 receives
no gradients from 𝑧1.

Prior works on representation learning have leveraged self- su-
pervised learning, with the frameworks trained in two phases: rep-
resentation learning and task learning [11, 25, 27]. In the represen-
tation learning phase, the network has no access to labels and relies
on a pretext task to distinguish between the unlabelled classes. In
the task learning phase, the network has access to a small number
of labels. Recent works on CL have also used a similar approach
by using a two-phase training scheme and relaxing the non-i.i.d.
assumption by introducing class-balancing strategies when training
the classifier. A key difference between our work and prior works
[20, 22] is that we do not decouple the representation learning from
the task learning and in fact, unify the two objective functions,
i.e., the Cross-Entropy loss and the Cosine Similarity loss. This
approach has the benefit of learning robust features while also
mapping the representations to their respective labels.

4.2 Knowledge Distillation
The Representation Learning module for CoRaL has the explicit
objective of improving the robustness of the learned features at
the encoder using the Cosine Similarity loss. However, standard
backpropagation with the dual objective of Cross-Entropy and
Cosine Similarity may not prevent catastrophic forgetting. As such,
even if the representations are robust to changing distributions,
the weights and output of the task-learning network may be prone
to changes. To address this challenge, we introduce a Knowledge
Distillation module to our framework.

Although knowledge distillation [28] has beenmostly deployed in
a teacher-student setting, where the teacher network distills its knowl-
edge to a student network, in this work, we rely on self-distillation
in CL settings [43, 49]. To perform self-distillation, we store the
final network response along with the corresponding inputs in the
memory buffer using reservoir sampling. This retention of past
input and network response allows the network to have similar
outputs, even if there is a shift in representation.
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Table 1: Performance comparison (averaged across 10 runs) of various CL methods on different scenarios (Accuracy in %)

Approach Method IL-Task IL-Class IL-Domain

S-CIFAR10 S-Tiny-ImageNet S-CIFAR10 S-Tiny-ImageNet P-MNIST R-MNIST

Non-CL JOINT 98.31 ± 0.12 82.04 ± 0.10 92.20 ± 0.15 59.99 ± 0.19 94.33 ± 0.17 95.76 ± 0.04
SGD 61.02 ± 3.33 18.31 ± 0.68 19.62 ± 0.05 7.92 ± 0.26 40.70 ± 2.33 67.66 ± 8.53

Architectural PNN [51] 95.13 ± 0.72 67.84 ± 0.29 - - - -

Regularization
oEWC [55] 68.29 ± 3.92 19.20 ± 0.31 19.49 ± 0.12 7.58 ± 0.10 75.79 ± 2.25 77.35 ± 5.77
SI [64] 68.05 ± 5.91 36.32 ± 0.13 19.48 ± 0.17 6.58 ± 0.31 65.86 ± 1.57 71.91 ± 5.83
LwF [43] 63.29 ± 2.35 15.85 ± 0.58 19.62 ± 0.05 8.46 ± 0.22 - -
ER [50] 91.19 ± 0.94 38.17 ± 2.00 44.79 ± 1.86 8.49 ± 0.6 72.37 ± 0.87 85.01 ± 1.90
GEM [44] 90.44 ± 0.94 - 25.54 ± 0.76 - 66.93 ± 1.25 80.80 ± 1.15
A-GEM [10] 83.88 ± 1.49 22.77 ± 0.03 20.04 ± 0.34 8.07 ± 0.08 66.42 ± 4.00 81.91 ± 0.76
iCARL [49] 88.99 ± 2.13 28.19 ± 1.47 49.02 ± 3.20 7.53 ± 0.79 - -

Rehearsal FDR [6] 91.01 ± 0.68 40.36 ± 0.68 30.91 ± 2.74 8.70 ± 0.19 74.77 ± 0.83 85.22 ± 3.35
GSS [3] 88.80 ± 2.89 - 39.07 ± 5.59 - 63.72 ± 0.70 79.50 ± 0.41
HAL [9] 82.51 ± 3.20 - 32.36 ± 2.70 - 74.15 ± 1.65 84.02 ± 0.98
DER [8] 91.40 ± 0.92 40.22 ± 0.67 61.93 ± 1.79 11.87 ± 0.78 81.74 ± 1.07 90.04 ± 2.61

