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ABSTRACT
Multi-objective reinforcement learning (MORL) algorithms tackle

sequential decision problems where agents may have different pref-
erences over (possibly conflicting) reward functions. Such algo-

rithms often learn a set of policies (each optimized for a particular

agent preference) that can later be used to solve problemswith novel

preferences. We introduce a novel algorithm that uses Generalized

Policy Improvement (GPI) to define principled, formally-derived

prioritization schemes that improve sample-efficient learning. They

implement active-learning strategies by which the agent can (i)
identify the most promising preferences/objectives to train on at

each moment, to more rapidly solve a given MORL problem; and (ii)
identify which previous experiences are most relevant when learn-

ing a policy for a particular agent preference, via a novel Dyna-style

MORL method. We prove our algorithm is guaranteed to always

converge to an optimal solution in a finite number of steps, or an

𝜖-optimal solution (for a bounded 𝜖) if the agent is limited and can

only identify possibly sub-optimal policies. We also prove that our

method monotonically improves the quality of its partial solutions

while learning. Finally, we introduce a bound that characterizes

the maximum utility loss (with respect to the optimal solution)

incurred by the partial solutions computed by our method through-

out learning. We empirically show that our method outperforms

state-of-the-art MORL algorithms in challenging multi-objective

tasks, both with discrete and continuous state and action spaces.
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1 INTRODUCTION
Reinforcement learning (RL) algorithms [44] have achieved remark-

able successes in a wide range of complex tasks (e.g., [11, 42, 50]). In
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RL, tasks are typically modeled via a single scalar reward function,

which encodes the agent’s objective. In many real-life settings, by

contrast, agents are tasked with optimizing behaviors that trade-off

betweenmultiple—possibly conflicting—objectives, each of which is

modeled via a reward function. As an example, consider a robot that

needs to trade off between locomotion speed, battery usage, and ac-

curacy in reaching a goal location. Multi-Objective RL (MORL) [22]

algorithms tackle such a challenge. In MORL settings, a utility func-
tion exists that combines (into a single scalar value) the agent’s

preferences toward optimizing each of its objectives. The goal of

MORL algorithms is to rapidly identify policies that maximize the

utility function, given any preferences an agent may have.

Standard RL algorithms are often sample-inefficient since they

may require the agent to interact with its environment a large num-

ber of times [44]. This is often infeasible, e.g., in applications where

interactions are costly or risky. The sample efficiency problem is

exacerbated in MORL algorithms, since they often have to learn

not a single policy, but a set of policies—each designed to optimize

a particular trade-off between the agent’s preferences [53].

In this paper, we introduce a novel MORL algorithm, with impor-

tant theoretical guarantees, that improves sample efficiency via two

novel prioritization techniques. Such principled techniques allow

the agent to (i) identify the most promising preferences/objectives

to train on at each moment, to more rapidly solve a MORL prob-

lem; and (ii) identify which previous experiences are most relevant

when learning a policy for a particular agent preference, via a novel

Dyna-style MORL method. We show formal analyses and proofs

regarding our algorithm’s convergence properties, as well as the

maximum utility loss (performance) incurred by the transient solu-

tions computed by our method throughout the learning process.

To design a method with these properties, we exploit an impor-

tant concept in the RL literature: Generalized Policy Improvement

(GPI) [10]. GPI is a policy transfer technique that—given a set of

policies—constructs a novel policy guaranteed to be at least as

good as any of the available ones. First, recall that if the utility

function of a MORL problem is a linear combination of the agent’s

objectives, optimal solutions are sets of policies known as convex
coverage sets (CCS) [39]. Given a CCS, agents can directly identify

the optimal solution to any novel preferences. MORL algorithms

that learn a CCS (e.g., [5, 30]) may be sample inefficient (i) due
to the heuristics they use to determine which preferences to train

on, at any given moment during the construction of a CCS; and

(ii) because they can only improve a CCS after optimal (or near-

optimal) policies are identified—which may require a large number
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of samples. We address the first issue via a novel GPI-based pri-

oritization technique for selecting which preferences to train on.

It is based on a lower bound on performance improvements that

are formally guaranteed to be achievable, and more accurately and

reliably identifies the most relevant preferences to train on (when

constructing a CCS) compared to existing heuristics. To address the

second issue, we show that our method is an anytime algorithm that

incrementally/monotonically improves the quality of its CCS, even

if given intermediate (possibly sub-optimal) policies for different

preferences. This improves sample efficiency: our method identi-

fies intermediate CCSs with formally bounded maximum utility

loss even if there are constraints on the number of times the agent

can interact with its environment. Our algorithm is guaranteed

to always converge to an optimal solution in a finite number of

steps, or an 𝜖-optimal solution (for a bounded 𝜖) if the agent is

limited and can only identify possibly sub-optimal policies. We

prove that it monotonically improves the quality of its CCS and for-

mally bound the maximum utility loss (with respect to an optimal

solution) incurred by any of its partial solutions.

A complementary approach for increasing sample efficiency

is to use a model-based approach to learn policies for different

preferences. Once a model is learned, it can be used to identify

policies for any preferences, thus minimizing the required number

of interactions with the environment. We introduce a novel Dyna-

style MORL algorithm—the first model-based MORL technique

capable of dealing with continuous state spaces. Dyna algorithms

are based on generating simulated experiences to more rapidly

update a value function or policy. An important question, however,

is which artificial experiences should be generated to accelerate

learning. We introduce a new, principled GPI-based prioritization

technique for identifying which experiences are most relevant to

rapidly learn the optimal policy for novel preferences.

In summary, we introduce two novel GPI-based prioritization

techniques for use in MORL settings to improve sample efficiency.

We formally show that our algorithm is supported by important the-

orems characterizing its convergence properties and performance

bounds. We empirically show that our method outperforms state-

of-the-art MORL algorithms in challenging multi-objective tasks,

both with discrete and continuous state and action spaces.

2 BACKGROUND
In this section, we discuss important definitions (and corresponding

notation) associated with MORL, GPI, and model-based RL.

