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ABSTRACT
Being able to infer ground truth from the responses of multiple
imperfect advisors is a problem of crucial importance in many
decision-making applications, such as lending, trading, investment,
and crowd-sourcing. In practice, however, gathering answers from
a set of advisors has a cost. Therefore, finding an advisor selection
strategy that retrieves a reliable answer and maximizes the overall
utility is a challenging problem. To address this problem, we pro-
pose a novel strategy for optimally selecting a set of advisers in
a sequential binary decision-making setting, where multiple deci-
sions need to be made over time. Crucially, we assume no access
to ground truth and no prior knowledge about the reliability of
advisers. Specifically, our approach considers how to simultane-
ously (1) select advisors by balancing the advisors’ costs and the
value of making correct decisions, (2) learn the trustworthiness
of advisers dynamically without prior information by asking mul-
tiple advisers, and (3) make optimal decisions without access to
the ground truth, improving this over time. We evaluate our algo-
rithm through several numerical experiments. The results show
that our approach outperforms two other methods that combine
state-of-the-art models.
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1 INTRODUCTION
Many situations rely on expert advice to make decisions, and often
there is no objectively correct answer. Examples are wide-ranging
and include crowdsourcing, machine learning ensemble models,
or loan approvals. In such settings, and following the principles
of the wisdom of the crowd [9, 19], it may be better to rely on
the expertise of multiple advisers, especially if the stakes are high.
However, asking for multiple advisers comes at a cost, and the
reliability or quality of advisers can differ. Therefore, knowing how
many and who to ask is a challenging task. In addition, typically,
multiple sequential decisions need to be made, and the reliability
of individual advisers can be learned over time. A good strategy
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for doing so is not obvious, however, when ground truth is not
available. To address these challenges, we design a novel method for
maximizing the utility in sequential, binary, multi-advisor decision-
making problems for settings with no ground truth.

These types of scenarios are extensively studied in various fields
where dynamic pricing for advisors is considered [11, 14, 17]. Tong
et al. [14] focus on pricing the advisors in different regions and
decided by the relationship between supply and demand in spatial
crowdsourcing tasks. They do not consider advisors having different
qualities, however. Miao et al. [11] and Wang et al. [17] also assume
advisors cost the same but give additional rewards to advisors with
more contributions. However, when there is no real-time feedback
on the ground truth, it is difficult to determine who should get
additional rewards. Therefore, the same price for advisors with
different qualities is unrealistic; in contrast, our work considers
advisors with different qualities and prices.

Other research considers a fixed budget constraint [2, 15, 16, 18,
20]. However, these papers do not consider that decisions might
have different values and costs associated with getting them wrong.
Consider the following lending decision scenario. If a $1,000 loan
at 9% interest is repaid, it will make a $90 profit, but it can result in
a loss of $1,000 if the borrower defaults. Such high-risk decisions
require a more reliable assessment, potentially requiring multiple
costly advisers, whereas low-value, low-risk decisions may only
need a single one. Therefore, we should consider selecting a group
of advisors with different qualities and prices to balance potential
profits and risks associated with a decision.

Another relevant field of research involves aggregating answers
to infer the ground truth [3, 4, 13, 19]. Here, decisions are made, and
an advisor’s trustworthiness is updated through approaches such
as majority voting, weighted voting, and expectation maximization
(EM). However, they deal with all decisions simultaneously, whereas
we consider the case where decisions are made sequentially. In
the sequential decision-making case, initially, the sample size is
small. So maximum likelihood estimation methods have a large
deviation between the estimated trustworthiness distribution and
the real one [10]. This deviation can mislead future decisions and
samples. Instead, in our work, we consider how to gradually and
steadily establish a trustworthiness model for decisions without
prior information.

Research grounded in multi-armed bandit methods is also rele-
vant here [8, 15, 16, 18]. However, these works assume that that the
ground truth is available following every decision, which means
that advisors’ trustworthiness can be reliably updated. Instead, our
work infers the reliability of the answer by the decision model,
thereby avoiding the need for ground truth. Assessing the reliabil-
ity of the answer can help us give reasonable update evidence for
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Table 1: Comparison of MADDM with state of the art. TS = Thompson Sampling; MV = Majority Voting; BWVE = Bayesian
Weighted Voting Ensemble; EM = Expectation-Maximization.

Setting 𝜖-First [16] ZenCrowd [3] SBB [6] ACT [8] DEMV [13] BAL [4] MTIRL [5] MADDM
sequential ✓ × ✓ ✓ × × ✓ ✓

truth inference × ✓ × × ✓ ✓ ✓ ✓
multi-advisor for one task × ✓ × × ✓ ✓ ✓ ✓

budget-limited ✓ × × × × × × ✓
different task values × × × × × × × ✓

different advisor’s price ✓ × × × × × × ✓
trustworthiness assessment ✓ ✓ ✓ ✓ × ✓ ✓ ✓

insufficient samples ✓ × × ✓ × × ✓ ✓
aggregation method × EM Bayesian × MV EM BWVE BWVE

advisor selection 𝜖-first × × TS × × × TS

building models of the trustworthiness of advisors. To summarise,
Table 1 provides an overview of the state of the art and how it
compares to the problem we are addressing.