DER++ [8] 91.92 ± 0.60 40.87 ± 1.16 64.88 ± 1.17 10.96 ± 1.17 83.58 ± 0.59 90.43 ± 1.87
CoRaL (Ours) 92.01 ± 0.32 41.37 ± 0.91 65.24 ± 1.09 14.06 ± 0.57 84.60 ± 0.48 91.79 ± 0.92

For every data 𝑥𝜏 sampled from the memory buffer, we forward
propagate the sample through the current network to obtain the
final output before computing the softmax probability, 𝑦𝜏 . This
output is then compared with the network’s past response, 𝑦𝜏 ,
which is obtained from the memory buffer. Unlike prior distillation-
based approaches [8]which have shown to benefit from storing both
the network’s output logits and the class label, we only store the
network’s output logits, thus simplifying the objective function. As
we are computing the loss on pre-softmax outputs, we use the Mean
Square Error between the logits of the current model and the past
model. The overall operations in this module can be formulated as:

L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 = | |𝑦𝜏 − 𝑦𝜏 | |22 (6)

4.3 Overall Objective for End-to-End Learning
In CoRaL, we introduce a new approach to combine two different
modules for end-to-end training. Moreover, these modules are used
to overcome catastrophic forgetting on past task samples. Learning
a mapping between the inputs and the labels for the current task
is done using the Cross-Entropy loss function for each mini-batch
that is sampled from the current distribution.

Overall, CoRaL is comprised of three different loss functions
that is trained end-to-end: the standard Cross-Entropy loss for
supervised learning, the modified Cosine Similarity loss from Eq. 5,
and the Distillation loss from Eq. 6 for the distillation learning. For
the initial task, the framework uses only the Cross-Entropy loss.
For every incremental task/class/domain that follows, the model is
trained using the following objective function:

L𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝐿𝑐𝑒 + 𝛼 · L𝑐𝑜𝑠_𝑠𝑦𝑚 + 𝛽 · L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (7)

Here, 𝛼 , 𝛽 are hyper-parameters for the different losses.

5 EXPERIMENTAL SETUP
5.1 Datasets
We evaluated our approach by comparing its performance to several
state-of-the-art CL methods on four widely benchmarked datasets:
Rotated MNIST (R-MNIST) [44], Permuted MNIST (P-MNIST) [37]

which are variants of the MNIST dataset, Split CIFAR-10 (S-CIFAR-
10) [64] which is a variant of the CIFAR10 [39] and Split TinyIm-
ageNet (S-Tiny-ImageNet) [14]. Please check the supplementary
materials for more details on the datasets.

5.2 Continual Learning Scenarios
We consider three challenging CL scenarios for conducting evalua-
tion inline with prior works [29, 64]. For all scenarios, the original
dataset is split into separate tasks. For S-CIFAR-10, the original
dataset is split into five 2-way classification tasks, whereas for S-
Tiny-ImageNet, the original dataset is split into ten 20-category
classification tasks. For P-MNIST and R-MNIST, the image pixels in
the original dataset are permuted or rotated for 20 rounds, resulting
in a shift in input while the classes remain unchanged.

For incremental task (IL-Task), models have access to the task la-
bel, and as a result, they are trained with task-specific components.
For incremental class (IL-Class), models need to perform both classi-
fication of new samples as they arrive and infer the change in task.
Lastly, for incremental domain (IL-Domain), models do not have
access to task labels and need to only perform the classification of
the input images, which may undergo perturbations.

5.3 Architectures
We use different encoders depending on the complexity of the
dataset. On R-MNIST and P-MNIST, we use a fully connected neural
network with two hidden layers of 100 ReLU units, following prior
works [44]. On the CIFAR-10 and TinyImageNet, we use ResNet18.
For implementation details, please look at the supplementary.

5.4 Evaluation Protocol
To ensure fair evaluation, we used a similar learning schedule for
all evaluated methods and conducted a hyper-parameter search to
ensure the best average accuracy. We compared CoRaL with state-
of-the-art approaches that use a similar end-to-end training scheme.
As such, we did not evaluate against techniques that require two-
phases of training or relax the non-i.i.d assumption of CL by using
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Table 2: Backward Transfer (BWT) comparison (averaged
across 10 runs) on Incremental Domain (in %).