2.1 Multi-Objective Reinforcement Learning
The multi-objective RL setting (MORL) is used to model problems

where an agent needs to optimize possibly conflicting objectives,

each modeled via a separate reward function. MORL problems are

modeled as Multi-objective Markov decision processes (MOMDP),

which differ from regular MDPs in that the reward function is

vector-valued. AMOMDP is defined as a tuple𝑀 ≡ (S,A, 𝑝, r, `, 𝛾),
where S is a state space, A is an action space, 𝑝 (·|𝑠, 𝑎) is the distri-
bution over next states given state 𝑠 and action 𝑎 , r : S×A×S↦→R𝑚
is a multi-objective reward function with𝑚 objectives, ` is an ini-

tial state distribution, and 𝛾 ∈ [0, 1) is a discounting factor. Let

𝑆𝑡 , 𝐴𝑡 , and R𝑡 = r(𝑆𝑡 , 𝐴𝑡 , 𝑆𝑡+1) be random variables corresponding

to the state, action, and vector reward, respectively, at time step

𝑡 . A policy 𝜋 : S ↦→ A is a function mapping states to actions.

The multi-objective action-value function of a policy 𝜋 for a given

state-action pair (𝑠, 𝑎) is defined as:

q𝜋 (𝑠, 𝑎) ≡ E𝜋

[ ∞∑︁
𝑖=0

𝛾𝑖R𝑡+𝑖 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]
, (1)

where q𝜋 (𝑠, 𝑎) is an𝑚-dimensional vector whose 𝑖-th entry is the

expect return of 𝜋 under the 𝑖-th objective, and E𝜋 [·] denotes
expectation over trajectories induced by 𝜋 . Let v𝜋∈R𝑚 be themulti-
objective value vector of 𝜋 under the initial state distribution `:

v𝜋 ≡ E𝑆0∼`
[
q𝜋 (𝑆0, 𝜋 (𝑆0))

]
, (2)

where 𝑣𝜋
𝑖
is the value of 𝜋 under the 𝑖-th objective. For succinctness,

we henceforth refer to v𝜋 as the value vector of policy 𝜋 . A Pareto
frontier is a set of nondominated multi-objective value functions v𝜋 :
F ≡ {v𝜋 | � 𝜋 ′s.t. v𝜋 ′ ≻𝑝 v𝜋 }, where ≻𝑝 is the Pareto dominance
relation v𝜋 ≻𝑝 v𝜋

′ ⇐⇒ (∀𝑖 : 𝑣𝜋
𝑖
≥ 𝑣𝜋

′
𝑖
) ∧ (∃𝑖 : 𝑣𝜋

𝑖
> 𝑣𝜋

′
𝑖
). In

general, the optimal solution to a MOMDP is a set of all policies 𝜋

such that v𝜋 is in the Pareto frontier.

Let a user utility function (or scalarization function) 𝑢 : R𝑚 ↦→ R
be a mapping from the multi-objective value of policy 𝜋 , v𝜋 , to a

scalar. Utility functions often linearly combine the value of a policy

under each of the𝑚 objectives using a set of weightsw: 𝑢 (v𝜋 ,w) =
𝑣𝜋w = v𝜋 ·w, where each element of w ∈ R𝑚 specifies the relative

importance of each objective. The space of weight vectors,W, is

an𝑚-dimensional simplex:

∑
𝑖 𝑤𝑖 = 1,𝑤𝑖 ≥ 0, 𝑖 = 1, ...,𝑚. For any

given constant w (i.e., a particular way of weighting objectives),

the original MOMDP collapses into an MDP with reward function

𝑟w (𝑠, 𝑎, 𝑠′) = r(𝑠, 𝑎, 𝑠′) ·w. Given a linear utility function 𝑢, we can

define a convex coverage set (CCS) [39] as a finite convex subset of
F , such that there exists a policy in the set that is optimal with

respect to any linear preference w. In other words, the CCS is the

set of nondominated multi-objective value functions v𝜋 where the

dominance relation is now defined over scalarized values:

CCS ≡ {v𝜋 ∈ F | ∃w s.t. ∀v𝜋
′
∈ F , v𝜋 ·w ≥ v𝜋

′
·w}, (3)

where w is a vector of weights used by the scalarization function 𝑢.

Hence, the optimal solution to a MOMDP, under linear preferences,

is a finite convex subset of the Pareto frontier.

2.2 Generalized Policy Improvement
Generalized Policy Improvement (GPI) is a generalization of the

policy improvement step [37], which underlies most of the RL al-

gorithms. The key difference is that GPI defines a new policy that

improves over a set of policies, instead of a single one. GPI was

originally proposed to be employed in the setting where policies are

evaluated using their successor features [9, 10]. However, Alegre et
al. [5] showed that GPI can also be employed with multi-objective

action-value functions (Eq. (1)).

Let Π = {𝜋𝑖 }𝑛𝑖=1
be a set of previously-learned policies with cor-

responding multi-objective action-value functions {q𝜋𝑖 }𝑛
𝑖=1

. Given

any weight vector w∈W, we can directly evaluate all policies

𝜋𝑖 ∈ Π by computing the dot product of its multi-objective action-

values and the weight vector: 𝑞
𝜋𝑖
w (𝑠, 𝑎) = q𝜋𝑖 (𝑠, 𝑎) ·w. This step is

known as generalized policy evaluation (GPE) [10]. We define the

GPI policy as a policy 𝜋 : S ×W ↦→ A that is constructed from a
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set of policies Π, and is conditioned on a weight vector w ∈ W:

𝜋GPI (𝑠;w) ∈ arg max

𝑎∈A
max

𝜋∈Π
𝑞𝜋w (𝑠, 𝑎) . (4)

Let 𝑞GPIw (𝑠, 𝑎) be the action-value function of policy 𝜋GPI (·;w). The
GPI theorem [9] ensures that 𝑞GPIw (𝑠, 𝑎) ≥ max𝜋∈Π 𝑞𝜋w (𝑠, 𝑎) for all
(𝑠, 𝑎) ∈ S×A. In other words, GPI allows for the rapid identification

of a policy that is guaranteed to perform at least as well as any

of the policies 𝜋𝑖 ∈ Π, for any given weight vector w ∈ W. This

result is also valid and can be extended to the scenario where 𝑞𝜋𝑖

is replaced with estimates/approximations, �̃�𝜋𝑖
[8].

2.3 Model-Based RL
In model-based RL [28], an agent learns—based on experiences

collected while interacting with the environment—an approximate

model 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) of the joint distribution over the next states and

rewards. This model can be employed in multiple ways, such as:

(i) to perform Dyna-style planning, i.e., generate simulated experi-

ences to more rapidly learn a policy or value function [24, 33, 47];

(ii) produce improved model-augmented update targets for use by

temporal-difference algorithms [1, 13, 18]; (iii) to perform planning,

online, via Model Predictive Control techniques [15]; and (iv) to
exploit model gradients with respect to its parameters to improve

the efficiency of policy parameter updates [16, 17].

