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ABSTRACT
Multi-Agent Path Finding (MAPF) consists in computing a set of
collision-free paths for a team of agents on a given graph while
minimizing one objective, such as the sum of paths costs or the
makespan. However, real-world applications may require the con-
sideration of multiple objectives. Thus, in this work, we propose
to address a novel extension of MAPF, Scalarized Multi-Objective
MAPF (MOMAPF), that aims to optimize multiple given objectives
while computing collision-free paths for all agents and incorporat-
ing the preferences of a decision maker over each objective. The
preferences of a decision maker are reflected by a weight value
associated to each objective and all weighted objectives are com-
bined into one scalar to minimize. We introduce a solver for Scalar-
ized MOMAPF based on Conflict-Based Search (CBS), Scalarized
MO-CBS, that incorporates an adapted path planner based on an
evolutionary algorithm, the Genetic Algorithm (GA). We also in-
troduce three practical objectives to consider in path planning:
efficiency, safety, and smoothness. We evaluate the performance of
our proposed method in function of the input parameters of GA on
experimental simulations.
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1 INTRODUCTION
The MAPF problem aims at planning a set of paths for a group
of agents from given start locations to goal locations while avoid-
ing collisions. A significant amount of research works have been
devoted to MAPF for various real-world applications, such as ware-
house logistics [6, 12], and traffic management [1, 5]. In particular,
the MAPF problem assumes the optimization of a single objective,
such as the sum of paths lengths or makespan. However, in many
real-world multi-robot systems [9, 13], several objectives may need
to be considered in the generation of a conflict-free solution. Re-
cently, a novel extension of the MAPF problem, Multi-Objective
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MAPF (MOMAPF) has been proposed [10]. The MOMAPF problem
aims to determine conflict-free paths for all agents while optimiz-
ing several given objectives. The goal of MOMAPF, with multiple
objectives, is to find the set of Pareto-optimal solutions1.

In our work [2], we propose a novel extension of MAPF to multi-
objective optimization, Scalarized MOMAPF, that allows us to in-
corporate the preferences of a human decision maker (DM) into
multi-agent path planning over each given objective. We aim to
determine one solution that belongs or is as close as possible to the
Pareto-optimal set. This solution represents the preferred solution
of a DM. We propose a scalarization of objectives [4, 8] that con-
verts a multi-objective optimization problem into a single objective
optimization problem. We integrate a DM’s preferences over each
objective with the use of weights values assigned to each objective.
Moreover, we propose a solver for Scalarized MOMAPF based on
the Conflict-Based Search (CBS) algorithm, Scalarized MO-CBS,
whereby we incorporate an adapted path planning method based
on an evolutionary method, the Genetic Algorithm (GA). In particu-
lar, we propose to address three practical objectives for multi-agent
path planning: efficiency, safety, and smoothness. We evaluate our
approach on benchmark simulations scenarios. Although our solver
lacks theoretical guarantees, we empirically measure the trade-offs
between solution costs and runtime in function of the different
input parameters of GA that influence the quality of the solutions
generated by our approach.

2 PROPOSED FRAMEWORK
2.1 Scalarized MOMAPF
Let 𝐴 = {𝑎1, . . . , 𝑎𝑁 } denote a set of 𝑁 agents in a 2D space. The
space is represented by a map that is a uniform grid𝐺 . Each agent 𝑎𝑖
has a start location 𝑠𝑖 and a goal location 𝑔𝑖 to reach. For any agent,
each action can either be wait or move and requires one unit of time.
Let 𝑋 = {𝑥1, . . . , 𝑥𝑁 } represent the set of paths for all the agents,
with 𝑥𝑖 (𝑖 ∈ {1, . . . , 𝑁 }) a path associated to the agent 𝑎𝑖 . We define
the path 𝑥𝑖 that connects the start location 𝑠𝑖 to the goal location 𝑔𝑖
by a sequence of waypoints 𝑥𝑖 = (𝑠𝑖 , 𝑝1, 𝑝2, . . . , 𝑔𝑖 ). A waypoint is
a coordinate location in 𝐺 . 𝑋 is also called a solution. We consider
𝐾 objectives, each defined by a function 𝑓𝑘 (𝑘 ∈ {1, . . . , 𝐾}) that
computes the value for each objective for each path 𝑥𝑖 . The cost
of a solution for each objective 𝑘 is defined as the sum of all the
individual path costs over all agents: 𝑓𝑘 (𝑋 ) =

∑
𝑥𝑖 ∈𝑋 𝑓𝑘 (𝑥𝑖 ). In this

work, we propose to solve a scalarization of the MOMAPF problem,

1A solution is Pareto-optimal if there exists no other solution that will provide an
improvement in one objective without causing a deterioration in at least one of the
other objectives.
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Figure 1: Comparisons of average costs of solutions and run-
time obtained by Scalarized MO-CBS with GA for different
population sizes 𝑁𝑃 , number of generations 𝑁𝐺 , and number
of agents, in randomly generated 30×30 maps with 10% ob-
stacle density.

whereby a weight (𝑤𝑘 )𝑘∈1,...,𝐾 such that
∑𝐾
𝑘=1𝑤𝑘 = 1 is associated

to each objective. We assume each weight represents a level of
preference from a DM for each objective. A simple scalarizing
function is the weighted sum as shown in Equation 1. This method
has been shown to work well when all the objectives are convex
[8]. Another possible scalarization method that works regardless
of the convexity of objectives is the Tchebycheff approach [14] as
shown in Equation 2.

