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ABSTRACT
Fair division of indivisible resources has attracted significant at-
tention from multi-agent systems and computational social choice.
Two popular solution concepts are envy-freeness up to any item
(EFX) and maximin share (MMS) fairness which are defined using
agents’ cardinal preferences. On one hand, accurate cardinal values
are hard to express in real-life applications, and on the other hand,
with cardinal values, MMS and EFX may not be easy to satisfy. In
this work, we study a new setting where agents have arbitrary
ordinal preferences for the items (possibly with indifferences), and
an allocation is called possible EFX (p-EFX) or possible MMS (p-
MMS) if there exist cardinal preferences that are consistent with
the ordinal ones so that the allocation is EFX or MMS.

We first design a polynomial-time algorithm to compute an allo-
cation that is p-EFX and p-MMS under lexicographic preferences.
This result also strengthens a result of Hosseini et al.(AAAI 2021)
who proved the existence of EFX and MMS allocations under strict
lexicographic preferences (i.e., the items do not have ties). Although
it has been well justified that lexicographic preferences are natural
and common, there are situations where they do not fit appropri-
ately, especially when the items have similar types. Therefore, on
top of p-EFX and p-MMS, we want the allocation to be balanced (i.e.,
the numbers of items allocated to the agents differ by at most one).
We then design another algorithm that satisfies p-EFX, p-MMS, and
balanced simultaneously.
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1 INTRODUCTION
Fairly allocating a set of indivisible resources among a number of
heterogeneous agents has been within the center of multi-agent
systems [2, 9]. Basically, there are two classes of fairness criteria,
namely envy-based and share-based. An envy-based criterion eval-
uates an agent’s fairness on an allocation against those of her peers,
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and a share-based one evaluates it against the agent’s due share.
Two representative notions in these two classes are envy-freeness
(EF) and proportionality (PROP). Informally, an envy-free allocation
requires no agent to prefer the bundle of resources allocated to any
other agent more than her own, and a proportional one requires
every agent to have a value no smaller than her average value for
all resources. It is widely known that these two requirements are
too strong in the sense that such fair allocations seldom exist due
to the indivisibility of the resources. Instead, the literature mostly
focuses on their relaxation. The first relaxation is envy-freeness up
to any item (EFX) [17], which means the envy of an agent towards
another agent can be eliminated if an arbitrary resource is removed
from the envied agent’s bundle. The second one is maximin share
(MMS) fairness [15], which is motivated by an imaginary experi-
ment where an agent is to divide all the resources into 𝑛 bundles
but is the last one to select a bundle (𝑛 is the number of agents). The
agent’s best strategy, in the worst case, is to maximize the minimum
value of all bundles, and this value is named her maximin share.
Then an MMS allocation is defined so that every agent’s value is
no smaller than her MMS.

Unfortunately, although a significant amount of effort has been
spent, whether an EFX allocation always exists or not is still un-
known. It is shown in [21, 28] that an MMS allocation is not guar-
anteed to exist even when there are only three agents. Thereafter,
a growing body of papers works on finding the approximations of
EFX and MMS allocations, which will be discussed in Section 1.2.
In all these works, it is assumed that every agent has a cardinal
valuation function that assigns an exact numerical value for each
set of resources. However, in many real-life scenarios, it is easy for
the agents to tell which one is better among the items, but it may
be hard to quantify how much it is better off.

In this work, we take an epistemic perspective to study the fair
allocation of indivisible resources and provides an alternative way
to approximate EFX and MMS fairness. Pragmatically, in our model,
we assume each agent has an ordinal ranking over the resources.
We then define possible EFX and possibleMMS allocations, which
requires that for each agent there exists a cardinal valuation that
is consistent with the ordinal preference so that the allocation is
EFX and MMS. Konczak and Lang [27] first proposed the notion of
possible winners in the context of voting, which is then generalized
to possible EF and PROP in fair allocation by Aziz et al. [8] and
Segal-Halevi et al. [33]. A simple example shows that possible EF
and PROP are still hard to satisfy; see Example 1 and formal defini-
tions are in introduced in Section 2. Our definitions are weaker and
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we prove that we can ensure possible EFX and possible MMS si-
multaneously by a unified algorithm for arbitrary ordinal rankings
even when the agents have indifference over the items.

Example 1. Consider an instance with two agents and two re-
sources 𝑜 and 𝑜 ′. Both agents strictly prefer 𝑜 over 𝑜 ′. In that case, the
agent who gets 𝑜 ′ is envious of the other agent and does not get half
of the total utility he would get if he got both resources. Therefore,
allocating each agent one item is possible EFX and possible MMS, but
there exists no possible EF or possible PROP allocation.

Besides [8, 33] and our work, the fair allocation has been inves-
tigated from an epistemic perspective in the literature, but most
of the existing study focuses on the knowledge of allocations. To
the best of our knowledge, Aziz et al. [7] were the first to study the
epistemic envy-freeness, which only requires each agent to know
her own allocated items. An allocation is regarded as epistemic EF
to an agent if there exists a re-allocation of the items not allocated
to her among the other agents so that the resulting allocation is
EF. Very recently, Garg and Sharma [22] extended this notion to
epistemic EFX and proved the existence of such an allocation. In
another direction, Chan et al. [18] proposed maximin aware allo-
cations, which requires that for each agent, no matter how the
items not allocated to her are distributed among the others, there
exists one agent whose bundle is no better than hers. Our work
is fundamentally different from these works in the sense that the
knowledge in our setting is about valuations instead of allocations.

1.1 Our Contribution
In this work, we study the epistemic fair allocation problem of indi-
visible resources, where the agents express their ordinal preferences
over the resources. We propose two possible fairness definitions,
namely, possible EFX (p-EFX) and possible MMS (p-MMS). Infor-
mally, an allocation is p-EFX or p-MMS if for every agent there
exists a cardinal additive valuation that is consistent with her or-
dinal preference so that the allocation is EFX or MMS to her. We
justify the two concepts by the following two facts. First, it is usu-
ally unrealistic for the agents to express their accurate cardinal
values or the agents simply do not have them; Second, as we show
in this work, although possible fairness is weaker than the cardinal
ones, they are guaranteed to be satisfiable and are compatible with
extra properties such as balancedness and Pareto optimality (PO).

To prove the existence of possible fair allocations, we first show
that an EFX, MMS, and PO allocation exists when the valuations
are weak lexicographic. Hosseini et al. [26] proved the existence of
such an allocation for strict lexicographic preferences and left the
weak case open. Our result answers this question affirmatively.

Main Result 1. A simultaneously EFX, MMS and PO allocation
exists and can be computed in polynomial time for arbitrary (weak)
lexicographic preferences.

An interesting distinction between strict and weak lexicographic
preferences is that EFX implies MMS in the former case but not
in the latter one. As we will see, one of the difficulties in proving
the above result is to design a unified algorithm to compute an
allocation that is both EFX and MMS.

The existence of fair allocation under lexicographic preferences
implies the existence of the corresponding possibly fair allocation.

It has been well justified that lexicographic preferences are natural
and common in many fields such as psychology, computer science,
and economics[32], but there are situations where they do not
fit appropriately, especially when the items have similar types.
Therefore, to justify the fairness of possibly fair allocations, an extra
propertywemaywant to satisfy is balancedness. An allocation being
balanced means the numbers of items allocated to the agents differ
by at most one so that the agents have almost the same number
of items. Note that with lexicographic preferences, EFX and MMS
are not compatible with balancedness, but we show that we can
compute in polynomial time an allocation that is p-EFX, p-MMS,
and balanced. Moreover, the valuation profiles that give EFX and
MMS are the same, and under this valuation profile, the allocation
is also PO.