One widely-used model-based framework is based on the Dyna

architecture [43], by which an agent learns a model and updates a

value function/policy using real and model-generated, simulated ex-

periences. This significantly improves sample efficiency, as demon-

strated by recent successes of RL when using expressive function

approximators [24, 25, 34]. The key insight is that performing ad-

ditional updates, using model-generated experiences, reduces the

need to frequently interact with the environment, which may be

expensive and risky in real-world applications.

A crucial component of Dyna-style algorithms is the search-
control mechanism, which prioritizes and samples (from the learned

model) experiences to be used in Dyna planning. The classic Dyna

algorithm samples state-action pairs uniformly. Other variants have
been studied. For example, the Prioritized Sweeping algorithm [29]

prioritizes states or state-action pairs with higher absolute temporal-
difference error (TD-error) 𝛿𝑡 when performing value updates. A

similar idea has been extensively investigated in models that are

based, e.g., on Prioritized Experience Replay buffers [20, 27, 40],

which are a form of (limited) non-parametric models [46]. Accord-

ing to the Prioritized Experience Replay method, the probability of

sampling a given state-action pair, 𝑃 (𝑠, 𝑎), is defined by

𝑃 (𝑆𝑡 , 𝐴𝑡 ) ∝ |𝛿𝑡 |, 𝛿𝑡 = 𝑅𝑡 + 𝛾 max

𝑎′∈A
𝑞𝜋 (𝑆𝑡+1, 𝑎′) − 𝑞𝜋 (𝑆𝑡 , 𝐴𝑡 ). (5)

Intuitively, states with higher TD-error are more likely to cause

larger changes in post-update value functions, and therefore are

also likely to accelerate policy learning.

3 SAMPLE-EFFICIENT MORL
Since our objective is to improve sample efficiency in MORL set-

tings (and given the observations in Section 2.1), we propose to

design a method to rapidly learn a set of policies Π whose values

approximate a CCS (Eq. (3)). In this Section, we first introduce a

novel method based on GPI to identify the most promising prefer-

ences/weight vectors w ∈ W to train on, at each moment, while

constructing a CCS (Section 3.1). Then, we introduce a principled

technique to prioritize experiences (for use when optimizing a

given preference) based on the formally-guaranteed improvements

achievable via a one-step GPI process (Section 3.2). These contribu-

tions are combined in Section 4 to derive an effective algorithm that

approximates the CCS in discrete- and continuous-state settings.

3.1 Prioritizing Weight Vectors via GPI
In this Section, we introduce a principled algorithm that iteratively

constructs a set of policies, Π, whose value vectors,V , approximate

the CCS. At each iteration, it selects a weight vector w ∈ W based

on the formally-guaranteed improvements achievable via GPI, and

learns a new policy 𝜋w specialized in optimizing w.

Algorithm 1: GPI Linear Support (GPI-LS)
Input :MOMDP𝑀

1 𝜋w, v𝜋w ← NewPolicy(w = [1, 0, ..., 0]⊤ )
2 Π ← {𝜋w},V ← {v𝜋w },M ← {}
3 while True do
4 Wcorner ← CornerWeights(V) \ M
5 if Wcorner is empty then
6 return Π,V; ⊲ Found CCS (or 𝜖-CCS)

7 w← arg maxw∈Wcorner

(𝑣GPI

w − max𝜋 ∈Π 𝑣𝜋w )
8 𝜋w, v𝜋w , done← NewPolicy(w,Π)
9 if done then
10 Add w toM; ⊲ Adds w to support of partial CCS

11 Add 𝜋w to Π and v𝜋w to V
12 Π,V ← RemoveDominated(Π,V)

We start by defining the corner weights [38] of a given set of

value vectors,V . Corner weightsWcorner ⊂ W are a finite subset

of the weight vector space with relevant properties we will explore.

Definition 3.1. LetV = {v𝜋𝑖 }𝑛
𝑖=1

be a set of multi-objective value

functions of 𝑛 policies. Corner weights are the weights contained in

the vertices of a polyhedron, 𝑃 , defined as:

𝑃 = {x ∈ R𝑑+1 | V+x ≤ 0,
∑
𝑖 𝑤𝑖 = 1,𝑤𝑖 ≥ 0,∀𝑖}, (6)

whereV+ is a matrix whose rows store the elements ofV and is aug-

mented by a column vector of −1’s. Each vector x=(𝑤1, ...,𝑤𝑑 , 𝑣w)
in 𝑃 is composed of a weight vector and its scalarized value.

Intuitively, corner weights are the weight vectors for which the

policy selected in the maximization max𝜋∈Π 𝑣𝜋w changes. These are

weight vectors for which two or more policies in Π share the same

value with respect to the above-mentioned maximization. Extrema

weights (weights where only one element is 1 and all others are

0) are special cases of corner weights. Notice that the number

of vertices of the polyhedron 𝑃 is finite when V is finite. The

importance of corner weights comes from the following theorem:

Theorem 3.2. (Theorem 7 of Roijers [38]). Let Π = {𝜋𝑖 }𝑛𝑖=1
be

a set of 𝑛 policies with corresponding value vectors V = {v𝜋𝑖 }𝑛
𝑖=1

.
Let Δ(w,Π) = 𝑣∗w −max𝜋∈Π 𝑣𝜋w be the utility loss of weight vector
w ∈ W given the policy set Π; that is, the difference between the
value of the optimal policy for w and the value that can be obtained
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if using one of the policies in Π for solving w. Then, a weight vector
w ∈ arg maxw∈W Δ(w,Π) is one of the corner weights ofV .

Due to this theorem, when selecting a weight vector to train on

when constructing a CCS, we only need to consider the finite set of

corner weights,Wcorner, instead of the infinite weight simplexW.

However, this does tell us how to select a weight vector (among all

the corner weights) to more rapidly learn the CCS. Let 𝑣GPI

w be the

scalarized value of the GPI policy (Eq. 4) for the weight vectorw. We

propose to prioritize weight vectors based on the magnitude of the

improvement that can be formally achieved via GPI. In particular,

given the corner weightsWcorner of the current value set,V , we

select the weight vector w∈Wcorner given by:

arg max

w∈Wcorner

(𝑣GPI

w −max

𝜋∈Π
𝑣𝜋w) . (7)

Intuitively, Eq. (7) identifies the corner weight for which we are

guaranteed to achieve the maximum possible improvement via GPI.