In more detail, we present a novel method, called Multi-Advisor
Dynamic Decision-Making Method (MADDM), to address the limi-
tations of existing approaches described above. MADDM (see Sec-
tion 3 for details) integrates and extends several state-of-the-art
methods and consists of three interdependent components: trust
assessment, advisor selection, and decision-making. Trust assess-
ment builds and maintains models of the trustworthiness of each
advisor. For every sequential decision, advisor selection identifies
which advisors to consult. This is similar to a multi-armed bandit
problem, which requires a balance of exploration and exploitation.
We use Thompson Sampling combined with the decision-making
model to compute each advisor’s expected marginal contribution
and select advisers until the marginal contribution is negative. The
third component uses the set of answers from the advisor selected
to make a decision using the Bayesian Weighted Voting Ensemble
(BWVE) method proposed in [5]. In addition, we conduct exten-
sive experiments (Section 4) that compare MADDM to a variety
of methods that combine state-of-the-art approaches, including
budget-limited decision making, 𝜖-greedy selection, and expecta-
tion maximization, and we benchmark performance against the
optimal utility that could be gained with perfect knowledge. The
results show that MADDM outperforms the other two methods in
almost all environments.

Before presenting MADDM in detail, in what follows we first
formalize our problem domain.

2 PROBLEM FORMALIZATION
Let 𝐷 be the set of decisions and 𝑋 be a set of advisors. For every
decision𝑑 ∈ 𝐷 , the decision-maker needs to choose a unique answer
with a binary value, namely 𝑎𝑑 ∈ {−1, 1}. For simplicity but without
loss of generality, we assume that the correct value, i.e. the ground
truth, denoted by 𝑎∗

𝑑
, is positive, i.e. 𝑎∗

𝑑
= 1. Given a decision 𝑑 , 𝑣+

𝑑
is the value that the decision-maker gets if the answer is correct.
We denote with 𝑣−

𝑑
the value that the decision-maker pays if the

answer it infers is wrong. Therefore, the value of the decision is
represented by the tuple 𝑣±

𝑑
= (𝑣+

𝑑
, 𝑣−
𝑑
). Moreover, since we rely on

advisors to answer queries to inform decisions, we need to incentive
them by introducing a payment system. For each advisor 𝑥 ∈ 𝑋 , 𝑐𝑥

is its price. For any given 𝑑 ∈ 𝐷 , the decision-maker must select a
subset of advisors 𝑌𝑑 ⊆ 𝑋 .

The choice of advisors also depends on their trustworthiness.
For each advisor, 𝑥 ∈ 𝑋 , 𝜏𝑥 is its trustworthiness, which is updated
after every decision for which that advisor is consulted. Finally, we
denote with ®𝑐 and ®𝜏 the vectors containing all the advisors’ prices
and trustworthiness values, respectively. We, therefore, describe
any possible selection through a function 𝑠 that, to every tuple
𝐼 := (𝑑, ®𝜏, 𝑣±

𝑑
, ®𝑐) ∈ 𝐷 × [0, 1] |𝑋 | × [0, +∞]2× [0, +∞] |𝑋 | , associates a

subset of advisors 𝑌𝑑 ∈ P(𝑋 ), where |𝑋 | is the cardinality of 𝑋 and
P(𝑋 ) is the power set of 𝑋 ; we call 𝑠 the selection function. Table 2
gives an overview of the main variables and parameters used.

For any given 𝑑 ∈ 𝐷 , we denote with 𝑃𝑑,𝑠 ⊆ 𝑠 (𝐼 ) ⊆ 𝑋 the set
of advisors who give positive answers to decision 𝑑 . Similarly, we
denote with𝑁𝑑,𝑠 ⊆ 𝑠 (𝐼 ) ⊆ 𝑋 the set of advisors who give a negative
answer to decision 𝑑 . When it is clear from the context, we simplify
the notation and use 𝑃𝑑 and 𝑁𝑑 over 𝑃𝑑,𝑠 and 𝑁𝑑,𝑠 , respectively.
Note that 𝑃𝑑,𝑠 ∩ 𝑁𝑑,𝑠 = ∅ and 𝑃𝑑,𝑠 ∪ 𝑁𝑑,𝑠 = 𝑠 (𝐼 ) for every 𝑑 ∈ 𝐷 .

We assume that, for any given decision, 𝑑 , there exists a true an-
swer 𝑎∗

𝑑
, but this is never revealed to the decision maker. Therefore,

we use 𝑎𝑑 = 𝑓 (𝑃𝑑 , 𝑁𝑑 ) to refer to the decision-making function of
our inference model. This is a function of the advisors’ responses in
𝑃𝑑 and 𝑁𝑑 . Let 𝑣𝑑 ∈ 𝑣+𝑑 , 𝑣

−
𝑑
denote the value that the decision-maker

gets from the decision 𝑑 , and let 𝑎∗
𝑑
denote the ground truth of the

decision. If 𝑎𝑑 = 𝑎∗
𝑑
, we say that the answer is correct and 𝑣𝑑 = 𝑣+

𝑑
.

Otherwise, we say that the answer is wrong and 𝑣𝑑 = 𝑣−
𝑑
. Accord-

ingly, for every decision, 𝑑 , the total cost to the decision-maker to
hire the advisors in 𝑠 (𝐼 ) is 𝐶𝑑 (𝑠) =

∑
𝑥∈𝑠 (𝐼 ) 𝑐𝑥 .