Main Result 2. A simultaneously p-EFX, p-MMS, and balanced
allocation exists and can be computed in polynomial time.Moreover,
p-EFX and p-MMS use the same valuation profile under which the
allocation is PO.

1.2 Other Related Works
Since envy-free or proportional allocations seldom exist when the
resources are indivisible, a significant amount of effort has been
spent on their approximations. Two of the most notable relaxations
of envy-freeness are envy-freeness up to one item (EF1) [15] and
EFX that we have discussed [17]. EF1 is much weaker than EFX
where envy between two agents can be eliminated after the removal
of some (instead of “any” as in EFX) item. Compared with EFX, an
EF1 allocation is ensured to exist even when the valuations are
combinatorial and monotone [29]. Although the existence of EFX
allocations is still unknown, there are constant approximations
[5, 30]. Caragiannis et al. [16], Chaudhury et al. [20] and Chaudhury
et al. [19] also showed that an EFX allocation exists if we allow a
small number of items not to be allocated.

we can donate a small number of items to a charity.
MMS is one of the most widely studied relaxations of propor-

tionality [15]. Kurokawa et al. [28] gave the first instance for which
no allocation is MMS. Recently, a constant impossibility result is
proven by Feige et al. [21]. On the positive side, Kurokawa et al.
[28] gave the first 2/3-approximate MMS fair algorithm, albeit not
in polynomial time. Later Amanatidis et al. [4], Barman and Krish-
namurthy [11] provided polynomial-time algorithms with the same
approximation ratio. The approximation ratio is further improved
to 3/4 in [24] and 3/4 + 1/(12𝑛) in [23].

In another direction, using ordinal preferences to approximate
MMS allocations has been investigated in [3, 25], but in these works,
the agents are still equipped with cardinal valuation functions but
the algorithm does not know. More ordinal fairness notions can be
found in [12–14, 31].

2 PRELIMINARIES
2.1 Model
For any integer 𝑘 ≥ 1, we denote [𝑘] = {1, . . . , 𝑘}. A resource
allocation instance is a triple 𝐼 = (𝑁,𝑀,≿) where 𝑁 = [𝑛] is a set
of agents,𝑀 = [𝑚] is a set of items, and ≿ = (≿1, . . . ,≿𝑛) specifies
for each agent 𝑖 a preference ≿𝑖 over𝑀 . For any two items 𝑎 and
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𝑏, 𝑎 ≿𝑖 𝑏 means agent 𝑖 (weakly) prefers 𝑎 to 𝑏. The agents may
be indifferent among items. Agent 𝑖 is indifferent between 𝑎 and
𝑏, denoted by 𝑎 ∼𝑖 𝑏, if 𝑎 ≿𝑖 𝑏 and 𝑏 ≿𝑖 𝑎. Agent 𝑖 strictly prefers
𝑎 to 𝑏, denoted by 𝑎 ≻𝑖 𝑏, if 𝑎 ≿𝑖 𝑏 and 𝑎 ≁𝑖 𝑏. The preference
relation of each agent 𝑖 ∈ 𝑁 can be expressed by 𝑘𝑖 equivalence
classes 𝐸1

𝑖
, . . . , 𝐸

𝑘𝑖
𝑖

(in decreasing order of preferences), where each
set 𝐸 𝑗

𝑖
is a maximal equivalence class of items for which agent 𝑖 is

indifferent, and 𝑘𝑖 is the number of equivalence classes of agent 𝑖 .
For any two items 𝑎 ∈ 𝐸

𝑗
𝑖
and 𝑏 ∈ 𝐸𝑘

𝑖
, 𝑎 ≿𝑖 𝑏 implies that 𝑗 ≤ 𝑘 ,

𝑎 ∼𝑖 𝑏 implies that 𝑗 = 𝑘 , and 𝑎 ≻𝑖 𝑏 implies that 𝑗 < 𝑘 . A bundle
is a subset of items 𝑋 ⊆ 𝑀 . We sometimes denote a bundle 𝑋

by a vector (𝑎1, . . . , 𝑎𝑘𝑖 )≿𝑖 if 𝑋 contains 𝑎 𝑗 ∈ N items in 𝐸
𝑗
𝑖
for

𝑗 ∈ [𝑘𝑖 ]. An allocation A = (𝐴1, . . . , 𝐴𝑛) is an 𝑛-partition of 𝑀 if
𝐴1 ∪ · · · ∪ 𝐴𝑛 = 𝑀 and 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ for any 𝑖 ≠ 𝑗 , where 𝐴𝑖 is
the bundle allocated to agent 𝑖 . An allocation A is called partial if
𝐴1 ∪ · · · ∪ 𝐴𝑛 ⊂ 𝑀 . An allocation A = (𝐴1, . . . , 𝐴𝑛) is balanced if
for any 𝑖, 𝑗 ∈ 𝑁 , | |𝐴𝑖 | − |𝐴 𝑗 | | ≤ 1.

One way to extend preferences over items to preferences over
bundles of items is via downward lexicographic dominance (DL) (see,
e.g., [10]).

Definition 1 (DL-preference). For an agent 𝑖 ∈ 𝑁 , given two
bundles 𝐴 = (𝑎1, . . . , 𝑎𝑘𝑖 )≿𝑖 and 𝐵 = (𝑏1, . . . , 𝑏𝑘𝑖 )≿𝑖 , we say that
agent 𝑖 DL-prefers 𝐴 to 𝐵, or 𝐴 ≿DL

𝑖
𝐵, if either of the following two

conditions holds:

• there exists 𝑙 ≤ 𝑘𝑖 such that 𝑎𝑙 > 𝑏𝑙 and 𝑎 𝑗 ≥ 𝑏 𝑗 for any 𝑗 < 𝑙 .
• 𝑎 𝑗 = 𝑏 𝑗 for any 𝑗 ∈ [𝑘𝑖 ].

Moreover, we say that agent 𝑖 strictly DL-prefers𝐴 to 𝐵, denoted by
𝐴 ≻DL

𝑖
𝐵, if 𝐴 ≿DL

𝑖
𝐵 and 𝐵 �DL

𝑖
𝐴; agent 𝑖 is DL-indifferent between

𝐴 and 𝐵, denoted by 𝐴 ∼DL
𝑖

𝐵, if 𝐴 ≿DL
𝑖

𝐵 and 𝐵 ≿DL
𝑖

𝐴.

DL-preferences are also abbreviated as lexicographic preferences
in this paper.

Although agents only express ordinal preferences, theymay have
cardinal valuations 𝑢𝑖 : 2𝑀 → R+. A valuation 𝑢𝑖 is consistent with
≿𝑖 if 𝑢𝑖 (𝑔) ≥ 𝑢𝑖 (𝑔′) ⇔ 𝑔 ≿𝑖 𝑔

′. The set of all cardinal valuations
consistent with ≿𝑖 is denoted byU(≿𝑖 ). When we consider agents’
cardinal valuations, it is assumed they are additive; that is 𝑢𝑖 (𝑋 ) =∑
𝑔∈𝑋 𝑢𝑖 (𝑔) for all 𝑖 ∈ 𝑁 and 𝑋 ⊆ 𝑀 . Note that DL preferences can

be expressed by additive cardinal valuations (as will be shown in
the proof of Proposition 2).

2.2 Fairness Notions
Next, we introduce the fairness notions we are interested in. Note
that these concepts are defined using cardinal valuations. An al-
location A = (𝐴1, . . . , 𝐴𝑛) is envy-free (EF) if 𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝐴 𝑗 ) for
all agents 𝑖 and 𝑗 . Since EF is too hard to satisfy, we consider its
relaxation, envy-free up to any item. An allocation is envy-free up
to any item (EFX) if for all agents 𝑖 and 𝑗

𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝐴 𝑗 \ {𝑔}) for any 𝑔 ∈ 𝐴 𝑗 .