In Alg. 1 we show an iterative algorithm, GPI Linear Support
(GPI-LS), that constructs a CCS in a finite number of iterations

based on the above-mentioned ideas.
1
Let NewPolicy(w,Π) be any

RL algorithm that searches for a policy that optimizes a weight

vector 𝑤∈W, starting from an initial candidate policy 𝜋w set to

arg max𝜋∈Π 𝑣𝜋w. We assume this algorithm returns the value vector

of this policy, v𝜋w
, and a flag (done) indicating if it has reached its

stopping criterion. When this happens, it adds the corresponding

new policy to Π and removes all dominated policies; i.e., policies

whose value vectors are no longer the best for any weight vector.

To analyze this algorithm, we first consider the best-case scenario

where the NewPolicy(w,Π) is capable of identifying optimal poli-

cies for any given weight vectors. Later, we relax this assumption

and show that our algorithm’s theoretical guarantees still hold even

if that is not the case. We show that it holds strong theoretical guar-

antees bounded only by the sub-optimality of the underlying RL

algorithm chosen by the user.

Theorem 3.3. Let NewPolicy(w,Π) in Alg. 1 be any algorithm
that returns an optimal policy, 𝜋∗w, for a given weight vector w. Then,
Alg. 1 is guaranteed to find a CCS in a finite number of iterations.

Proof. The proof follows from the fact that at each iteration,

the set of corner weights,Wcorner, is finite since the number of the

vertices of the polyhedron 𝑃 is finite (Eq. (6)). Once the termination

condition of NewPolicy(w,Π) is met (done = True), it returns the

optimal policy for a givenw ∈ Wcorner,w is added toM, and never

selected again. This is ensured because the set of candidate corner

weights,Wcorner, computed by GPI-LS in any given iteration, does

not (by construction) include previously-evaluated corner weights.

Since S and A are finite, the number of potential corner weights

is bounded by the (finite) number of vertices of the polyhedron 𝑃

defined with respect to the set V containing all |A| |S | possible
policies. Because (i) GPI-LS selects a corner weight at each iteration;
(ii) NewPolicy(w,Π) returns an optimal policy for w, which is

added toM and never selected again; and (iii) there exists a finite
number of corner weights, it follows that in the worst-case, GPI-

LS will test all (finite) corner weights. Thus, after a finite number

1
A key challenge in proving convergence and bounded utility loss of our algorithm is

that, unlike existing techniques, it does not require optimal (or 𝜖-optimal) policies to be

returned at every iteration. Instead, it can incrementally (and monotonically) improve

its CCS’s quality even when given partially learned, possibly suboptimal policies.

of iterations, all corner weights of the CCS will be inM. At this

point,Wcorner will be empty and the algorithm will return Π and

V (lines 5–6). We can ensure that the returned set V is a CCS

due to Theorem 3.2. When there are no more corner weights to be

analyzed (Wcorner is empty),M contains all corner weights and

their corresponding optimal policies. By Theorem 3.2, this means

that it is not possible to make improvements to any weights vector

w ∈ W and thusV (and its corresponding policies Π) is a CCS. □

We now relax the assumption that NewPolicy finds optimal so-

lutions and show that if NewPolicy(w,Π) converges to a local-

minimum (an 𝜖-optimal policy), GPI-LS returns an 𝜖-CCS.2

Definition 3.4. A set of value vectorsV = {v𝜋𝑖 }𝑛
𝑖=1

(associated

with policy set Π = {𝜋𝑖 }𝑛𝑖=1
) is an 𝜖-CCS if, for all weight vectors

w ∈ W, the corresponding utility loss Δ(w,Π) is at most 𝜖 :

max

w∈W
Δ(w,Π) = max

w∈W
(𝑣∗w −max

𝜋∈Π
𝑣𝜋w) ≤ 𝜖.

Intuitively, an 𝜖-CCS is a convex coverage set whose maximum

utility loss is at most 𝜖; i.e., based on it, for any possible weight

vectors𝑤∈W, it is possible to identify a policy whose value differs

from the value of the optimal policy for𝑤 by at most 𝜖 .

Theorem 3.5. Let NewPolicy(w,Π) in Alg. 1 be an algorithm
that produces an 𝜖-optimal policy, 𝜋𝑤 , when its termination condition
is met (when it returns done = True); that is, 𝑣∗w − 𝑣

𝜋w
w ≤ 𝜖 . Then,

Alg. 1 is guaranteed to return an 𝜖-CCS.
Proof. Let Π𝑖 be the set of policies computed by GPI-LS at

iteration 𝑖 andV𝑖 be the corresponding set of value functions. Let
Δ𝑖 = maxw∈W Δ(w,Π𝑖 ) be the maximum utility loss incurred by

the partial CCS computed by GPI-LS at iteration 𝑖 . If Δ𝑖 ≤ 𝜖 , then

by definition the set of value vectors V𝑖 , computed by GPI-LS at

iteration 𝑖 , is an 𝜖-CCS. If not, then by Theorem 3.2 there exists a

corner weight w′ such that Δ(w′,Π𝑖 ) = Δ𝑖 . Because GPI-LS will,
in the worst-case, test all corner weights and NewPolicy returns

𝜖-optimal policies (where 𝜖<Δ𝑖 ), then at some iteration 𝑗>𝑖 , GPI-LS

will select w′, compute its optimal policy (𝜋w′ ) and add it to Π 𝑗 .

Because by definition Δ(w′,Π 𝑗 ) ≤ 𝜖 , it follows that Δ 𝑗<Δ𝑖 ; that
is, the maximum utility loss incurred by the partial CCS can be

strictly decreased. Thus, within a finite number of iterations, 𝑘 , we

can guarantee that Δ𝑖+𝑘 ≤ 𝜖 . At this point, by definition, an 𝜖-CCS

has been identified. □

Finally, we introduce a formal bound that characterizes the max-

imum utility loss (with respect to the optimal solution) incurred

by any partial solutions computed by our method, prior to conver-

gence, in case the agent follows a GPI policy based on the partially-

computed CCS produced by our algorithm at an arbitrary iteration.
3

Theorem 3.6. Let V = {v𝜋𝑖 }𝑛
𝑖=1

be a set of value vectors with
corresponding policies Π = {𝜋𝑖 }𝑛𝑖=1

optimizing weight vectorsM =

{w𝑖 }𝑛𝑖=1
. Let |𝑞∗w𝑖

(𝑠, 𝑎)−𝑞𝜋𝑖w𝑖
(𝑠, 𝑎) | ≤ 𝛿 for all (𝑠, 𝑎) ∈ S×A, 𝑎𝑛𝑑 𝑖 ∈

{1, ..., 𝑛}. Let rmax = max𝑠,𝑎 | |r(𝑠, 𝑎) | |. Then, for any w ∈ W,

𝑞∗w (𝑠, 𝑎) − 𝑞GPI

w (𝑠, 𝑎) ≤
2

1 − 𝛾 (rmax min

𝑖
| |w −w𝑖 | | + 𝛿). (8)

2
Notice that when the CCS is infinite (e.g., there is an infinite number of optimal

policies), GPI-LS still converges to a CCS asymptotically/in the limit.