Finally, we define the utility that the decision-maker gets for
every decision. Given a decision, 𝑑 , we define its utility to the
decision-maker as 𝑢𝑑 (𝑠) = 𝑣𝑑 − 𝐶𝑑 (𝑠). In particular, the sum of
the utilities for all the decisions is 𝑢 (𝑠) = ∑

𝑑∈𝐷 𝑢𝑑 (𝑠). Since each
advisor has a different cost, the final utility depends on the advi-
sor selection function adopted. In this framework, the goal of the
decision-maker is to find the selection function, 𝑠 , that maximizes
its payoff:

𝑠∗ = arg max
𝑠∈S

𝑢 (𝑠), (1)

where S denotes the set of all feasible selection functions.
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Table 2: List of additional variables and parameters used in
our MADDM system.

Variables and Parameters List
𝑥 advisor index
𝑑 decision index
𝑠 selection function
𝑓 decision function
𝛼𝑥 correct estimated evidence of the advisor 𝑥
𝛽𝑥 wrong estimated evidence of the advisor 𝑥
𝜃𝑥 uncertainty of the advisor 𝑥
𝜏𝑥 trustworthiness of the advisor 𝑥
𝜏 ′𝑥 trustworthiness of the advisor 𝑥 from Beta Sampling
𝑖𝑑 confidence value of decision 𝑑
𝑐𝑥 price of the advisor 𝑥
𝑃𝑑 set of the advisors whose answer for decision 𝑑 is 1
𝑁𝑑 set of the advisors whose answer for decision 𝑑 is −1
𝑌𝑑 𝑃𝑑 ∪ 𝑁𝑑

𝑢𝑑 utility of decision 𝑑
𝑎𝑑 final inferred answer of decision 𝑑
𝑎∗
𝑑

ground truth of decision 𝑑
𝑣+
𝑑

profits that if 𝑎𝑑 = 𝑎∗
𝑑

𝑣−
𝑑

loss that if 𝑎𝑑 ≠ 𝑎∗
𝑑

𝑃𝑒+
𝑑

probability that 𝑎𝑑 = 1 from ensemble model
𝑃𝑒−
𝑑

probability that 𝑎𝑑 = −1 from ensemble model

3 MULTI-ADVISOR DYNAMIC
DECISION-MAKING

The design of MADDM consists of three components. The first is
a trust assessment model that determines an advisor’s trustwor-
thiness, which can be used as a weight in the decision model and
to calculate the contributions of advisors in the advisor selection
model. The second component is the advisor selection model, which
assigns a set of advisors to every decision. The third is the deci-
sion model, which selects an answer after receiving the advisors’
opinions. Figure 1 provides a graphical overview of the structure
of MADDM.

3.1 Trustworthiness Model
Following Jøsang [7], we build our trustworthiness model using a
Beta distribution. Recall that we do not know the ground truth. So,
for each advisor, we associate two values, called advice estimated to
be correct 𝛼𝑥 and advice estimated to be incorrect 𝛽𝑥 . Initially, these
values are 1 [7]; i.e. we start with a prior that is Beta(1, 1), or close
to uninformative. We update these values whenever the advisor
responds to a query. Correct answers to all decisions are estimated
by our model without ground truth; we use the estimated answer
to determine whether the advisor’s answer is correct or not (see
Section 3.3).

Now, for each advisor 𝑥 ∈ 𝑋 , we define its trustworthiness as
𝜏𝑥 = 𝛼𝑥/(𝛽𝑥 + 𝛼𝑥 ) ∈ (0, 1). If 𝜏𝑥 = 1, we say that the advisor 𝑥
is completely trustworthy. If 𝜏𝑥 = 0, we say that the advisor 𝑥 is
completely untrustworthy.

This concept of trustworthiness is insufficient since it does not
capture the epistemic uncertainty associated with that assessment.

For this reason, each advisor’s trustworthiness 𝜏𝑥 is paired with
a parameter that quantifies this epistemic uncertainty behind the
computation of 𝜏𝑥 . This uncertainty will reduce as we acquire more
evidence regarding an advisor 𝑥 . More specifically, we compute
the uncertainty by using Subjective Logic [7]. This is commonly-
employed method in computational models of trust in multi-agent
systems and information fusion. Formally, for each advisor 𝑥 ∈ 𝑋 ,
the uncertainty of 𝑥 is 𝜃𝑥 = 2/(𝛼𝑥 + 𝛽𝑥 ) ∈ (0, 1].

3.2 Advisor Selection
The overall aim of the system is to maximize utility, 𝑢 (𝑠) (see Equa-
tion 1), which requires balancing the trade-off between advisor
costs and decision value. Typically, the costs of asking all advisers
would exceed the decision value, even if the decision is correct, so
it is rarely optimal. For example, for a decision with a value of $10,
it is not worth spending $100 to hire advisors.

Our method selects the set of advisors according to the value
of the problem and estimates their contributions to a decision. We
assume their trustworthiness is initially unknown, and all advisers
have equal trustworthiness. This knowledge is updated over time
but is not reliable at first. Therefore, focusing too early on seemingly
good advisors can lead to sub-optimal decisions. To address this,
our system solves a multi-armed bandit problem in which it has to
balance the exploration of new advisors with the exploitation of
the knowledge it has already gathered. Among the many possible
algorithms used to solve the multi-armed bandit problem, we use
Thompson Sampling [1], which samples from a Beta distribution to
compute the contribution of each advisor.