A weaker notion than EF is proportionality. An allocation A =

(𝐴1, . . . , 𝐴𝑛) is proportional (PROP) if 𝑢𝑖 (𝐴𝑖 ) ≥ 1
𝑛 · 𝑢𝑖 (𝑀) for any

agent 𝑖 . One popular relaxation of PROP is maximin share (MMS)
fairness. Let Π𝑛 (𝑀) be the set of all 𝑛-partitions of 𝑀 , agent 𝑖’s

maximin share MMS𝑛
𝑖
(𝑢𝑖 ) is

MMS𝑛𝑖 (𝑢𝑖 ) = max
X=(𝑋1,...,𝑋𝑛) ∈Π𝑛 (𝑀)

min
𝑗 ∈[𝑛]

𝑢𝑖 (𝑋 𝑗 ).

Given an𝑛-partition (𝑋1, . . . , 𝑋𝑛) of𝑀 , we say it is anMMS-defining
partition for agent 𝑖 if 𝑢𝑖 (𝑋 𝑗 ) ≥ MMS𝑛

𝑖
(𝑢𝑖 ) for all 𝑗 ∈ [𝑛]. An allo-

cation A = (𝐴1, . . . , 𝐴𝑛) satisfies MMS fairness if each agent 𝑖 ∈ 𝑁
gets utility at least MMS𝑛

𝑖
(𝑢𝑖 ), i.e.,

𝑢𝑖 (𝐴𝑖 ) ≥ MMS𝑛𝑖 (𝑢𝑖 ) .
An allocation is called Pareto optimal (PO) if there is no alterna-

tive allocation which strictly improves one agent without hurting
any agent. Formally, A = (𝐴1, . . . , 𝐴𝑛) is Pareto-dominated by
B = (𝐵1, . . . , 𝐵𝑛) if 𝑢𝑖 (𝐴𝑖 ) ≤ 𝑢𝑖 (𝐵𝑖 ) for all 𝑖 and the inequality is
strict for some 𝑖 . An allocation A is PO if it is not Pareto-dominated
by any allocation.

In this work, we consider the ordinal versions of these fairness
notions. The ordinal concepts are defined in the same way as pos-
sible EF and possible PROP that have been defined by Aziz et al.
[8]. An allocation A = (𝐴1, . . . , 𝐴𝑛) is possible EF if for each 𝑖 ∈ 𝑁 ,
there exists 𝑢𝑖 ∈ U(≿𝑖 ) such that for all 𝑗 ∈ 𝑁 , 𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝐴 𝑗 ); it
is possible PROP if for each 𝑖 ∈ 𝑁 , there exists 𝑢𝑖 ∈ U(≿𝑖 ) such
that 𝑢𝑖 (𝐴𝑖 ) ≥ 1

𝑛𝑢𝑖 (𝑀). As shown by Example 1, a possible EF or
PROP allocation seldom exists. In the following, we adapt these
notions to possible EFX and possible MMS, which will be shown to
be always satisfiable.

Definition 2 (𝑝-EFX). An allocation A = (𝐴1, . . . , 𝐴𝑛) is possi-
ble envy-free up to any item (p-EFX) if for each 𝑖 ∈ 𝑁 , there exists
𝑢𝑖 ∈ U(≿𝑖 ) such that for any 𝑗 ∈ 𝑁 ,

𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝐴 𝑗 \ {𝑔}) for any 𝑔 ∈ 𝐴 𝑗 .

Definition 3 (𝑝-MMS). An allocation A = (𝐴1, . . . , 𝐴𝑛) is pos-
sible maximin share (p-MMS) fair if for each 𝑖 ∈ 𝑁 , there exists
𝑢𝑖 ∈ U(≿𝑖 ) such that

𝑢𝑖 (𝐴𝑖 ) ≥ MMS𝑛𝑖 (𝑢𝑖 ) .

At the end of this paper, wewill introduce a stronger requirement
than possible fairness, namely, necessary fairness, which requires
the allocation to be fair under all cardinal valuations that are con-
sistent with the given ordinal preferences. This definition is hard
to satisfy and we provide a brief discussion in Section 5.

Definition 4 (𝑛-EFX). An allocation A = (𝐴1, . . . , 𝐴𝑛) is nec-
essary envy-free up to any item (n-EFX) if for each 𝑖 ∈ 𝑁 , for any
𝑢𝑖 ∈ U(≿𝑖 ) and for any 𝑗 ∈ 𝑁 ,

𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝐴 𝑗 \ {𝑔}) for any 𝑔 ∈ 𝐴 𝑗 .

Definition 5 (𝑛-MMS). An allocation A = (𝐴1, . . . , 𝐴𝑛) is nec-
essary maximin share (n-MMS) fair if for each 𝑖 ∈ 𝑁 and for any
𝑢𝑖 ∈ U(≿𝑖 ), it holds that

𝑢𝑖 (𝐴𝑖 ) ≥ MMS𝑛𝑖 (𝑢𝑖 ) .

3 COMPUTING FAIR ALLOCATIONS UNDER
WEAK LEXICOGRAPHIC PREFERENCES

In this section, we prove the existence of EFX and MMS allocations
under (weak) lexicographic preferences, which also implies the
existence of p-EFX and p-MMS allocations.

Session 1C: Fair Allocations
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

199



3.1 DL-EFX, DL-MMS and DL-PO
The requirements of EFX, MMS and PO can be equivalently stated
as the following DL-EFX, DL-MMS and DL-PO.

Definition 6 (DL-EFX). Let 𝐴𝑖 and 𝐴 𝑗 be the bundles of agents
𝑖 and 𝑗 , respectively. We say that 𝑖 DL-envies 𝑗 if 𝐴 𝑗 ≻DL𝑖 𝐴𝑖 . An
allocation A = {𝐴1, . . . , 𝐴𝑛} is DL-envy free up to any item (DL-EFX)
if for any 𝑖, 𝑗 ∈ 𝑁 ,

𝐴𝑖 ≿
DL
𝑖 𝐴 𝑗 \ {𝑔} for any 𝑔 ∈ 𝐴 𝑗 .

The DL-maximin share (DL-MMS) of an agent is the most DL-
preferred bundle the agent can guarantee herself if she is to partition
𝑀 into 𝑛 bundles while knowing that she can only get the bundle
she least DL-prefers. Formally, agent 𝑖’s DL-MMS is defined as

DLMMS𝑛𝑖 (≿𝑖 ) = Max
X∈Π𝑛 (𝑀)

Min{𝑋1, . . . , 𝑋𝑛},

where Max{·} and Min{·} denote the most DL-preferred and the
least DL-preferred bundles to agent 𝑖 . Note that we write DLMMS𝑛

𝑖
for simplicity when ≿𝑖 is clear from the context. We want to high-
light that DLMMS𝑛

𝑖
actually represents a bundle of items instead

of a cardinal value.

Definition 7 (DL-MMS). An allocation A = (𝐴1, . . . , 𝐴𝑛) sat-
isfies DL-MMS fairness if each agent 𝑖 ∈ 𝑁 gets a bundle that she
(weakly) DL-prefers to DLMMS𝑛

𝑖
, i.e.,

𝐴𝑖 ≿
DL
𝑖 DLMMS𝑛𝑖 for any 𝑖 ∈ 𝑁 .

Given an 𝑛-partition (𝑋1, . . . , 𝑋𝑛) of𝑀 , we say it is a DL-MMS-
defining partition for agent 𝑖 if

𝑋 𝑗 ≿
DL
𝑖 DLMMS𝑛𝑖 for all 𝑗 ∈ [𝑛] .