3
This result is a straightforward adaptation of Theorem 2 of Barreto et al. [9] to the

setting where we wish to bound the maximum utility loss of a partially-computed

CCS.
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This theorem guarantees that as the coverage of the weight

vector set,W, increases with respect to the simplex, the maximum

utility loss of Alg. 1 is strictly bounded at any given iteration during

learning.

3.2 Prioritizing Experiences via GPI
A complementary approach for increasing sample efficiency is to

use a model-based RL algorithm to learn policies for different pref-

erences. In this paper, we introduce an experience prioritization

technique based on a Dyna-style MORL algorithm (introduced and

discussed later). An important open question related to efficiently

deploying Dyna algorithms is to determine which artificial, model-

simulated experiences should be generated to accelerate learning.

We introduce a new, principled GPI-based prioritization technique

(based on Theorem 3.7) for identifying which experiences are most

relevant to rapidly learn the optimal policy, 𝜋w, that optimizes a

preference w ∈ W. Importantly, unlike similar existing methods

(e.g., Prioritized Experience Replay [40]), our method is specially
designed to accelerate learning in MORL problems.

We start by introducing a theorem based on which we will be

able to define a principled experience prioritization scheme for

accelerating learning in MORL problems.

Theorem 3.7. Let Π be an arbitrary set of policies, and let 𝜋w in Π
be a deterministic policy tasked with optimizing some w ∈ W. Then,
𝑞GPI

w (𝑠, 𝑎) = 𝑞𝜋w (𝑠, 𝑎) for all state-action pairs in S×A if and only if
𝑞∗w (𝑠, 𝑎) = 𝑞𝜋w (𝑠, 𝑎). In other words, 𝜋w is guaranteed to be an optimal
policy for w iff the GPI policy computed over Π, for optimizing w,
cannot improve the 𝑞-function of 𝜋w for any state-action pairs. 4

As a result of this theorem, it follows that to rapidly learn an

optimal policy, we may wish to bring the value of 𝑞𝜋w (𝑠, 𝑎) closer
𝑞GPI

w (𝑠, 𝑎): when they are equal in all state-action pairs, we have

found 𝑞∗w (𝑠, 𝑎). State-action pairs whose value gap, 𝑞GPI

w (𝑠, 𝑎) −
𝑞𝜋w (𝑠, 𝑎), is maximal (or large) are pairs that, if updated, more rapidly

approximate 𝑞𝜋w (𝑠, 𝑎) and 𝑞GPI

w (𝑠, 𝑎) (in terms of Max-Norm dis-

tance). Intuitively, these are promising candidate experiences to

be sampled from the model and used in updates to improve policy

𝜋w. By decreasing the above-mentioned gap, we are guaranteed

to move 𝑞𝜋w (𝑠, 𝑎) closer to 𝑞∗w (𝑠, 𝑎). When this gap is zero for all

state-actions pairs, we are guaranteed to have identified an opti-

mal policy for w. Based on these observations, which follow from

Theorem 3.7, we propose (during the process of learning 𝜋w) to
prioritize experiences proportionally to the magnitude of the value

improvement resulting from using a GPI policy. That is, for a given

weight vectorw∈W and state-action pair, we assign corresponding

priorities 𝑃w (𝑠, 𝑎) proportionally to the gap 𝑞GPI

w (𝑠, 𝑎) − 𝑞𝜋w (𝑠, 𝑎):

𝑃w (𝑠, 𝑎) ∝ 𝑞GPI

w (𝑠, 𝑎) − 𝑞𝜋w (𝑠, 𝑎). (9)

Notice that in practice we do not have direct access to the action-

values of the GPI policy, 𝑞GPI

w (𝑠, 𝑎), unless we evaluate it beforehand
with a policy evaluation algorithm (which may be costly). We can,

however, efficiently compute the value of employing GPI for a single

time step. Let 𝑞1−GPI

w (𝑆𝑡 , 𝐴𝑡 ) be defined as the value of executing

action 𝐴𝑡 in state 𝑆𝑡 , following the GPI policy for one step, and

thereafter following the same policy 𝜋 ∈ Π that was used in this first

4
The proof of this theorem can be found in the Appendix [7].

step: 𝑞1−GPI

w (𝑆𝑡 , 𝐴𝑡 ) = E[R𝑡 ·w+𝛾 max𝑎′∈A max𝜋∈Π 𝑞𝜋w (𝑆𝑡+1, 𝑎′)].
It is possible to show that 𝑞GPI

w (𝑠, 𝑎) ≥ 𝑞1−GPI

w (𝑠, 𝑎) ≥ 𝑞𝜋w (𝑠, 𝑎).
Importantly, Theorem 3.7 still holds if we replace 𝑞GPI

w (𝑠, 𝑎) with
𝑞1−GPI

w (𝑠, 𝑎). Given a transition (𝑆𝑡 , 𝐴𝑡 ,R𝑡 , 𝑆𝑡+1) and aweight vector
w ∈ W, we thus compute experience priorities as follows:

𝑃w (𝑆𝑡 , 𝐴𝑡 ) ∝ |R𝑡 ·w+𝛾 max

𝑎′∈A
max

𝜋∈Π
𝑞𝜋w (𝑆𝑡+1, 𝑎′) −𝑞𝜋w (𝑆𝑡 , 𝐴𝑡 ) |. (10)

Notice that when |Π | = 1, that is, when we only have one policy,

Eq. (10) reduces to the commonly-used Prioritized Experience Re-

play prioritization scheme (Eq. (5)). Hence, we can see Eq. (10) as a

form of generalized TD-error-based prioritization.