In Algorithm 1, we sketch the pseudo-code of our selection func-
tion 𝑠 . Recall that ®𝜏 denotes the trustworthiness vector that contains
the trustworthiness of each advisor, and ®𝑐 are their costs. Let ®𝛼 and
®𝛽 denote the estimated evidence vectors, respectively. Given a deci-
sion 𝑑 ∈ 𝐷 , let 𝑃𝑒+

𝑑
and 𝑃𝑒−

𝑑
denote the probability that 𝑎𝑑 = 1 and

𝑎𝑑 = −1, respectively.1 We denote with 𝑈𝑑 the vector containing
the advisors’ utilities.

In more detail, after initializing the answer probabilities 𝑃𝑒+
𝑑

and 𝑃𝑒−
𝑑

, the answer sets 𝑃𝑑 and 𝑁𝑑 , the utility vector𝑈𝑑 , and the
trustworthiness vector (Line 2), the model enters a loop for selecting
advisors (Line 3). Let 𝑉 𝑥

𝑑
, 𝑢𝑥

𝑑
denote the expected contribution and

the marginal utility of the advisor 𝑥 in decision 𝑑 . Recall that 𝑐𝑥
is the price of advisor 𝑥 . Their relationship can be expressed as
follows:

𝑢𝑥
𝑑
= 𝑉 𝑥

𝑑
− 𝑐𝑥 . (2)

In each round of advisor selection, we need to compute the marginal
utility 𝑢𝑥

𝑑
of each advisor and select the one with the best 𝑢𝑑,𝑥∗ ,

which is our estimate of the advisor that maximizes the expected
profit for the decision-maker (Lines 4-8).

Computing the marginal utility 𝑢𝑥
𝑑
is achieved in two steps. First,

for each advisor, 𝑥 , we define a Beta distribution Beta(𝛼𝑥 , 𝛽𝑥 ) and
sample from it to get the Beta trustworthiness 𝜏 ′𝑥 . We only use it
to compute the utility 𝑢𝑑,𝑥 of the advisor 𝑥 (Line 5), whereas the
model does not use 𝜏 ′𝑥 for real decision-making. When there is little
evidence regarding an advisor, e.g. when 𝛼 = 1 and 𝛽 = 1, the

1These values are computed by the decision model, as we will see in Section 3.3.
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Figure 1: The advisor selection model can select a subset of advisors from all advisors to answer the decision. It needs to consider
the decision of value and risk, the advisors’ cost, and trustworthiness. The decisionmodel uses advisors’ trustworthiness and the
answer set to decide the aggregating answer and the estimated evidence for updating the trustworthiness. The trustworthiness
model builds and updates the advisors’ trustworthiness.

Algorithm 1 Pseudo-code of the Advisor Selection algorithm

1: Input: 𝑑, ®𝜏, ®𝛼, ®𝛽, 𝑣+
𝑑
, 𝑣−
𝑑
, ®𝑐

2: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑃𝑒+
𝑑

= 𝑃𝑒−
𝑑

= 0.5,𝑈𝑑 = 𝑃𝑑 = 𝑁𝑑 = ∅
3: while 𝑡𝑟𝑢𝑒 do
4: for advisor 𝑥 in 𝑋 do
5: 𝜏 ′𝑥 ← 𝑇ℎ𝑜𝑚𝑝𝑠𝑜𝑛𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝛼𝑥 , 𝛽𝑥 )
6: 𝑢𝑑,𝑥 ← 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝜏 ′𝑥 , 𝑣+𝑑 , 𝑣

−
𝑑
, 𝑃𝑒+

𝑑
, 𝑃𝑒−

𝑑
)

7: 𝑈𝑑 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑢𝑑,𝑥 )
8: 𝑢𝑑,𝑥∗ = 𝑀𝑎𝑥 (𝑈𝑑 )
9: if 𝑢𝑑,𝑥∗ > 0 do
10: if 𝑎𝑥

∗

𝑑
= 1 do

11: 𝑃𝑑 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑥∗)
12: if 𝑎𝑥

∗

𝑑
= −1 do

13: 𝑁𝑑 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑥∗)
14: 𝑃𝑒+

𝑑
, 𝑃𝑒−

𝑑
← 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙 (𝑃𝑑 , 𝑁𝑑 , ®𝜏)

15: 𝑈𝑑 = ∅
16: 𝑋 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑥∗)
17: until 𝑢𝑑,𝑥∗ ≤ 0
18: Output: 𝑃𝑑 , 𝑁𝑑

Beta distribution has a large variance. Consequently, the value 𝜏 ′𝑥
is subject to large fluctuations, which increases the decision error.

Second, we need to know the contribution 𝑉 𝑥
𝑑
of each advisor

𝑥 . Let us now assume that advisor 𝑥 answered 1 to a decision 𝑑 ;
the case in which the advisor answers −1 follows a similar routine.
In order to compute its contribution, we first add 𝑥 to the set 𝑃𝑑
and proceed to calculate the probabilities 𝑃𝑒+

′

𝑑
and 𝑃𝑒−

′

𝑑
. The value

𝑃𝑒+
′

𝑑
and 𝑃𝑒−

′

𝑑
describes the probability that 𝑎𝑑 = 1 and 𝑎𝑑 = −1,

respectively. Therefore, the wider the gap between 𝑃𝑒+
𝑑

and 𝑃 ′𝑒+,
the larger the advisor’s contribution. We therefore set:

Δ𝑉 𝑥
𝑑,+ = 𝑃+ |𝑃𝑒+

′

𝑑
− 𝑃𝑒+

𝑑
| ∗ (𝑣+

𝑑
+ 𝑣−

𝑑
) . (3)