Definition 8 (DL-PO). Given two allocations A = (𝐴1, . . . , 𝐴𝑛)
and B = (𝐵1, . . . , 𝐵𝑛), we say B DL-Pareto dominates A if 𝐵𝑖 ≿DL𝑖 𝐴𝑖

for every 𝑖 ∈ 𝑁 and the inequality is strict for some 𝑖 ∈ 𝑁 . Moreover,
we say an allocation is DL-Pareto optimal (DL-PO) if it is not DL-
Pareto dominated by any other allocation.

Note that possible PO is equivalent to DL-PO. Actually, it can
be proven that if there exists a profile of valuations such that the
allocation is PO, it is also PO under the lexicographic valuation [6].

It is shown by Hosseini et al. [26] that with strict preferences, a
DL-EFX allocation is also DL-MMS. Thus the existence of DL-EFX
allocations implies that of DL-MMS allocations. However, when
the preferences have ties, this is not true any more.

Proposition 1. A DL-EFX allocation may not be DL-MMS if the
preferences contain indifferences.

Proof. Consider an instance with 𝑁 = {1, 2, 3} and𝑀 = {𝑎, 𝑏, 𝑐,
𝑑, 𝑒, 𝑓 }, the agents’ preferences over the items are defined as follows:
• Agent 1: (𝑎 ∼1 𝑏 ∼1 𝑐) ≻1 (𝑑 ∼1 𝑒 ∼1 𝑓 ).
• Agent 2: (𝑎 ∼2 𝑏) ≻2 (𝑐 ∼2 𝑑 ∼2 𝑒 ∼2 𝑓 ).
• Agent 3: (𝑎 ∼3 𝑏 ∼3 𝑐 ∼3 𝑑 ∼3 𝑒 ∼3 𝑓 ).

It is easy to verify that the allocationA = {𝐴1 = {𝑐}, 𝐴2 = {𝑎, 𝑏}, 𝐴3
= {𝑑, 𝑒, 𝑓 }} is DL-EFX. However, the MMS bundle for agent 1 con-
tains one item from {𝑎, 𝑏, 𝑐} and one item from {𝑑, 𝑒, 𝑓 }, which
agent 1 strictly DL-prefers to 𝐴1. Hence, A is not DL-MMS. □

It deserves noting that DL-EFX and DL-MMS are not compatible
with balancedness. A simple example to see this is when the prefer-
ences are strict and identical. Letting𝑚 = 2𝑛, a balanced allocation
requires that every agent gets two items. However, in any DL-EFX
allocation, the agent who gets the most favorite item cannot get
any other item any more; in any DL-MMS allocation, the agent who
does not get one of the top 𝑛 − 1 items must get all the other items.

Finally, it is not hard to prove that DL fairness implies possible
fairness, which is proven in the full paper.

Proposition 2. A DL-EFX allocation is p-EFX. Similarly, a DL-
MMS allocation is p-MMS.

3.2 Computing DL-MMS
Before presenting our first main algorithm, we first show that DL-
MMS can be computed efficiently, which is contrary toMMS defined
under cardinal valuations. Intuitively, we want to allocate the items
in every equivalence class evenly to 𝑛 bundles. However, this is
usually not possible. Considering items in the best equivalence
class, if they cannot be evenly allocated, we should only allocate
the items in the other classes to the bundles that contain fewer
items in the best class since they are at a disadvantage. Similarly,
if the items in the second-best equivalence class cannot be evenly
allocated to these disadvantageous bundles, we only allocate the
other items to the bundles that are at a disadvantage in this second
round. Continuing this, we obtain the DL-MMS bundle.

For any ordinal preference ≿𝑖 , recall that it can be expressed by
𝑘𝑖 equivalence classes 𝐸1𝑖 , . . . , 𝐸

𝑘𝑖
𝑖
. Letting

• 𝑛1 = 𝑛 and if 𝑘𝑖 ≥ 2,
• 𝑛 𝑗 = 𝑛 𝑗−1 − (|𝐸 𝑗−1

𝑖
| mod 𝑛 𝑗−1) for every 𝑗 ∈ [2, 𝑘𝑖 ],

we have the following lemma, whose proof is in the full paper.

Lemma 1. DLMMS𝑛
𝑖
contains ⌊ |𝐸

𝑗

𝑖
|

𝑛 𝑗
⌋ items in 𝐸

𝑗
𝑖
for every 𝑗 ∈

[𝑘𝑖 ].

3.3 The Algorithm
We then introduce some necessary notions and technical lemmas
used in our algorithm. To visualize our algorithm, we define ex-
change graph, which is similar to the envy graph defined in [1, 6].
At each step of our algorithm where the (partial) allocation is
A = (𝐴1, . . . , 𝐴𝑛), we draw the exchange graph 𝐺 (A). Each item
𝑔 ∈ 𝑀 is a vertex in𝐺 (A) and for any two items 𝑔1, 𝑔2 ∈ 𝑀 , there is
a directed edge from 𝑔1 to 𝑔2 if 𝑔1 ∈ 𝐴𝑖 for some 𝑖 ∈ 𝑁 and 𝑔2 ≿𝑖 𝑔1.
We say that an item 𝑔 is (1) unallocated if 𝑔 ∉ 𝐴 𝑗 for all 𝑗 ∈ 𝑁 ,
(2) exchangeable if 𝑔 ∈ 𝐴 𝑗 for some 𝑗 ∈ 𝑁 and there exists a path
from 𝑔 to some unallocated item in 𝐺 (A) (we call such a path an
exchange path), and (3) finalized if 𝑔 ∈ 𝐴 𝑗 for some 𝑗 ∈ 𝑁 but there
does not exist an exchange path from 𝑔 to any unallocated item.

For any exchange path 𝑃 = 𝑣1 → · · · → 𝑣𝑘 , we denote by 𝑖 𝑗 the
agent who owns the item 𝑣 𝑗 for every 𝑗 ∈ [𝑘 − 1], then the path-
exchange allocation A𝑃 = (𝐴𝑃

1 , . . . , 𝐴
𝑃
𝑛 ) is obtained by exchanging

items backwards along the path. That is, we let 𝐴𝑃
𝑖
= 𝐴𝑖 for every

𝑖 ∈ 𝑁 , then

𝐴𝑃
𝑖 𝑗
= 𝐴𝑃

𝑖 𝑗
\ {𝑣 𝑗 } ∪ {𝑣 𝑗+1} for every 𝑗 ∈ [𝑘 − 1] .
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Note that the items that the agents get by exchange are at least as
preferred as the items they owned before.

Once an item becomes finalized, its owner will never exchange
it. We have the following lemmas regarding finalized items, whose
proofs are in the full paper.

Lemma 2. Given a (partial) allocation A = (𝐴1, . . . , 𝐴𝑛) and a
finalized item 𝑔 ∈ 𝐴𝑖 , 𝑔 ≻𝑖 𝑔′ holds for any unallocated or exchange-
able item 𝑔′. In other words, any item 𝑔′ such that 𝑔′ ≿𝑖 𝑔 is finalized.

Lemma 3. Given a (partial) allocation A = (𝐴1, . . . , 𝐴𝑛) and a
finalized item 𝑔, any item that can be reached by 𝑔 in 𝐺 (A) is also
finalized.

Our algorithm is formally described in Algorithm 1. Note that the
parameter 𝑡 limits the number of rounds (Steps 5 to 26) and is only
considered in Section 4. For now, we can assume that 𝑡 is infinity.
In each round, each of the remaining agents picks one item in an
arbitrary order in the way described in Algorithm 2; each agent 𝑖
picks her favorite item 𝑔 among the unallocated or exchangeable
items. If 𝑔 is exchangeable before 𝑖 picks it, which means that there
exists at least one exchange path from 𝑔 to an unallocated item,
the agents who own the items on one of such paths exchange their
items according to the path-exchange allocation. At the end of each
round, two sets of agents are removed from the algorithm:
• The first set contains all agents who get an item which an-
other agent strictly prefers to the item she gets herself in
that round.
• The second set contains all agents who are not in the first set
but get an item that can be reached in the exchange graph
by the items allocated to the first set of agents in that round.