Approach Method P-MNIST R-MNIST
Non-CL SGD -57.65 ± 4.32 -20.34 ± 2.50

Architectural PNN [51] - -
oEWC [55] -36.69 ± 2.34 -24.59 ± 5.37

Regularization SI [64] -27.91 ± 0.31 -22.91 ± 0.26
LwF [43] - -
ER [50] -22.54 ± 0.95 -8.24 ± 1.56
GEM [44] -29.38 ± 2.56 -11.51 ± 4.75
A-GEM [10] -31.69 ± 3.92 -19.32 ± 1.17

Rehearsal FDR [6] -20.62 ± 0.65 -13.31 ± 2.60
GSS [3] -47.85 ± 1.82 -20.19 ± 6.45
HAL [9] -15.24 ± 1.33 -11.71 ± 0.26
DER [8] -13.79 ± 0.80 -5.99 ± 0.46

DER++ [8] -11.47 ± 0.33 -5.27 ± 0.26
CoRaL (Ours) -9.92 ± 0.51 -4.65 ± 0.86

class-balancing strategies[20, 48] . For the S-MNIST and R-MNIST
datasets, we trained all methods for one epoch per task, using amini-
batch size of 128 following prior work [8]. For the S-CIFAR-10 and S-
Tiny-ImageNet datasets, we used a mini-batch size of 32 and trained
for 50 epochs per task, following prior works [8, 64]. We used a
memory buffer of 200 samples using reservoir sampling. For all
scenarios, the evaluation metric is the test-set accuracy after being
trained on all the tasks (Acc.), averaged over ten independent runs.

6 RESULTS AND DISCUSSION
6.1 Incremental Task
Results: We present the average accuracy over ten independent
runs of all frameworks on IL-Task settings for the Split-CIFAR-10
(S-CIFAR-10) and Split-TinyImageNet (S-Tiny-ImageNet) datasets
in Tab. 1. The results suggest that CoRaL outperformed all other
methods on both the evaluated datasets. CoRaL achieved the highest
average accuracy of 92.01% and 41.37% on S-CIFAR-10 and S-Tiny-
ImageNet, respectively, while having low standard deviation.
Discussion: The results in Tab. 1 suggest the efficacy of the Repre-
sentation Learning module in learning robust representation. The
Representation Learning module increases the similarity between
the positive samples, whereas the Knowledge Distillation module
replays past samples and allows the network to optimize over them
simultaneously. CoRaL achieved a performance improvement of
0.09% and 0.50% on S-CIFAR-10 and S-Tiny-ImageNet, while having
a relatively low standard deviation, suggesting consistency in the
results and the stability of the objective function in Eq. 7. Although
we report methods that have an architectural expansion, such as
PNN [51], it is not a fair comparison as PNN progressively adds a
new learning network for each task, incurring significant memory
overhead. In contrast, our work does not require a new network for
each task and maintains the same buffer size as other approaches.

We also observed in Tab. 1 the effectiveness of rehearsal-based
approaches (FDR,ER, DER++, CoRaL) compared to regularization-
based approaches (oEWC, SI, LwF) over both the datasets. This is
due to the network having access to past data samples and opti-
mizing over them as well as the current data samples, providing
a more effective way of recalling past representations. Moreover,
regularization-based approaches add a penalty to parameter up-
dates, which constrains the network from learning new tasks. As

a result, the number of unregularized parameters decreases with
each task, which leads to relatively low average accuracy.
6.2 Incremental Class
Results:We present the average accuracy over ten runs of all meth-
ods on IL-Class settings for the S-CIFAR10 and S-Tiny-ImageNet
datasets in Tab. 1. The results suggest that CoRaL outperformed
all other methods, further highlighting CoRaL’s ability to mitigate
catastrophic forgetting.
Discussion: The results underline the generalizability of CoRaL to
different scenarios and posit a strong case for Representation Learn-
ing frameworks in CL. CoRaL’s improved representation learning al-
lows the encoder to learn a more robust representation, which along
with the distillation loss, allows it to attain the best performance.
As observed in Tab. 1, CoRaL significantly outperformed all other
approaches by 2.19% in terms of average accuracy on the S-Tiny-
ImageNet dataset. This provides empirical evidence of the benefit of
the Siamese Network setup, which leads to a more robust Represen-
tation Learning under non-stationary distributions. Furthermore,
the low standard deviation leads to more consistent results.