The values 𝑃+ := 𝑃 (𝑎∗
𝑑
= 1) and 𝑃− := 𝑃 (𝑎∗

𝑑
= −1) are the a priori

probability that the answer is positive or negative, respectively.
Hence the value |𝑃𝑒+′

𝑑
− 𝑃𝑒+

𝑑
| represents the change of the answer

probability if advisor 𝑥 participates in the decision. Similarly, if the
advisor answers −1, we set:

Δ𝑉 𝑥
𝑑,− = 𝑃− |𝑃𝑒−

′

𝑑
− 𝑃𝑒−

𝑑
| ∗ (𝑣+

𝑑
+ 𝑣−

𝑑
) . (4)

After we compute Δ𝑉 𝑥
𝑑,+ and Δ𝑉 𝑥

𝑑,− , we compute the expected
contribution 𝑉 𝑥

𝑑
as:

𝑉 𝑥
𝑑

= (𝜏 ′𝑥 − (1 − 𝜏 ′𝑥 )) ∗ (Δ𝑉 𝑥
𝑑,+ + Δ𝑉

𝑥
𝑑,−). (5)

Finally, the algorithm computes the utility 𝑢𝑥
𝑑
by Equation 2.

If 𝑢𝑥
∗

𝑑
> 0, the advisor 𝑥∗ is selected, which means that its

contribution is greater than its cost. The selected advisor 𝑥∗ needs
to provide the answer for decision 𝑑 . Depending on the answer
from the advisor 𝑥∗, it can be added to 𝑃𝑑 or 𝑁𝑑 (Lines 9–13), which
is used to update the answer probability 𝑃𝑒+

𝑑
and 𝑃𝑒−

𝑑
(Line 14).

After every selection, we need to recalculate the marginal utility of
each advisor for selecting the next advisor because their marginal
utilities change. For example, if we select an advisor with 90%
trustworthiness and give a positive answer to decision 𝑑 , 𝑃𝑒+

𝑑
will

increase from 50% to 90%. The model repeats Lines 4–16 to select
advisors one by one until 𝑢𝑑,𝑥∗ ≤ 0 (Line 17), and outputs the final
answer set (𝑃𝑑 , 𝑁𝑑 ) (Line 18).

3.3 Bayesian and Weighted Voting Ensemble
Decision Model

We use Bayesian and Weighted Voting Ensemble (BWVE) as the
decision function 𝑓 to make decisions [5]. There are two reasons for
choosing BWVE. First, it is a truth inferencemethodwithout ground
truth. It has been shown to outperform the simple weighted voting
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method, which considers the advisors’ weights, determined by their
trustworthiness, to bias majority voting [5]. Second, it returns a
probability distribution over the answers, allowing us to evaluate
each advisor’s contribution, which aligns with our advisor selection
model and retrospectively re-calibrates their trustworthiness.

In the following, we detail the BWVE procedure. Essentially,
it combines two decision procedures to improve the overall out-
come. One is based on a Bayesian model, while the other follows a
weighted voting decision method. If we know the real trustworthi-
ness ®𝜏 of all the advisors, the Bayesian method will obtain higher
accuracy than the weighted voting method. However, in the begin-
ning, because the uncertainty of the trustworthiness is large, the
Bayesian method is unstable, so BWVE relies more on the weighted
voting method for decisions. With the decreasing of the average un-
certainty, the Bayesian method has a better performance. So BWVE
uses the average uncertainty to control the weights of Bayesian
and weighted voting automatically.

3.3.1 Bayesian. For every decision𝑑 , the advisor selection function
returns a subset 𝑌𝑑 ⊆ 𝑋 that needs to answer the decision 𝑑 . We
recall that 𝑃𝑑 ⊆ 𝑌𝑑 denotes the set of advisors that answered 1 to
the decision, while the advisors in 𝑁𝑑 ⊆ 𝑌𝑑 answered −1. Given the
partition (𝑃𝑑 , 𝑁𝑑 ) of 𝑌𝑑 , from the Bayesian method, the probability
that 𝑎∗

𝑑
= 1 is 𝑃𝑏+

𝑑
:= 𝑃𝑏 (𝑎∗𝑑 = 1|𝑃𝑑 , 𝑁𝑑 ), while 𝑃𝑏−𝑑 := 𝑃𝑏 (𝑎∗𝑑 =

−1|𝑃𝑑 , 𝑁𝑑 ) is the probability that 𝑎∗
𝑑
= −1. From Bayes theorem,

we can then express 𝑃𝑏+
𝑑

and 𝑃𝑏−
𝑑

as follows:

𝑃𝑏+
𝑑

=
𝑃+𝑃 (𝑃𝑑 , 𝑁𝑑 |𝑎∗𝑑 = 1)

𝑃+𝑃 (𝑃𝑑 , 𝑁𝑑 |𝑎∗𝑑 = 1) + 𝑃−𝑃 (𝑃𝑑 , 𝑁𝑑 |𝑎∗𝑑 = −1) (6)

𝑃𝑏−
𝑑

=
𝑃−𝑃 (𝑃𝑑 , 𝑁𝑑 |𝑎∗𝑑 = −1)

𝑃−𝑃 (𝑃𝑑 , 𝑁𝑑 |𝑎∗𝑑 = −1) + 𝑃+𝑃 (𝑃𝑑 , 𝑁𝑑 |𝑎∗𝑑 = 1) . (7)