The first set of agents are removed to ensure that they are not DL-
envied by the agents who strictly prefer their items after removing
any one of their items. The second set of agents are removed to
ensure that they are not DL-envied by the agents in the first set after
removing any one of their items. Note that another interpretation
of the second set that this set contains all agents who get an item
which some agent who is to be removed (weakly) prefers to the
item she gets herself in that round.

We first have the following observations.

Observation 1. In any round, the agent who lastly picks an item
is not removed.

Proof. We consider round 𝑙 and denote by 𝑇 𝑙 the agents who
get an item in round 𝑙 , by 𝑖 ∈ 𝑇 𝑙 the agent who lastly picks an item
in round 𝑙 , by 𝑔𝑙

𝑗
the item that any agent 𝑗 ∈ 𝑇 𝑙 gets in round 𝑙 .

For the sake of contradiction, we suppose that 𝑖 is removed at
the end of round 𝑙 . Since 𝑖 is the last to pick an item, 𝑔𝑙

𝑗
≿𝑗 𝑔

𝑙
𝑖
holds

for any agent 𝑗 ∈ 𝑇 𝑙 , thus 𝑖 is not in the first set of removed agents.
Then 𝑖 must be in the second set, which means that there exists an
agent 𝑗 ∈ 𝑇 𝑙 who is removed in the first set and whose item 𝑔𝑙

𝑗
can

reach 𝑔𝑙
𝑖
in the exchange graph.

The fact that 𝑗 is in the first set of removed agents means there
exists an agent 𝑘 ∈ 𝑇 𝑙 such that 𝑔𝑙

𝑗
≻𝑘 𝑔𝑙

𝑘
. This implies that 𝑔𝑙

𝑗
is

finalized when 𝑖 picks an item, since otherwise, agent 𝑘 should have
picked 𝑔𝑙

𝑗
and got an item that she strictly prefers to 𝑔𝑙

𝑘
in round 𝑙 .

By Lemma 3, all items that can be reached by 𝑔𝑙
𝑗
are also finalized

Algorithm 1: Computing a DL-MMS, DL-EFX and DL-PO
allocation.
1 Input: An instance I = (𝑁,𝑀,≿) over 𝑛 agents and𝑚

items, and a round limit 𝑡 whose default value is +∞.
2 Output: An allocation A and the remaining items in𝑀 .
3 Initialize A = (𝐴1, . . . , 𝐴𝑛) where 𝐴 𝑗 ← ∅ for each 𝑗 ∈ 𝑁 ,

and 𝑐 ← 1.
4 while𝑀 ≠ ∅ and 𝑐 ≤ 𝑡 do
5 Initialize 𝑇 ← 𝑁 .
6 // Allocate items to the agents in 𝑇
7 while 𝑇 ≠ ∅ do
8 𝑖 ← an arbitrary agent in 𝑇 .
9 A′, 𝑔, 𝑀 ′ ← Algorithm 2(𝑖 ,𝑀 , A).

10 A← A′,𝑀 ← 𝑀 ′, 𝑇 ← 𝑇 \ {𝑖}.
11 if 𝑀 = ∅ then
12 Return A and𝑀 .
13 end
14 end
15 Denote by 𝑔 𝑗 the item that agent 𝑗 gets in this round for

every 𝑗 ∈ 𝑁 .
16 Initialize 𝑆1 ← ∅, 𝑆2 ← ∅.
17 // Select the first set of agents who will be removed
18 while there exists an agent 𝑘 ∈ 𝑁 \ 𝑆1 such that 𝑔𝑘 ≻𝑗 𝑔 𝑗

for some 𝑗 ∈ 𝑁 \ {𝑘} do
19 𝑆1 ← 𝑆1 ∪ {𝑘}.
20 end
21 // Select the second set of agents who will be removed
22 for each 𝑘 ∈ 𝑆1 do
23 𝑆2 ← 𝑆2 ∪ {𝑘 ′ ∈ 𝑁 \ 𝑆1 :

𝑔𝑘′ can be reached by 𝑔𝑘 in 𝐺 (A)}.
24 end
25 𝑁 ← 𝑁 \ 𝑆1 \ 𝑆2.
26 𝑐 ← 𝑐 + 1.
27 end
28 Return A and𝑀 .

when 𝑖 picks an item, thus 𝑖 can not have got an item that can be
reached by 𝑔𝑙

𝑗
, a contradiction. □

The proof of Observation 1 also gives the second observation.

Observation 2. In any round, the items that the removed agents
get are finalized when the last agent picks an item.

By Observation 1, there is always at least one agent picking items
until all the items are allocated, thus we have the following lemma.

Lemma 4. For any instance with ordinal preferences, Algorithm 1
can allocate all the items.

The following lemma significantly simplifies the analysis.

Lemma 5. Without loss of generality, we can assume that there is
no exchange during the execution of Algorithm 1.

The intuition of Lemma 5 is that for every instance, we can
somehow design a new algorithm that explicitly specifies who gets
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Algorithm 2: Picking an item.
1 Input: An agent 𝑖 , a set of items𝑀 , and a (partial) allocation

A = (𝐴1, . . . , 𝐴𝑛).
2 Output: A new allocation A′ = (𝐴′1, . . . , 𝐴

′
𝑛), the item 𝑔 that

agent 𝑖 picks, the remaining items in𝑀 .
3 Initialize 𝐴′

𝑗
← 𝐴 𝑗 for every 𝑗 ∈ 𝑁 .

4 𝑔← 𝑖’s favorite item among the unallocated or
exchangeable items (tie breaks arbitrarily).

5 if 𝑔 is unallocated then
6 𝑀 ← 𝑀 \ {𝑔}.
7 else
8 Let 𝑃 be an exchange path in 𝐺 (A) that starts at 𝑔 and

ends at 𝑔′.
9 Compute the path-exchange allocation A𝑃 .

10 A′ ← A𝑃 ,𝑀 ← 𝑀 \ {𝑔′}.
11 end
12 𝐴′

𝑖
← 𝐴′

𝑖
∪ {𝑔}.

13 return A′, 𝑔 and𝑀 .

what at Step 9 so that there is no exchange and it outputs exactly
the same allocation with Algorithm 1. We defer the complete proof
of Lemma 5 to the full paper. Thus in the following, it suffices to
consider that there is no exchange during Algorithm 1; that is, the
item that an agent picks in a round is exactly the item she gets in
that round.

Lemma 6. For any instance with ordinal preferences, Algorithm 1
computes a DL-EFX allocation.