We observed that IL-Class presents a more significant challenge
for all CL frameworkswith a performance drop compared to IL-Task.
This is because there are no task boundaries for IL-Class, leading
to only one task-learning layer. This means that models need to
infer the current task in addition to classifying the inputs, making
it more challenging to recall knowledge over past inferred tasks.
6.3 Incremental Domain
Results:We present the average accuracy over ten runs of all mod-
els on IL-Domain settings for the P-MNIST and R-MNIST datasets
in Tab. 1. Consistent with previous CL-scenarios, the results sug-
gest that CoRaL achieved the highest average accuracy on both
the datasets, further highlighting its superiority for addressing
catastrophic forgetting in IL-Domain settings. On average, CoRaL
outperformed all other approaches by 1.02% on the P-MNIST dataset
and 1.36% on the R-MNIST dataset.
Discussion: The results reinforce the benefits of the Representation
Learning module in CoRaL. As IL-Domain introduces input per-
turbation, the addition of Representation Learning is particularly
effective as it explicitly directs the model to reduce the distance
between samples that have undergone different perturbations but
belong to the same class. This is not available in other evaluated
approaches, which try to distinguish between these perturbations
using the Cross-Entropy or other distillation losses, which are not
explicitly targeted toward learning robust representations.

6.4 Backward Transfer
Results: Lastly, we present the average Backward Transfer (BWT)
of all models, which is calculated in line with prior works [8, 44].
BWT is expected to increase with new tasks as the network no
longer has access to all the data samples of the past tasks and is a
good estimator for catastrophic forgetting. As such, we chose the CL
scenario with the highest number of tasks: IL-Domain. We present
the results for all the methods in Tab. 2 for the P-MNIST and R-
MNIST datasets. For BWT, a negative value indicates forgetting,
and as such, a lower negative value is desirable. As can be observed,
CoRaL attained the lowest BWT, with an average BWT of -9.92%
and -4.65% on P-MNIST and R-MNIST, respectively.
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Table 3: Impact of Representation Learning techniques.

Approach IL-Task IL-Class
S-CIFAR-10 S-Tiny-ImageNet S-CIFAR-10 S-Tiny-ImageNet

CoRaL with CrL (MoCo) 90.52 ± 0.51 35.88 ± 1.61 61.20 ± 1.02 11.16 ± 1.07
CoRaL with CSL (SimSiam) 92.01 ± 0.32 41.37 ± 0.91 65.24 ± 1.09 14.06 ± 0.57

Discussion: The results in Tab. 2 highlight that CoRaL attained
the lowest BWT over all approaches on both datasets. For the P-
MNIST dataset, CoRaL outperformed all baselines by 1.55%, and
for R-MNIST, CoRaL attained the lowest BWT, outperforming all
approaches by 0.62% on average. This suggests that the augmen-
tations introduced for the Representation Learning module allow
CoRaL to learn more robust features resulting in less forgetting.

7 ABLATION STUDY
7.1 Analyzing Different Representation

Learning Approaches
Continual Learning requires frameworks to strike the right blend of
stability and plasticity when learning on continuous data streams.
Such frameworks strive to be stable to changing data distributions,
retaining information on past tasks while exuding the requisite plas-
ticity to learn new tasks efficiently. In this work, we presented a gen-
eral framework for investigating the effectiveness of Representation
Learning frameworks under non-stationary distributions. To assess
the applicability of current Representation Learning frameworks,
we compare two popular approaches: MoCo [27] and SimSiam[13],
while fixing the parameters of the Knowledge Distillation module.
Results: Tab. 3 reports the average accuracy after ten runs on the S-
CIFAR-10 and S-Tiny-ImageNet datasets.We conducted our analysis
for both IL-Task and IL-Class scenarios for extensive evaluation.
We compared two conceptually different approaches, SimSiam [13]
and MoCo [27]. SimSiam is a Siamese Network setup trained using
the negative symmetric cosine similarity. On the other hand, MoCo
is also a Siamese setup, where one of the encoders is a momentum
encoder, and the other is a standard encoder. MoCo is trained using
the Contrastive loss.
Discussion: The results in Tab. 3 suggest that SimSiam, which is
the approach used in this paper, outperformed MoCo for all the
datasets and scenarios. The improvement is especially significant
for IL-Class, with 4.04% and 2.90% gain for S-CIFAR-10 and S-Tiny-
ImageNet, respectively. We posit that this is due to the Cosine
Similarity objective, which does not rely on negative samples but
tries to maximize the similarity between two augmentations. On the
other hand, MoCo uses a momentum encoder along with a feature
queue to maintain a consistent queue of negative samples, which
is optimized using the InfoNCE loss (Eq. 3). As is the case with
Continual Learning, the distribution for the negative samples keeps
changing, making it challenging for the network to learn stable
representations. The results justify the use of the Cosine Similarity
loss for Representation Learning in CL, which provides CoRaL with
the ideal blend of stability and plasticity when learning new tasks.