Weighted sum
𝐾∑︁
𝑘=1

𝑤𝑘 · 𝑓𝑘 (𝑋 ) 𝑤𝑖𝑡ℎ
𝐾∑︁
𝑘=1

𝑤𝑘 = 1 (1)

Tchebycheff max
1≤𝑘≤𝐾

{𝑤𝑘 · | 𝑓𝑘 (𝑋 ) − 𝑧𝑈𝑡𝑜𝑝𝑖𝑎
𝑘

| } 𝑤𝑖𝑡ℎ

𝐾∑︁
𝑘=1

𝑤𝑘 = 1 (2)

Since different objective functions may have different magnitudes,
the normalization of objectives is required to obtain a solution
consistent with the weights assigned by the DM [7]. In particu-
lar, the normalization requires the computation of a Utopia point
and a Nadir point. The Utopia point 𝑧𝑈𝑡𝑜𝑝𝑖𝑎

𝑘
=
∑
𝑎𝑖 ∈𝐴 𝑧

𝑈𝑡𝑜𝑝𝑖𝑎

𝑖𝑘
is

computed with the optimal solution for each agent 𝑎𝑖 with respect
to the 𝑘𝑡ℎ objective, and the Nadir point 𝑧𝑁𝑎𝑑𝑖𝑟

𝑘
=
∑
𝑎𝑖 ∈𝐴 𝑧

𝑁𝑎𝑑𝑖𝑟
𝑖𝑘

is computed with the worst solution in the Pareto-optimal set for
each agent 𝑎𝑖 with respect to the 𝑘𝑡ℎ objective.

2.2 Scalarized MO-CBS with GA
We propose an extension of CBS [11] to solve Scalarized MOMAPF
instances, Scalarized MO-CBS. This approach keeps the same steps
as in standard CBS but differs in two points:

(1) A different cost function: the computation of the cost
value for a constraint tree node takes into account the mul-
tiple objectives with the scalarization approach. We hereby
consider three objectives: efficiency (minimizing path length),
safety (maximizing the distance of each waypoint of a given
path to all obstacles), and smoothness (minimizing the num-
ber of turns in a given path).

(2) A different path planner: we propose a path planner based
on the Genetic Algorithm (GA) that allows us to address the
multiple objectives in a scalarized form.

We also adapt the steps of the GA [3] to path planning. Each candi-
date in a population is a feasible path composed of a sequence of

waypoints from the start to the goal location of the given agent. The
crossover step in GA exchanges parts of paths between selected
candidates to generate new candidates (offsprings). The mutation
step in GA randomly changes some waypoints of a given candidate.

Due to the probabilistic nature of metaheuristics such as GA,
there are no theoretical guarantees on optimality. Consequently,
the solution returned by Scalarized MO-CBS is not guaranteed to
be Pareto-optimal. So in this work, we focus on the evaluation of
our approach by varying the input parameters of the GA-based
path planner that influence the quality of a solution.

3 EXPERIMENTS
We evaluate the performance of our proposed approach Scalarized
MO-CBS with a GA-based path planner on a benchmark of gen-
erated grid maps. We consider 30×30 random maps with different
percentages of static obstacles randomly generated, 5%, 10%, and
20%.

We vary the number of agents in the maps from 5 to 20. We set
a runtime limit of 10 minutes. We assume that a DM has already
given weights values to quantify his or her preferences over each
objective. The efficiency of our proposed approach Scalarized MO-
CBS relies on the input parameters of GA, namely, the population
size, the number of generations, the mutation and crossover rates.
In all considered instances, we observed that increasing the pop-
ulation size and the number of generations decrease the costs of
the solutions returned by our solver with GA, while leading to an
increase in the runtime, as shown in Figure 1 for example. We also
observed that setting a small mutation rate and a high crossover
rate allow us to generate reasonable improvements in the solutions.

4 CONCLUSIONS
This work presents a novel extension of the MAPF problem, the
Scalarized MOMAPF problem, that allows us to incorporate prefer-
ences over several given objectives with the use of weights values
while generating conflict-free paths for multiple agents. This al-
lows us to determine more realistic conflict-free paths with the
consideration of multiple objectives. We propose a novel approach,
Scalarized MO-CBS, that incorporates the scalarization of multiple
objectives, and an adapted path planner based on the Genetic Al-
gorithm (GA). Since GA is a metaheuristic, our approach does not
guarantee Pareto optimality of the solution generated by Scalarized
MO-CBS. The solution quality generated by our approach relies
mainly on the input parameters of GA, namely, the population
size, the number of generations, the crossover and mutation oper-
ators. On the other hand, the use of a metaheuristic allows us to
reduce the computational effort in obtaining a satisfactory possi-
bly near-optimal result. Thus, we provide an empirical analysis of
the performance of our solver on experimental simulations with
varying obstacles densities. Overall, our presented framework con-
stitutes a novel perspective in the MAPF field and could help to
further expand MAPF to real-world applications.
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