4 GPI-PRIORITIZED DYNA
We now introduce GPI Prioritized Dyna (GPI-PD), a novel model-

based MORL algorithm that improves sample efficiency by simulta-

neously using GPI-LS (Section 3.1) to prioritize and select weight

vectors to more rapidly construct a CCS, and our GPI-based ex-

perience prioritization scheme (Section 3.2) to more rapidly learn

policies for a given preference. GPI-PD learns an approximate multi-

objective dynamics model, 𝑝 , predicting the next state and reward

vector given a state-action pair. This model is used to perform

Dyna updates to multi-objective action-value functions via model-

generated, simulated experiences. Its pseudocode is shown in Alg. 2.

Algorithm 2: GPI-Prioritized Dyna (GPI-PD)
1 Initialize action-value function Q\ (𝑠, 𝑎,w) , dynamics model 𝑝𝜑 ,

buffers B and B
model

, weight support setM
2 M ← extrema weights ofW; w0 ∼ M
3 for 𝑡 = 0...∞ do
4 Every 𝑁 time steps do ⊲ GPI Linear Support (Alg. 1)
5 V ← evaluate v𝜋w for all w ∈ M
6 M,V ← RemoveDominated(M,V)
7 Wcorner ← CornerWeights(V)
8 Add toM the top-𝑘 weight vectors inWcorner w.r.t.

arg maxw∈Wcorner

(𝑣GPI

w − max𝜋 ∈Π 𝑣𝜋w )
9 if 𝑆𝑡 is terminal then
10 w𝑡 ∼ M
11 𝑆𝑡 ∼ `

12 𝐴𝑡 ← 𝜋GPI (𝑆𝑡 ;w𝑡 ) (Eq. (11)) ⊲ Follow GPI policy

13 Execute 𝐴𝑡 , observe 𝑆𝑡+1, and R𝑡
14 Add (𝑆𝑡 , 𝐴𝑡 ,R𝑡 , 𝑆𝑡+1 ) to B with priority 𝑃w𝑡 (𝑆𝑡 , 𝐴𝑡 )
15 Update model 𝑝𝜑 with experience tuples from B
16 for 𝐻 Dyna steps do ⊲ GPI-Prioritized Dyna
17 Sample 𝑆 ∼ B according to 𝑃w𝑡 (Eq. (10))

18 𝐴← 𝜋GPI (𝑆 ;w𝑡 ) ; (𝑆 ′, R̂) ∼ 𝑝𝜑 ( · |𝑆,𝐴)
19 Add (𝑆,𝐴, R̂, 𝑆 ′ ) to B

model

⊲ Update multi-objective Q-function

20 for𝐺 gradient updates do
21 Build mini-batch { (𝑆𝑖 , 𝐴𝑖 ,R𝑖 , 𝑆 ′𝑖 ) }𝑏𝑖=1

with 𝛽𝑏 tuples from

B
model

and (1 − 𝛽 )𝑏 tuples from B
22 Update Q\ by minimizing L(\ ;w𝑡 ) + L(\ ;w′ ) w.r.t. \ via

mini-batch gradient descent, where w′ ∼ M
23 Update priorities 𝑃w𝑡 of all pairs (𝑆𝑖 , 𝐴𝑖 ) in the mini-batch

Notice that GPI-PD is a MORL algorithm designed to deal with

high-dimensional and continuous state spaces; it models the action-

value function via a single neural network (Q\ ) conditioned on
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state and weight vector, as in [3, 53]. The multi-objective action-

value function is defined as Q\ (𝑠, 𝑎,w) ≈ q𝜋w (𝑠, 𝑎), where \ are

the learned neural network parameters. Similarly to [12], we now

rewrite the GPI policy definition (Eq. 4) so that the GPI policy can

be defined with respect to an approximator:

𝜋GPI (𝑠;w) ∈ arg max

𝑎∈A
max

w′∈M
Q\ (𝑠, 𝑎,w′) ·w, (11)

whereM is the weight support set containing the corner weights

selected by GPI-LS (lines 4–8 of Alg. 2). Notice that we add to

M the top-𝑘 weight vectors, according to Eq. (7) (line 8). This

implies that each top-performing weight will be optimized during

a corresponding episode. We found that this accelerates learning

in the function approximation setting. Finally, the parameters \

of Q\ are updated by minimizing the mean-squared error of the

multi-objective TD error:

L(\ ;w) = E(𝑆,𝐴,R,𝑆 ′ )∼B [(R + 𝛾Q\− (𝑆 ′, 𝑎′,w) − Q\ (𝑆,𝐴,w))2], (12)

where 𝑎′ = arg max𝑎′∈A Q\− (𝑆 ′, 𝑎′,w) ·w and \− are the param-

eters of a target neural network, which are updated to match \

periodically. In line 22 of Alg. 2, we optimize L(\ ;w) both for the

current episode’s weight vector, w𝑡 , and for weight vectors w′∼M
sampled from the weight support set.

5
Training in this manner is

known to avoid catastrophic forgetting [3].

4.1 Dyna with a Learned MOMDP Model
GPI-PD learns a model 𝑝𝜑 of the environment’s dynamics and its

multi-objective reward function. In particular, it represents the joint

distribution, 𝑝𝜑 (𝑆𝑡+1,R𝑡 |𝑆𝑡 , 𝐴𝑡 ), of the next state and the complete
multi-objective reward vector, R𝑡 , when conditioned on state and

action. Notice that this model may be used to accelerate learning

of policies for any w ∈ W.

Before proceeding, we emphasize that GPI-PD is designed to

tackle high-dimensional MORL problems with continuous state

spaces. To achieve this, we extend state-of-the-art model-based

algorithms used in the single-objective setting [15, 24, 26]. We

achieved this by employing an ensemble of probabilistic neural

networks for predicting the reward vector, R𝑡 , instead of a scalar

reward. The learned model 𝑝𝜑 is composed of an ensemble of 𝑛

neural networks, {𝑝𝜑𝑖
}𝑛
𝑖=1

, each of which outputs the mean and

diagonal covariance matrix of a multivariate Gaussian distribution:

𝑝𝜑𝑖
(𝑆𝑡+1,R𝑡 | 𝑆𝑡 , 𝐴𝑡 ) = N(`𝜑𝑖

(𝑆𝑡 , 𝐴𝑡 ), Σ𝜑𝑖
(𝑆𝑡 , 𝐴𝑡 )). (13)

Each model in the ensemble is trained in parallel to minimize the

following negative log-likelihood loss function, using different boot-

straps of experiences in the buffer B:
L(𝜑) = E(𝑆𝑡 ,𝐴𝑡 ,R𝑡 ,𝑆𝑡+1 )∼B [− log 𝑝𝜑 (𝑆𝑡+1,R𝑡 |𝑆𝑡 , 𝐴𝑡 )] . (14)