We recall that 𝑃+ := 𝑃 (𝑎∗
𝑑
= 1) and 𝑃− := 𝑃 (𝑎∗

𝑑
= −1) is the a priori

probability that the answer is positive or negative, respectively.
Since we do not have any evidence about 𝑎∗

𝑑
, both 𝑃+ and 𝑃− are

equally likely, therefore we set 𝑃+ = 𝑃− = 0.5. The quantities
𝑃 (𝑃𝑑 , 𝑁𝑑 |𝑎∗𝑑 = 1) and 𝑃 (𝑃𝑑 , 𝑁𝑑 |𝑎∗𝑑 = −1) describe the probability to
observe the partition (𝑃𝑑 , 𝑁𝑑 ) under the assumption that𝑎∗

𝑑
= 1 and

𝑎∗
𝑑
= −1, respectively. Both 𝑃 (𝑃𝑑 , 𝑁𝑑 |𝑎∗𝑑 = 1) and 𝑃 (𝑃𝑑 , 𝑁𝑑 |𝑎∗𝑑 =

−1) are computed through the trustworthiness 𝜏𝑥 as it follows:

𝑃 (𝑃𝑑 , 𝑁𝑑 |𝑎∗𝑑 = 1) =
∏
𝑖∈𝑃𝑑

∏
𝑗∈𝑁𝑑

𝜏𝑖 (1 − 𝜏 𝑗 ) (8)

𝑃 (𝑃𝑑 , 𝑁𝑑 |𝑎∗𝑑 = −1) =
∏
𝑖∈𝑃𝑑

∏
𝑗∈𝑁𝑑

𝜏 𝑗 (1 − 𝜏𝑖 ) (9)

3.3.2 Weighted Voting. The Bayesian decision method can only
work well when the advisors’ trustworthiness is sufficiently high.
In the initial phase of the process, the advisors’ trustworthiness
is unreliable, so the Bayesian method is not stable. Since there
is no ground truth, it is easily misled by bad advisors when the
mean advisors’ accuracy is not high. BWVE deals with this prob-
lem by using the weighted voting method, which is more robust
than Bayesian at the beginning. Then, during the initialization,
the weighted voting method has more influence on the decision
than Bayesian. For the weighted voting method, under the answer

set (𝑃𝑑 , 𝑁𝑑 ), the probability that the ground truth 𝑎∗
𝑑
= 1 and -1

are correct can be denoted as 𝑃𝑤+
𝑑

:= 𝑃𝑤𝑣 (𝑎∗𝑑 = 1|𝑃𝑑 , 𝑁𝑑 ) and
𝑃𝑤−
𝑑

:= 𝑃𝑤𝑣 (𝑎∗𝑑 = −1|𝑃𝑑 , 𝑁𝑑 ), respectively. The model then uses
the sum of the advisors’ trustworthiness to calculate them:

𝑃𝑤+
𝑑

=

∑
𝑖∈𝑃𝑑 𝜏𝑖∑

𝑗∈𝑃𝑑∪𝑁𝑑
𝜏 𝑗

(10)

𝑃𝑤−
𝑑

=

∑
𝑖∈𝑁𝑑

𝜏 𝑗∑
𝑗∈𝑃𝑑∪𝑁𝑑

𝜏 𝑗
(11)

3.3.3 Ensemble Decision. BWVE uses the average uncertainty 𝜃𝑑
to control the weights of the Bayesian and the weighted voting for
decisions. The higher the average uncertainty of the advisors in
the answer set 𝑌𝑑 , the lower reliability of trustworthiness and the
more weight for the weighted voting method. Let |𝑌𝑑 | denote the
cardinality of 𝑌𝑑 . It can be expressed as:

𝜃𝑑 =

∑
𝑖∈𝑌𝑑 𝜃𝑖
|𝑌𝑑 |

(12)

The average uncertainty 𝜃𝑑 gradually decreases as time goes on,
and the weight of the Bayesian method needs to increase. For the
ensemble decision, given the answer set (𝑃𝑑 , 𝑁𝑑 ), the probability
that 𝑎∗

𝑑
= 1 is 𝑃𝑒+

𝑑
:= 𝑃𝑏 (𝑎∗𝑑 = 1|𝑃𝑑 , 𝑁𝑑 ), while 𝑃𝑒−

𝑑
:= 𝑃𝑏 (𝑎∗𝑑 =

−1|𝑃𝑑 , 𝑁𝑑 )is the probability that 𝑎∗
𝑑
= −1. They can be expressed

as:
𝑃𝑒+
𝑑

= (1 − 𝜃𝑑 )𝑃𝑏+𝑑 + 𝜃𝑑𝑃
𝑤+
𝑑

(13)

𝑃𝑒−
𝑑

= (1 − 𝜃𝑑 )𝑃𝑏−𝑑 + 𝜃𝑑𝑃𝑤−𝑑
(14)

Their relationship is:
𝑃𝑒+
𝑑
+ 𝑃𝑒−

𝑑
= 1 (15)

After getting 𝑃𝑒+
𝑑

and 𝑃𝑒−
𝑑

, the system needs to compare them. If
𝑃𝑒+
𝑑

> 𝑃𝑒−
𝑑

, the final answer 𝑎𝑑 = 1. Otherwise, 𝑎𝑑 = −1.

3.3.4 Trustworthiness Update. BWVE uses the absolute difference
of 𝑃𝑒+

𝑑
and 𝑃𝑒−

𝑑
as the new estimated evidence to update 𝛼 and 𝛽 .