7.2 Impact of CoRaL’s Learning Modules
Results: We extensively experimented across different scenar-
ios and datasets to assess the importance of the two primary learn-
ing modules of CoRaL. Tab. 4 presents the accuracy while ablating

Table 4: Ablation results (top-1) over different learning mod-
ules.

Method IL-Domain IL-Task IL-Class
P-MNIST R-MNIST S-CIFAR-10 S-CIFAR-10

CoRaLw/o R.L. 83.45 90.19 91.23 59.43
CoRaLw/o K.D. 41.99 69.45 72.92 19.67

CoRaL 85.60 92.89 92.49 66.97

a specific module, given the same encoder network and learning
protocols.
Discussion: First, we ablate the Representation Learning module,
i.e., we no longer have a Siamese Network setup. The Cosine Sim-
ilarity loss is removed from the objective function, which is now
comprised of only the Cross-Entropy and the distillation learning
loss. The results in Tab. 4 suggest that the absence of the Repre-
sentation Learning module results in a drop in accuracy across all
scenarios and datasets. The drop is most significant in IL-Class
scenarios (7.54% for S-CIFAR-10), which is the most challenging
of all CL scenarios, asserting the importance of learning robust
representations that are transferable.

We next ablate the Knowledge Distillation module, removing the
distillation loss from the objective function. The results suggest that
removing the Knowledge Distillation module has a significant im-
pact on overall performance. There is a significant drop in accuracy
for all scenarios and datasets, with the framework suffering most in
IL-Class. This reinforces the importance of using a memory buffer
which allows the network to retain its knowledge over past tasks.
Our results also highlight that combining the Representation Learn-
ing and Knowledge Distillation modules provide the right balance
between stability and plasticity, with the combination attaining the
best performance.

8 ANALYSIS OF THE STABILITY-PLASTICITY
We conducted extensive experiments to evaluate the effect of sta-
bility and plasticity on the average accuracy. We achieved this by
varying the values of 𝛼 and 𝛽 of the objective function in Eq. 7.

8.1 Effect of Varying the Plasticity on the
Accuracy

Results: We varied the weight of the Cosine Similarity Loss, 𝛼 ,
keeping the weight for the Knowledge Distillation loss, 𝛽 fixed at 0.1.
Varying the 𝛼 provides us the flexibility of increasing or decreasing
the plasticity of CoRaL and allows us to assess the subsequent
impact on the forgetting. Tab. 5 presents the average accuracy
after all five tasks on the S-CIFAR-10 for the IL-Task and IL-Class
scenarios. In addition, we also tracked the average accuracy after
learning each new task, as shown in Fig. 2 for different values of 𝛼 .
Discussion: The results in Tab. 5 suggest that increasing the plastic-
ity of the framework initially allows CoRaL to learn robust represen-
tations with the highest accuracy for IL-Task at 𝛼 = 0.4. However,
with a further increase in the plasticity, the accuracy drops, suggest-
ing the need to constrain the plasticity of the framework in order
to improve the stability of the learned representations. The trend
is also similar for IL-Class, with the accuracy increasing initially,
with the best value at 𝛼 = 0.4.

When we track the average accuracy after each task in Fig. 2, we
see that increasing the plasticity results in the network attaining
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Table 5: Effect of varying the plasticity parameter (𝛼) on the
average accuracy (after 5 independent runs) for S-CIFAR-10.

𝛼 𝛽 IL-Task IL-Class
0.1 0.1 90.33 ± 1.22 63.80 ± 1.20
0.2 0.1 90.69 ± 0.91 64.19 ± 0.14
0.3 0.1 91.72 ± 0.29 65.31 ± 1.24
0.4 0.1 92.10 ± 0.12 66.05 ± 0.71
0.5 0.1 91.25 ± 0.79 63.01 ± 1.10
1.0 0.1 90.63 ± 0.89 62.69 ± 0.77

Incremental Task Incremental Class

Figure 2: Plasticity Analysis on the S-CIFAR-10 dataset. We
varied theweight (𝛼) for the Representation Learningmodule
higher average accuracy for the initial tasks, especially for Task 1
and 2, where higher values of (𝛼 = 0.7 ∼ 1.0) led to higher accu-
racy for both IL-Task and IL-Class. However, as Continual Learning
requires the network to retain past knowledge, a high plasticity
coefficient may result in higher forgetting. As seen in Fig. 2, the
average accuracy for later tasks decreases at a faster rate, for high
values of 𝛼 . As such, there needs to be a trade-off between high plas-
ticity, which may provide better accuracy initially, and moderate
plasticity, which may provide better accuracy at later stages.