In lines 16–19 of Alg. 2, GPI-PD samples states according to

𝑃w (·, 𝐴𝑡 ), where 𝐴𝑡 is the action given by the GPI policy. It then

generates corresponding model-based simulated experiences for

this state-action pair and stores them in the buffer B
model

. We

combine these experiences with “real” ones, collected by the agent

while interacting with the environment (and stored in the buffer

B), according to a mixing ratio 𝛽 . This results in a mini-batch of

5
We abuse notation and use the operator ∼ both to denote sampling from a given

distribution, but also, when writing 𝑥 ∼ 𝑌 (where 𝑌 is a set and 𝑥 ∈ 𝑌 ) to refer to the

process of sampling an element 𝑥 uniformly at random from the set 𝑌 .

experiences that are used to optimize Q\ . Combining experiences

in this manner is a commonly-used approach when training model-

based RL algorithms [24, 32].

5 EXPERIMENTS

Figure 1: (a) Deep Sea Treasure; (b) Minecart; (c) MO-Hopper.

We evaluate the performance of our algorithms in challeng-

ing multi-objective tasks—both with discrete and continuous state

and action spaces—and compare it with state-of-the-art MORL al-

gorithms. We consider three environments [6] with qualitatively

different characteristics (see Fig. 1). We follow the performance eval-

uation methodology proposed in [22, 54], which focuses on utility-
based metrics. These are relevant since they more directly reflect

an algorithm’s performance with respect to a user’s preferences.

Concretely, when evaluating a given algorithm, we compute the

expected utility of its solutions: EU(Π) = Ew∼W [max𝜋∈Π 𝑣𝜋w].6 We

also quantify the maximum utility loss of an algorithm: MUL(Π) =
maxw∈W (𝑣∗w −max𝜋∈Π 𝑣𝜋w).7 We report the mean and its 95% con-

fidence interval over multiple random seeds.
8

Deep Sea Treasure. This is a classic MORL domain in which a

submarine has to trade-off between collecting treasures and mini-

mizing a time penalty (Fig. 1a). When evaluating our method in this

setting, we employed a simplified, tabular version of GPI-PD (see

Appendix [7]). Recall that our GPI-LS algorithm (Alg. 1), unlike GPI-

PD (Alg. 2), is model-free, does not perform Dyna planning steps,

and uses a standard, unprioritized experience replay buffer with

uniform sampling. We compare GPI-PD with two state-of-the-art

competitors: Envelope MOQ-Learning [53], and SFOLS [5] (which

uses OLS [30, 38] for selecting which weight vectors to train on).

In Fig. 2, we evaluate each algorithm’s expected utility (EU)

and maximum utility (MUL) both (i) if each algorithm—when op-

timizing a given preference—follows its best known policy (two

leftmost plots); and (ii) if each algorithm—when optimizing a given

preference—follows the GPI policy derived from the known policies

(two rightmost plots). We consider a setting where agents are con-

strained and have a limited budget of 4,000 learning time steps per

iteration. We now make a few important empirical observations,

which hold for both above-mentioned settings (i and ii):
• The performance of the Envelope algorithm (both in terms of EU

and MUL) has high variance since it trains on randomly-sampled

weight vectors at each iteration. Furthermore, its asymptotic per-

formance is always worse than our algorithms’ performances.

• SFOLS converges to a suboptimal CCS: it consistently adds sub-

optimal policies (the best ones it could discover under the training

6
We approximate the expectation Ew∈W [ · ] by averaging over 100 equidistant weight

vectors covering the simplexW.

7
When following the GPI policy, EU and MUL can be written as EU(Π)=Ew∼W [𝑣GPI

w ]
and MUL(Π)=maxw∈W (𝑣∗w − 𝑣GPI

w ) , respectively.
8
All algorithm’s hyperparameters are presented in the Appendix [7].
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Figure 2: [Deep SeaTreasureDomain] ExpectedUtility andMaximumUtility Loss of each algorithm. Leftmost plots: performance
of the best known policy. Rightmost plots: performance when following the GPI policy with respect to the known policies.

time constraints) to its CCS. As a result, SFOLS incorrectly priori-

tizes preferences.

• GPI-LS, by contrast, is consistently capable of identifying the

most promising weight vectors, i.e., those with the highest guar-

anteed improvement according to Eq. (7). This allows it to always

rapidly reach near-zero maximum utility loss. These results are

consistent with Theorems 3.3 and 3.5, which formally ensure that

GPI-LS always converges to optimal solutions and that it mono-

tonically improves the quality of its solutions over time (up to

approximation errors due to experimental statistics having been

computed based on finite data points). When GPI-LS also employs

experience prioritization (that is, when combined with GPI-PD),

the resulting method produces even higher improvements at each

iteration, thereby enhancing overall sample efficiency.

Minecart. This domain involves controlling a cart (Fig. 1b) tasked

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time Step (104)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

Ex
pe

ct
ed

 U
til

ity

GPI-LS + GPI-PD (ours)
GPI-LS (ours)
SFOLS
Envelope

(a) Expected Utility over 100 weight vectors fromW.
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(b) Maximum Utility Loss.

Figure 3: [Minecart Domain] Performance evaluation.

with reaching ore mines, collecting and selling ores, and minimiz-

ing fuel consumption [3]. There are three conflicting objectives,

representing the agent’s preferences for collecting each of the two

types of ores, and for saving fuel. This is a continuous state space

problem, and so we can directly deploy GPI-PD (Alg. 2); GPI-PD

uses GPI both to prioritize weight vectors and experiences (Sec-

tion 4.1). When comparing it with SFOLS and Envelope, we ensure

that such competitors use the same neural network architecture

and hyperparameters as GPI-PD, to allow for a fair comparison.

In Fig. 3, the performance of all algorithms follows a qualitatively

similar behavior as observed in the Deep Sea Treasure experiment.

Our methods (GPI-LS, and GPI-LS combined with GPI-PD) consis-

tently identify optimal solutions, reach near-zero maximum utility

loss, and achieve performance metrics that strictly dominate that of

competitors. The Envelope algorithm is the least sample-efficient

method during the first ten iterations—although it slightly surpasses

the expected utility of SFOLS at the end of the learning process.