𝑖𝑑 = |𝑃𝑒 (𝑎∗𝑑 = 1|𝑃𝑑 , 𝑁𝑑 ) − 𝑃𝑒 (𝑎∗𝑑 = −1|𝑃𝑑 , 𝑁𝑑 ) | (16)

If 𝑎𝑑 = 1, the update of 𝛼𝑥 and 𝛽𝑥 can be expressed as:

𝛼𝑥 ← 𝛼𝑥 + 𝑖𝑑 ∀𝑥 ∈ 𝑃𝑑 ,

𝛽𝑥 ← 𝛽𝑥 + 𝑖𝑑 ∀𝑥 ∈ 𝑁𝑑 ,

(17)

If 𝑎𝑑 = −1, the update of 𝛼𝑥 and 𝛽𝑥 can be expressed as:

𝛽𝑥 ← 𝛽𝑥 + 𝑖𝑑 ∀𝑥 ∈ 𝑃𝑑 ,

𝛼𝑥 ← 𝛼𝑥 + 𝑖𝑑 ∀𝑥 ∈ 𝑁𝑑 ,

(18)

3.3.5 Review Update. Recall that MADDM is an online problem
without access to ground truth. Moreover, the initial trustworthi-
ness is low. Therefore, the update of the trustworthiness ®𝜏 relies on
the evidence from new decisions. And the decisions, in turn, rely
on the trustworthiness ®𝜏 . This dynamic loop is used for building
the model to make the trustworthiness and the aggregating answer
more accurate. Therefore, similar to the EM method, after every
answer, we continuously update the trustworthiness of the advisors
through the answers from past decisions.

Algorithm 2 describes how the review update works. Let ®𝑃𝑝𝑎𝑠𝑡 ,
®𝑁𝑝𝑎𝑠𝑡 denote the vector that contains the past answer set, and we
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recall that ®𝜏 denote the trustworthiness vector that contains all
advisors’ trustworthiness. Let ®𝜏0 denote the old trustworthiness
vector, Δ𝜏 the sum of the difference between the old trustworthiness
vector ®𝜏0 and the new trustworthiness vector ®𝜏 . Furthermore, let𝑉𝑠
denote the threshold of Δ𝜏 for terminating the update.𝑉𝑠 usually is
set to a small value. Note that Δ𝜏 is used to judge the update step
size of ®𝜏 . Specifically, when Δ𝜏 is smaller than 𝑉𝑠 , the model stops
updating.

Algorithm 2 Pseudo-code of the review maximization algorithm

1: Input: ®𝑃𝑝𝑎𝑠𝑡 , ®𝑁𝑝𝑎𝑠𝑡 , ®𝜏,𝑉𝑠
2: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 Δ𝜏 = 0, ®𝜏0 = ®𝜏
3: while 𝑡𝑟𝑢𝑒 do
4: for 𝑃𝑑 , 𝑁𝑑 in ®𝑃𝑝𝑎𝑠𝑡 , ®𝑁𝑝𝑎𝑠𝑡 do
5: 𝑃𝑒+

𝑑
, 𝑃𝑒−

𝑑
← 𝑓 (𝑃𝑑 , 𝑁𝑑 , ®𝜏)

6: ®𝜏0 = ®𝜏
7: ®𝜏 ← 𝑇𝑟𝑢𝑠𝑡𝑤𝑜𝑟𝑡ℎ𝑖𝑛𝑒𝑠𝑠𝑈𝑝𝑑𝑎𝑡𝑒 (𝑃𝑒+

𝑑
, 𝑃𝑒−

𝑑
)

8: Δ𝜏 = 𝑠𝑢𝑚(®𝜏 − ®𝜏0)
9: until Δ𝜏 ≤ 𝑉𝑠
10: Output: ®𝜏

4 EXPERIMENTS
In this section, we present the decision-answer experiments to
evaluate our method. Specifically, we compare our method with
two cost-constraint-based methods. The first is the Fixed Number
of Advisors based method (FNA), which means that the decision-
maker selects a fixed number for answering every decision. The
second is the Budget-Constraint based method (BC), which means
that there is a budget constraint to stop selecting advisors. For
both approaches, we combine these with different advisor-selection
criteria.

4.1 Setting
To the best of our knowledge, there is no standard environment
to run decision experiments. For this reason, we rely on syntheti-
cally generated ones. In more detail, the environment we generate
includes 1000 decisions with binary answers and different values.
The full set of advisors consists of 30 simulated agents with differ-
ent answer accuracy and costs. An Extended Rectified Gaussian
distribution (ERGd) samples both the profits and losses of every
decision [12]. We generate each advisor’s real accuracy and cost
using the same probability distribution. During the experiments,
the decision-maker selects a set of advisors to enquire and infers the
answers using different methods. After answering 1000 decisions,
the decision-maker gets the final utility. Due to the probabilistic
nature of the experiments, every experiment is repeated for 100
different runs to obtain statistically significant results. To reduce
variance and bias, all methods are run using the same conditions.
That is, although the conditions vary between runs, the same set of
runs are used to compare the methods (i.e., using the same set of
advisor qualities and prices, the same decision sequence, and the
same decision profits and losses).

We consider different ratios between the decision’s value and
the advisor’s cost, which leads us to define two sets of experiments.