Proof. Consider any two agents 𝑖 and 𝑗 , whose bundles returned
by Algorithm 1 are 𝐴𝑖 and 𝐴 𝑗 , respectively. We suppose that agent
𝑖 is not removed from the algorithm before round 𝑘 and agent 𝑗
is not removed before round 𝑘 ′. We denote 𝐴𝑖 = {𝑎1𝑖 , . . . , 𝑎

𝑘
𝑖
} and

𝐴 𝑗 = {𝑎1𝑗 , . . . , 𝑎
𝑘′
𝑗
}, where 𝑎𝑙

𝑖
for any 𝑙 ∈ [𝑘] and 𝑎𝑙 ′

𝑗
for any 𝑙 ′ ∈ [𝑘 ′]

are the items that 𝑖 and 𝑗 get in rounds 𝑙 and 𝑙 ′, respectively. Since
agent 𝑖 always picks her favorite items, we have

𝑎1𝑖 ≿𝑖 · · · ≿𝑖 𝑎
𝑘
𝑖 . (1)

Moreover, since neither agent 𝑖 nor 𝑗 is removed before round
min{𝑘, 𝑘 ′}, we have

𝑎𝑙𝑖 ≿𝑖 𝑎
𝑙
𝑗 for every 𝑙 ∈ [min{𝑘, 𝑘 ′} − 1] . (2)

We consider the following three cases:
Case 1: 𝑘 ≥ 𝑘 ′ = 1. In this case, clearly, agent 𝑖 does not DL-envy

agent 𝑗 after removing the only item in 𝐴 𝑗 .
Case 2: 𝑘 ≥ 𝑘 ′ ≥ 2. In this case, since agent 𝑖 picks 𝑎𝑘

′−1
𝑖

before
agent 𝑗 picks 𝑎𝑘

′
𝑗
, we have

𝑎𝑘
′−1

𝑖 ≿𝑖 𝑎
𝑘′
𝑗 . (3)

Combining Equations (1), (2), (3), it follows that 𝐴𝑖 ≿
DL
𝑖

𝐴 𝑗 \ {𝑔}
for any 𝑔 ∈ 𝐴 𝑗 .

Case 3: 𝑘 < 𝑘 ′. In this case, agent 𝑖 is removed at the end of
round 𝑘 but agent 𝑗 is not. First, we have

𝑎𝑘𝑖 ≻𝑖 𝑎
𝑘
𝑗 , (4)

since otherwise, 𝑎𝑘
𝑗
≿𝑖 𝑎

𝑘
𝑖
implies that 𝑗 should have been removed

in the second set at the end of round 𝑘 , a contradiction. Second,
according to Observation 2, 𝑎𝑘

𝑖
is finalized at the end of round 𝑘 ,

which according to Lemma 2, gives us

𝑎𝑘𝑖 ≻𝑖 𝑎
𝑙
𝑗 for every 𝑙 ∈ [𝑘 + 1, 𝑘

′] . (5)

Combining Equations (1), (2), (4), (5), it follows that𝐴𝑖 ≻DL𝑖
𝐴 𝑗 \{𝑔}

for any 𝑔 ∈ 𝐴 𝑗 . □

Lemma 7. For any instance with ordinal preferences, Algorithm 1
computes a DL-MMS allocation.

Proof. Consider any agent 𝑖 , whose bundle returned by Al-
gorithm 1 is 𝐴 = (𝑎1, . . . , 𝑎𝑘𝑖 )≿𝑖 . Denote her DL-MMS by 𝐵 =

(𝑏1, . . . , 𝑏𝑘𝑖 )≿𝑖 , from Lemma 1, 𝑏 𝑗 = ⌊
|𝐸 𝑗

𝑖
|

𝑛 𝑗
⌋ for every 𝑗 ∈ [𝑘𝑖 ]. Our

target is to show 𝐴 ≿DL
𝑖

𝐵.
We consider the process of allocating items in each equivalence

class of agent 𝑖 , from the one that 𝑖 prefers the most (i.e., 𝐸1
𝑖
) to

the one that she prefers the least (i.e., 𝐸𝑘𝑖
𝑖
). Each time, we focus on

only one equivalence class and after all items in that equivalence
class have been allocated, we turn to the next equivalence class.
Note that when items in one equivalence class are being allocated,
items in later equivalence classes may also be allocated. Formally,
for every 𝑗 ∈ [𝑘𝑖 ], let 𝑟 𝑗 be the first round by the end of which
all items in the first 𝑗 equivalence classes (i.e.,

⋃
𝑙≤ 𝑗 𝐸

𝑙
𝑖
) have been

allocated. For every 𝑗 ∈ [𝑘𝑖 − 1], let 𝑥 𝑗 be the number of items in
later equivalence classes (i.e.,

⋃
𝑙≥ 𝑗+1 𝐸

𝑙
𝑖
) that are allocated before

round 𝑟 𝑗 . Then, we have the following claim.

Claim 1. For every 𝑗 ∈ [𝑘𝑖 ], one of the following two holds:

(1) 𝑎𝑙 > ⌊
|𝐸𝑙

𝑖
|

𝑛𝑙
⌋ for some 𝑙 ∈ [ 𝑗].

(2) 𝑎 𝑗 = ⌊ |𝐸
𝑗

𝑖
|

𝑛 𝑗
⌋. Besides, if 𝑗 < 𝑘𝑖 , at most 𝑛 𝑗+1 − 𝑥 𝑗 agents

(including agent 𝑖) can pick the remaining items in
⋃

𝑙≥ 𝑗+1 𝐸
𝑙
𝑖
.

The reasonings for the base case and the induction step are
similar. Thus here we prove Claim 1 for the base case and defer the
proof of the induction step to the full paper.

Proof of Claim 1 for base case. We first show by contradic-
tion that agent 𝑖 is not removed before round 𝑟1. Suppose that 𝑖 is
removed at the end of round 𝑟 ′ < 𝑟1, according to Observation 2,
the item she picks in round 𝑟 ′ (which is an item in 𝐸1

𝑖
) is finalized

when the last agent picks an item in round 𝑟 ′. Then Lemma 2 gives
that all items in 𝐸1

𝑖
are also finalized, which means that 𝑟1 = 𝑟 ′, a

contradiction. Since agents pick items in rounds, agent 𝑖 can get at
least

⌊
|𝐸1
𝑖
| + 𝑥1
𝑛1

⌋ ≥ ⌊
|𝐸1
𝑖
|

𝑛1
⌋

items in 𝐸1
𝑖
. If 𝑖 gets more than ⌊ |𝐸

1
𝑖 |

𝑛1
⌋ items in 𝐸1

𝑖
, the first statement

is true. Thus it remains to consider that 𝑖 gets exactly ⌊ |𝐸
1
𝑖 |

𝑛1
⌋ items

in 𝐸1
𝑖
, which first gives

⌊
|𝐸1
𝑖
| + 𝑥1
𝑛1

⌋ = ⌊
|𝐸1
𝑖
|

𝑛1
⌋ . (6)

We further consider the following cases.
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Case 1: (( |𝐸1
𝑖
| +𝑥1) mod 𝑛1) = 0. This case happens only when

the following conditions are satisfied simultaneously,
• (|𝐸1

𝑖
| mod 𝑛1) = 0;

• no agent is removed before round 𝑟1;
• each of the 𝑛1 agents picks

|𝐸1
𝑖 |

𝑛1
items in 𝐸1

𝑖
in the first 𝑟1

rounds.

In this case, clearly, 𝑥1 = 0 and 𝑎1 =
|𝐸1

𝑖 |
𝑛1

. Besides, agent 𝑖 is
not removed at the end of round 𝑟1, since otherwise, according to
Observation 2, the last agent in round 𝑟1 can not have picked an
item in 𝐸1

𝑖
, a contradiction. Therefore, at most 𝑛1 = 𝑛2 = 𝑛2 − 𝑥1

agents (including agent 𝑖) can pick the remaining items in
⋃

𝑙≥2 𝐸
𝑙
𝑖

in later rounds, thus the second statement is true.
Case 2: (( |𝐸1

𝑖
| + 𝑥1) mod 𝑛1) ≠ 0. In this case, agent 𝑖 does not

get an item in 𝐸1
𝑖
in round 𝑟1. Observe that at least

( |𝐸1𝑖 | + 𝑥1) mod 𝑛1 = ( |𝐸1𝑖 | mod 𝑛1) + 𝑥1
agents get an item in 𝐸1

𝑖
in round 𝑟1, where the equality is because

Equation 6. These agents are removed at the end of round 𝑟1 since
agent 𝑖 strictly prefers their items to her own. Therefore, at most
𝑛1 − (|𝐸1𝑖 | mod 𝑛1) − 𝑥1 = 𝑛2 − 𝑥1 agents (including agent 𝑖) can
pick the remaining items in

⋃
𝑙≥2 𝐸

𝑙
𝑖
in round 𝑟1 and later rounds,

thus the second statement is true. □

From Claim 1, it directly follows that 𝐴 ≿DL
𝑖

𝐵, thus completing
the proof of the lemma. □

Lemma 8. For any instance with ordinal preferences, Algorithm 1
computes a DL-PO allocation.