8.2 Effect of Varying the Stability on the
Accuracy

Results: We varied the weight of the Knowledge Distillation Loss,
𝛽 , keeping the weight for the Representation Learning loss, 𝛼 fixed
at 0.1. This provided us with a mechanism to tune the stability of
our framework, with a higher value of 𝛽 resulting in stronger opti-
mization constraints when updating the network parameters. Tab. 6
presents the final accuracy after all five tasks on the S-CIFAR-10
for the IL-Task and IL-Class scenarios. In addition, we also tracked
the average accuracy after learning each new task, as depicted in
Fig. 3 for different values of 𝛽 .
Discussion: The results in Tab. 6 suggest that increasing the sta-
bility parameter 𝛽 initially allows CoRaL to put optimization con-
straints when learning new tasks and results in improved knowl-
edge retention over past tasks. The Distillation Loss L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 acts
as a regularizer during the parameter update while replaying the
past samples also relaxes the non-i.i.d assumption. The highest
accuracy for IL-Task was at 𝛽 = 0.3, whereas the highest accuracy
for IL-Class was at 𝛽 = 0.2. However, with a further increase in the
stability (𝛽 > 0.3), the accuracy drops for both IL-Task and IL-Class,
suggesting over-regularization.

When we track the average accuracy after each task in Fig. 3, we
see that increasing the stability (𝛽 = 0.1 ∼ 0.3) leads to the network
attaining higher average accuracy. However, a further increase sin
𝛽 results in over-constraining the network and leads to lower accu-
racy for all the tasks, as observed for 𝛽 > 0.3. The lowest average

Table 6: Effect of varying the stability parameter (𝛽) on the
average accuracy (after 5 independent runs) for S-CIFAR-10.

𝛼 𝛽 IL-Task IL-Class
0.1 0.1 90.33 ± 1.22 63.80 ± 1.20
0.1 0.2 90.72 ± 0.72 65.18 ± 1.09
0.1 0.3 90.94 ± 0.60 64.77 ± 0.72
0.1 0.4 90.74 ± 1.18 62.11 ± 2.22
0.1 0.5 89.23 ± 1.44 61.88 ± 0.39
0.1 1.0 86.77 ± 0.82 51.18 ± 5.14

Incremental Task Incremental Class

Figure 3: Stability Analysis on the S-CIFAR-10 dataset. We
varied the weight (𝛽) for the Knowledge Distillation module

accuracy after each task and after all five tasks was for 𝛽 = 1.0. Inter-
estingly, we also observed that the drop in accuracy after each new
task is also lowest for 𝛽 = 1.0. The combination of the network at-
taining low accuracy and low forgetting implies over-regularization,
whereby the network is too stable to learn efficiently.

8.3 Discussion on the Stability-Plasticity
Trade-off

Our experimental results in (Tabs. 5, 6 and Figs. 2, 3) underline the
challenges of finding the right blend of stability and plasticity to
mitigate catastrophic forgetting. An increase in plasticity, by in-
creasing the weight of the Representation Learning loss, L𝑐𝑜𝑠_𝑠𝑦𝑚
leads to the network learning transferable features, which results
in higher average accuracy over the next task. However, a further
increase in plasticity may lead to drops in accuracy. Similarly, an
increase in the stability, by increasing the weight of the Knowledge
Distillation loss, L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 , can improve the knowledge retention of
the network by acting as a regularizer, up to a certain value. Further
increase in the stability parameter might constrain the network
from updating its weights, resulting in lower average accuracy.

9 CONCLUSION
In this work, we introduced CoRaL, a novel Continual Learning
framework for addressing catastrophic forgetting. Our framework
provides the right blend of stability in CL scenarios through the
Knowledge Distillation module and plasticity via the Representa-
tion Learning module, thus providing a promising approach for
intelligent agents to learn continually. CoRaL is trained end-to-end
with a novel objective function that comprises the modified Cosine
Similarity loss and the Distillation loss on top of the Cross-Entropy
loss. Our results across three scenarios and four datasets suggest
the efficacy of CoRaL, with our proposed approach outperforming
all other techniques on all evaluated benchmarks. The ablation
studies further validates the relevance of the Cosine Similarity loss
for Continual Representation Learning and CoRaL’s two proposed
modules.
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