These results further emphasize the importance of our weight pri-

oritization technique (Section 3.1), which allows GPI-LS to allocate

its training time to preferences whose performances are guaranteed

to be improvable. As a result, GPI-LS outperforms the competing

algorithms in terms of sample efficiency, and always converges to

solutions with higher EU and MUL. Similarly, GPI-PD consistently

reaches near-zero maximum utility loss.

MO-Hopper. This domain involves controlling a one-legged agent

tasked with learning to hop while balancing two objectives: maxi-

mizing forward speed and jumping height. Unlike the previously-

discussed domains, MO-Hopper operates over a continuous-action

space. Neither Envelope nor SFOLS can tackle such a setting. For

this reason, we compared our algorithms with a state-of-the-art

MORL technique capable of dealing with continuous actions: PG-

MORL [51]. This is an evolutionary algorithm that assigns weight

vectors to a population of agents (six, in our experiments, as in

[51]). Agents are trained in parallel using PPO [41]. We extended

our methods—both GPI-PD and GPI-LS—to deal with continuous

actions by adapting the TD3 algorithm [19] to the MORL setting

(see the Appendix [7]). In Fig. 4, we compare the expected util-

ity and Pareto frontiers generated by GPI-PD and PGMORL. Here,

we analyze Pareto frontiers because we cannot compute the maxi-

mum utility loss exactly, since the optimal CCS is unknown. Pareto

frontiers were computed by selecting all Pareto-efficient policies

among those collected during 20 runs of the algorithms, and evalu-

ating each such policy 5 times over 100 weight vectors. Once again,

GPI-LS and GPI-PD have superior performance both in terms of ex-

pected utility and quality of the Pareto frontier. This is the case even

though we allowed each of the six PGMORL agents to collect 1.5

million experiences: they could interact with their environment ten
times more often than our method/agent. Even then, GPI-PD (with
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Figure 4: [MO-Hopper]: Performance evaluation.

or without using a learned model) consistently achieved higher

expected utility (Fig. 4a) during learning, and converged to a final

solution with superior performance. Fig. 4b depicts how the Pareto

frontier identified by GPI-LS covers a broader range of behaviors

that trade-off between the two objectives. This is made clear by

observing that the points in the blue curve of Fig. 4b dominate

the corresponding Pareto frontier of PGMORL. Similarly, GPI-LS,

when combined with GPI-PD, also produces a Pareto frontier that

dominates that of PGMORL with the exception of one value vector.

Notice that because GPI-LS+GPI-PD prioritize bothweight and expe-
rience selection, the resulting frontier is denser—it more thoroughly

covers the space of all possible trade-offs between objectives.

6 RELATEDWORK
In this section, we briefly discuss some of the most relevant related

work. For a complete discussion, see the Appendix [7].

Model-Free MORL. Several model-free MORL algorithms have

been proposed in the literature [2, 22, 35, 45]. Here, we discuss

the ones that are most related to our work. In [3], Abels et al.

proposed training neural networks capable of predicting multi-

objective action-value functions when conditioned on state and

weight vector. Yang et al. [53] extended the previously-mentioned

approach to increase sample efficiency by introducing a novel op-

erator for updating the action-value neural network parameters.

Our method differs with respect to these in that (i) we introduced a
novel, principled prioritization scheme to actively select weights on

which the action-value network should be trained, in order to more

rapidly learn a CCS (Section 3.1); and (ii)we introduced a principled
prioritization method for sampling previous experiences for use in

Dyna planning to accelerate learning optimal policies for particular

agent preferences. The methods above, by contrast, use uniform

sampling strategies that implicitly assume that all training data is

equally important to rapidly identify optimal solutions. Alegre et

al. [5] showed how to use GPI in MORL settings, specifically in case

the OLS algorithm is used to learn a CCS. Importantly, however,

the heuristic used by OLS to select which weight vectors to train is

based on upper bounds that are frequently exceedingly optimistic

and loose. This means that OLS often focuses its training efforts on

optimizing policies that do not necessarily improve the maximum

utility loss incurred by the resulting CCS. Our method, by contrast,

uses a technique for selecting which preferences to train on via

a mathematically principled technique for determining a lower

bound on performance improvements that are formally guaranteed

to be achievable. This results in a novel active-learning approach

that more accurately infers the ways by which a CCS can be rapidly

improved. Xu et al. [51] proposed an evolutionary algorithm that

trains a population of agents specialized in different weight vectors.

We used a single neural network conditioned on the weight vector

to simultaneously model all policies in the CCS. Fig. 4a shows that

our approach surpasses the performance of this algorithm, even

when given ten times fewer environment interactions.

Model-Based MORL. Compared to model-free MORL algorithms,

model-based MORL methods have been relatively less explored.

Wiering et al. [49] introduced a tabular multi-objective dynamic

programming algorithm. Yamaguchi et al. [52] proposed an algo-

rithm that learns models for predicting expected multi-objective re-

ward vectors, rather than multi-objective Q-functions. Importantly,

they tackle the average reward setting, rather than the cumulative

discounted return setting. [52] is limited to discrete state spaces

and focuses its experiments on small MDPs with at most ten states.

Similarly, [49] assumes both discrete and deterministic MOMDPs.

Similarly, the model-based method in [4] can tackle tabular, discrete

settings—even though it supports non-linear utility functions. The

methods proposed in [23, 31, 36, 48] investigate multi-objective

Monte Carlo tree search approaches, but unlike our algorithm, re-

quire prior access to known transition models of the MOMDP.

7 CONCLUSIONS
In this paper we introduced two principled prioritization meth-

ods that significantly improve sample efficiency, as well as the

first model-based MORL algorithm capable of dealing with con-

tinuous state spaces. Both prioritization schemes we introduced

were derived from properties of GPI and resulted in an effective,

sample-efficient algorithm with important theoretical guarantees.

In particular, we (i) proved strong convergence guarantees to an op-

timal solution in a finite number of steps, or to an 𝜖-optimal solution

(for a bounded 𝜖) if the agent is limited and can only identify possi-

bly sub-optimal policies; (ii) proved that our method is an anytime

algorithm capable of monotonically improving the quality of the

solution throughout the learning process; and (iii) formally defined

a bound that characterizes the maximum utility loss incurred by

partial solutions computed by our technique at any given iteration.

Finally, we empirically showed that our algorithm outperforms

state-of-the-art MORL algorithms in qualitatively different multi-

objective problems, both with discrete and continuous state and

action spaces. In future work, we would like to combine our algo-

rithmic contributions with other types of model-based approaches,

such as predecessor/backward models [14] and value equivalent

models [21]. We are also interested in extending our method to

settings with non-linear utility functions.
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