Proof. Following Theorem 5 of [6], it can be easily seen that a
(partial) allocation is not DL-PO if and only if there exists a cycle in
the exchange graph which contains at least one edge corresponding
to a strict preference. Therefore, it suffices prove that the exchange
graph at the end of our algorithm does not contain such a cycle.

Denote by A = (𝐴1, . . . , 𝐴𝑛) the allocation returned by Algo-
rithm 1, and suppose for the sake of contradiction that there is a
cycle 𝑣1 → · · · → 𝑣𝑘 → 𝑣1 in 𝐺 (A) where 𝑣1 ∈ 𝐴𝑖 and 𝑣2 ≻𝑖 𝑣1.
Then, the path 𝑣2 → · · · → 𝑣1 implies that 𝑣2 is exchangeable
before agent 𝑖 picks 𝑣1. Therefore, agent 𝑖 should have picked 𝑣2
instead of 𝑣1, a contradiction. □

Theorem 1. Given any instance with arbitrary ordinal preferences,
an allocation that is simultaneously DL-EFX, DL-MMS and DL-PO
exists and can be computed in polynomial time.

Proof. From Lemmas 6, 7 and 8, the allocation returned by
Algorithm 1 is simultaneously DL-EFX, DL-MMS and DL-PO. To
complete the proof, it suffices to show that the algorithm runs in
polynomial time. As has been shown in Lemma 4, at least one agent
picks an item in each round, thus at least one unallocated item is
removed from 𝑀 and there are at most𝑚 rounds. In each round,
at most 𝑛 agents pick items. When an agent picks an item, it takes
polynomial time to find the agent’s favorite item and to search the
exchange path in the exchange graph. At the end of each round, it
takes polynomial time to find the first set of agents to be removed
and to search the exchange graph to find the second set. Therefore,
Algorithm 1 runs in polynomial time. □

4 COMPUTING POSSIBLY FAIR AND
BALANCED ALLOCATIONS

Next, we design an algorithm to compute a simultaneously p-EFX, p-
MMS and balanced allocation. Moreover, under the same valuation
profile to achieve EFX and MMS, the allocation is also PO.

4.1 The Selection of Cardinal Valuation
For any agent 𝑖 whose ordinal preference is ≿𝑖 , we define her cardi-
nal valuation 𝑢𝑖 as follows. For any 𝑔 ∈ 𝑀 , let

𝑢𝑖 (𝑔) =𝑊𝑖 + 𝑣𝑖 (𝑔), (7)

where 𝑣𝑖 is lexicographic and satisfies

𝑣𝑖 (𝑜) >
∑︁

𝑜′:𝑜≻𝑖𝑜′
𝑣𝑖 (𝑜 ′) for any 𝑜 ∈ 𝑀,

and𝑊𝑖 is a constant that satisfies𝑊𝑖 >
∑
𝑜∈𝑀 𝑣𝑖 (𝑜). The insights

behind this cardinal valuation are that 𝑣𝑖 can guarantee the alloca-
tion being both EFX and MMS, and𝑊𝑖 can guarantee the allocation
being balanced.

For any valuation as defined in (7), the maximin share can be
computed in polynomial time. In particular, we have the following
lemma, whose proof is in the full paper.

Lemma 9. For any agent whose cardinal valuation is as defined
in (7), her MMS bundle contains the first ⌊𝑚𝑛 ⌋ items in the DL-MMS
bundle that she prefers the most.

4.2 The Algorithm
Now we are ready to present our second main algorithm (see Algo-
rithm 3). In the algorithm, the agents are divided into two groups.
The first group 𝑁1 contains the first 𝑛 − (𝑚 mod 𝑛) agents of 𝑁 ,
and the second group 𝑁2 contains the others. We first let the agents
in 𝑁1 pick items by running Algorithm 1 for ⌊𝑚𝑛 ⌋ rounds. Then, for
the agents in 𝑁1 who get less than ⌊𝑚𝑛 ⌋ items in Algorithm 1, they
pick items in the way described in Algorithm 2 until they have got
in total ⌊𝑚𝑛 ⌋ items. Lastly, each of the agents in 𝑁2 picks ⌊𝑚𝑛 ⌋ + 1
items in the way described in Algorithm 2.

Lemma 10. Given that the cardinal valuation of each agent is as
defined in (7), the allocation returned by Algorithm 3 is EFX.

Proof. Consider any two agents 𝑖 and 𝑗 , whose bundles returned
by Algorithm 3 are 𝐴𝑖 and 𝐴 𝑗 , respectively. If |𝐴𝑖 | ≥ |𝐴 𝑗 |, for any
𝑔 ∈ 𝐴 𝑗 , we have

𝑢𝑖 (𝐴𝑖 ) ≥ |𝐴 𝑗 | ·𝑊𝑖 > 𝑢𝑖 (𝐴 𝑗 \ {𝑔}) .

If |𝐴𝑖 | < |𝐴 𝑗 |, it follows that 𝑖 ∈ 𝑁1, 𝑗 ∈ 𝑁2, and |𝐴𝑖 | = |𝐴 𝑗 | − 1.
Since 𝑖 picks her items before 𝑗 and she always picks her favorite
items, 𝑢𝑖 (𝑔) ≥ 𝑢𝑖 (𝑔′) holds for any 𝑔 ∈ 𝐴𝑖 and 𝑔′ ∈ 𝐴 𝑗 , which gives
𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝐴 𝑗 \ {𝑔′}) for any 𝑔′ ∈ 𝐴 𝑗 . □

Lemma 11. Given that the cardinal valuation of each agent is as
defined in (7), the allocation returned by Algorithm 3 is MMS fair.

Proof. Consider any agent 𝑖 , denote by 𝐴𝑖 her bundle returned
by Algorithm 3 and by 𝐵 her MMS bundle. From Lemma 9, 𝐵 con-
tains the first ⌊𝑚𝑛 ⌋ items in DLMMS𝑛

𝑖
that 𝑖 prefers the most.
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Algorithm 3: Computing a p-MMS, p-EFX and balanced
allocation.
1 Input: An instance I = (𝑁,𝑀,≿) over 𝑛 agents and𝑚

items.
2 Output: An allocation A.
3 Initialize A = (𝐴1, . . . , 𝐴𝑛) where 𝐴 𝑗 ← ∅ for each 𝑗 ∈ 𝑁 .
4 𝑁1 ← [𝑛 − (𝑚 mod 𝑛)].
5 𝑁2 ← 𝑁 \ 𝑁1.
6 {𝐴′1, . . . , 𝐴

′
|𝑁1 |}, 𝑀

′ ← Algorithm 1(𝑁1, 𝑀, ⌊𝑚𝑛 ⌋).
7 𝐴 𝑗 ← 𝐴′

𝑗
for every 𝑗 ∈ 𝑁1,𝑀 ← 𝑀 ′.

8 for 𝑖 ∈ 𝑁1 do
9 while |𝐴𝑖 | < ⌊𝑚𝑛 ⌋ do
10 A′, _, 𝑀 ′ ← Algorithm 2(𝑖 ,𝑀 , A).
11 A← A′,𝑀 ← 𝑀 ′.
12 end
13 end
14 for 𝑗 ∈ 𝑁2 do
15 while |𝐴 𝑗 | < ⌊𝑚𝑛 ⌋ + 1 do
16 A′, _, 𝑀 ′ ← Algorithm 2( 𝑗 ,𝑀 , A).
17 A← A′,𝑀 ← 𝑀 ′.
18 end
19 end
20 Return A.

If 𝑖 ∈ 𝑁2, 𝐴𝑖 contains (⌊𝑚𝑛 ⌋ + 1) items and we have

𝑢𝑖 (𝐴𝑖 ) ≥ (⌊
𝑚

𝑛
⌋ + 1) ·𝑊𝑖 > 𝑢𝑖 (𝐵).

If 𝑖 ∈ 𝑁1, denote by 𝐴′
𝑖
agent 𝑖’s bundle after running Algorithm

1 for ⌊𝑚𝑛 ⌋ rounds. From Lemma 7, 𝑖 (weakly) DL-prefers 𝐴′
𝑖
to the

first ⌊𝑚𝑛 ⌋ items in DLMMS |𝑁1 |
𝑖

that she prefers the most. Moreover,
since |𝑁1 | ≤ 𝑛, DLMMS |𝑁1 |

𝑖
≿DL
𝑖

DLMMS𝑛
𝑖
. Thus, 𝐴′

𝑖
≿DL
𝑖

𝐵,
which gives 𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝐴′𝑖 ) ≥ 𝑢𝑖 (𝐵). □

Lemma 12. Given that the cardinal valuation of each agent is as
defined in (7), the allocation returned by Algorithm 3 is PO.

Proof. Denote by A = (𝐴1, . . . , 𝐴𝑛) the allocation returned by
Algorithm 3. Following the proof of Lemma 8, it is easy to see that
A is also DL-PO since agents in Algorithm 3 also always pick items
in the way described in Algorithm 2.

Suppose for the sake of contradiction that there exists an alloca-
tion B = (𝐵1, . . . , 𝐵𝑛) which Pareto dominates A, given that each
agent’s valuation function is as defined in (7). Assume without loss
of generality that 𝑢1 (𝐵1) > 𝑢1 (𝐴1) and 𝑢 𝑗 (𝐵 𝑗 ) ≥ 𝑢 𝑗 (𝐴 𝑗 ) for any
𝑗 ∈ 𝑁 . First observe that |𝐴 𝑗 | = |𝐵 𝑗 | for every 𝑗 ∈ 𝑁 , since other-
wise, there exists an agent 𝑘 ∈ 𝑁 such that |𝐵𝑘 | < |𝐴𝑘 |, leading to
the following contradiction,

𝑢𝑘 (𝐵𝑘 ) < |𝐴𝑘 | ·𝑊𝑘 ≤ 𝑢𝑘 (𝐴𝑘 ).
This observation, combining with our assumption, gives us 𝐵1 ≻DL1
𝐴1 and 𝐵 𝑗 ≿

DL
𝑗

𝐴 𝑗 for any 𝑗 ∈ 𝑁 , which contradicts the fact that A
is DL-PO. Therefore, such an allocation B does not exist. □

Theorem 2. For any instance with ordinal preferences, Algorithm
3 computes an allocation that is simultaneously p-EFX, p-MMS and
balanced in polynomial time.

Proof. Clearly, Algorithm 3 can allocate all the items and re-
turns a balanced allocation. From Lemmas 10 and 11, the allocation
is also p-EFX and p-MMS. Since it has been shown in Theorem 1
that both Algorithm 1 and Algorithm 2 run in polynomial time,
Algorithm 3 also runs in polynomial time. □

5 NECESSARY FAIRNESS
In this section, we focus on necessary MMS (n-MMS) and necessary
EFX (n-EFX). It is not hard to see that n-MMS and n-EFX are hard
to satisfy since they have stronger requirements than the cardinal
definitions. Consider the following example.

Example 2. Let𝑀 = {𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5} and 𝑁 = {1, 2} such that
for both 𝑖 ∈ 𝑁 :

𝑜1 ≻𝑖 𝑜2 ∼𝑖 𝑜3 ∼𝑖 𝑜4 ∼𝑖 𝑜5 .
If both agents have lexicographic valuations on items, then the only
MMS or EFX allocation is that one agent gets 𝑜1 and the other agent
gets 𝑜2, 𝑜3, 𝑜4, 𝑜5. However, if 𝑜1 is only slightly more valuable than
the other items, the only MMS or EFX allocation is that one agent
gets 𝑜1 together with one of 𝑜2, 𝑜3, 𝑜4, 𝑜5, and the other agent gets the
remaining. Thus no allocation can simultaneously satisfy both cases.

Before the end of this section, we show a simple necessary con-
dition for n-MMS and n-EFX allocations. For each agent 𝑖 and item
𝑜 , let 𝐵𝑜

𝑖
be the set of the items that are at least as good as 𝑜 .

Proposition 3. If an assignment 𝐴 is n-MMS or n-EFX, then for

each 𝑖 ∈ 𝑁 , |𝐴𝑖 ∩ 𝐵𝑜𝑖 | ≥ ⌊
|𝐵𝑜

𝑖
|

𝑛 ⌋ for all 𝑜 ∈ 𝑀 .

Proof. Assume that there exists some 𝑜 such that |𝐴𝑖 ∩ 𝐵𝑜𝑖 | <
⌊ |𝐵

𝑜
𝑖
|

𝑛 ⌋. Consider 𝑢𝑖 ∈ U(≿𝑖 ) such that𝑊 ≤ 𝑢𝑖 (𝑜 ′) ≤ 𝑊 + 𝜖 for
𝑜 ′ ∈ 𝐵𝑜

𝑖
and 𝑢𝑖 (𝑜 ′) ≤ 𝜖 for 𝑜 ′ ∈ 𝑀 \ 𝐵𝑜

𝑖
where 𝜖 is an arbitrarily

small value. This means 𝑢𝑖 (𝐴𝑖 ) <𝑊 ⌊ |𝐵
𝑜
𝑖
|

𝑛 ⌋. However agent 𝑖 can
guarantee at least𝑊 ⌊ |𝐵

𝑜
𝑖
|

𝑛 ⌋ utility by partitioning the elements of
𝐵𝑜
𝑖
in a balanced way. Therefore the allocation cannot be n-MMS.

The same situation applies to n-EFX; Since |𝐴𝑖 ∩𝐵𝑜𝑖 | < ⌊
|𝐵𝑜

𝑖
|

𝑛 ⌋, there
must be an agent who takes more than ⌊ |𝐵

𝑜
𝑖
|

𝑛 ⌋ items in 𝐵𝑜
𝑖
. Using

the same valuation function, EFX also fails. □

Example 2 also shows that |𝐴𝑖 ∩ 𝐵𝑜𝑖 | ≥ ⌊
|𝐵𝑜

𝑖
|

𝑛 ⌋ for all 𝑜 ∈ 𝑀 for
all 𝑖 ∈ 𝑁 is not enough for an allocation to be n-MMS or n-EFX.

6 CONCLUSION
In this work, we study possible fairness for allocating indivisible
resources. We first prove that an EFX, MMS and PO allocation exists
if the preferences are (weak) lexicographic. Based on this result,
we further prove that a simultaneously possible EFX, MMS, and
balanced allocation exists and can be computed in polynomial time.
Moreover, we use the same valuation profile to achieve EFX and
MMS, under which the allocation is PO. We believe it is of both
theoretical interest and practical importance to characterize what
possible fairness can be achieved in resource allocation problems.
Several interesting future directions include extending our work to
the allocation of chores or a mixture of goods and chores, and the
more general setting when the agents have asymmetric weights.
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