Table 3: Experiment setting

setting value

env1: decision profits 𝑣+
𝑑
𝑚𝑒𝑎𝑛, 𝑠𝑡𝑑 100, 100

env1: decision loss 𝑣−
𝑑
𝑚𝑒𝑎𝑛, 𝑠𝑡𝑑 100, 100

env2: decision profits 𝑣+
𝑑
𝑚𝑒𝑎𝑛, 𝑠𝑡𝑑 500, 500

env2: decision loss 𝑣−
𝑑
𝑚𝑒𝑎𝑛, 𝑠𝑡𝑑 500, 500

advisor cost 𝑐𝑥 𝑚𝑒𝑎𝑛, 𝑠𝑡𝑑 0 to 20,10
real trustworthiness𝑚𝑒𝑎𝑛, 𝑠𝑡𝑑 from 0.51 to 1,0.3

In the first set, both the decision profits and decision losses are
sampled from an ERGd whose means and standard deviation are
equal to 100. In the second one, the mean and the standard deviation
of the ERGd are both changed to 500. Due to the large deviation,
the decision values are highly volatile. Hence, some decisions may
be worth more than 1000, and some may be worthless.

Furthermore, the real accuracy of advisor 𝑥 , i.e. 𝜏𝑟𝑥 , is sampled
from an ERGd whose standard deviation is fixed at 0.3 while its
mean ranges in the set {0.5 + 0.01 ∗ 𝑘} where 𝑘 = 1, 2, . . . , 50. For
example, if 𝜏𝑟𝑥 is 0.8, the advisor 𝑥 has 80% probability of giving
a correct answer. Hence, we consider 50 different frameworks in
which the average trustworthiness increases every time. Finally,
we assume that the cost of each advisor is proportional to its real
trustworthiness. In practice, higher quality often comes at a cost.
For example, senior advisors are more costly than junior ones. Simi-
larly, more advanced machine learning algorithms typically require
higher computational costs. However, this is only a correlation and
not always the case for every instance. To achieve this correlation,
the cost of each advisor is sampled from an ERGd whose average is
𝜏𝑟𝑥 ∗20 and whose standard deviation is 10. Note that the correlation
makes the problem more challenging since the system has to make
trade-offs between cost and quality. Without such correlation, there
is a high likelihood of a cheap and reliable advisor which makes
the problem easier to solve but also less realistic.

We used three different exploration methods (Upper Confidence
Bound (UCB), Thompson Sampling, 𝜖-greedy) and two rules of the
advisor selection (trustworthiness, cost-effectiveness) to combine
with FNA and BC, respectively. The aggregation method of FNA
and BC is EM, which can maximize the sample utilization and has
been verified multiple times in truth inference [3, 4].

In more detail, in terms of advisor selection strategies, UCB,
Thompson Sampling and 𝜖-greedy are effective for solving themulti-
armed bandit problem. We experimented with a range of values and
found that the 𝜖-greedy method has the best performance when
𝜖 = 0.1 (we also tested 𝜖 = 0.05, 0.15, 0.2, 0.25) for all methods.
UCB and Thompson Sampling explore more than 𝜖-greedy at the
beginning. Since the lack of ground truth, not every exploration can
provide correct feedback for updating trustworthiness, especially
when the average advisor’s accuracy is low.

The criteria for advisor selection contain trustworthiness and
cost-effectiveness. For example, if trustworthiness is the rule, the
greedy strategy always selects the advisor with bigger trustwor-
thiness. Cost-effectiveness is a method we improved from work
[18]. The cost-effectiveness of the advisor 𝑥 can be expressed by
𝑐𝑥/(𝜏𝑥 − 0.5), which means how much cost is the improvement
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(a) environment 1: mean acc, std = 100, 100

(b) environment 2: mean acc, std = 500, 500

Figure 2: In four figures, the X-axis represents the mean advisors’ accuracy from 0.51 to 1. The Y-axis represents the average
utility of 100 experiments. The half-transparent area, along with the curve, is the 95% confidence interval error bar. Figure (a)
shows the results of environment 1 (mean, standard deviation = 100, 100). Figure (b) shows the results of environment 2 (mean,
standard deviation = 500, 500). In Figures (a) and (b), the left figures represent the standard methods, and the right figures are
the exploration-first-based methods. MADDM = multi-advisor dynamic decision-making(ours); FNA = 𝜖-greedy fixed number
of the advisor EM; BC = 𝜖-greedy budget-limited EM; RV = random voting.

of trustworthiness for advisor 𝑥 . It has a better performance than
trustworthiness.

For FNA and BC, we also test their performance under different
hyper-parameters. First, we test the performance of FNA by setting
the number of advisors from 1 to 10. The results show that five
advisors have the best performance. Second, BC, we try 5%, 10%,
15%, 20%, 25% of the value (profit + loss) of every decision as the
budget constraint and 10% has the best performance.

To clearly understand the performance of our method, FNA and
BC, we selected two other methods for comparison. The first is ran-
dom voting (RV). It randomly selects three advisors and combines

them by majority voting. Another one is the best utility (BU). It
describes the maximum utility the decision-maker can get, which
means all the decisions are correct, and the advisor cost is 0.

The method with the trustworthiness model is easily misled
by malicious advisors when the mean advisors’ accuracy is low
[5]. In practical applications, the methods for solving the problem
include adding some decisions with ground truth, selecting several
advisors with high accuracy to participate in decision-making, or
considering the prior information of advisors. In this paper, our
assumptions are no ground truth and no prior information, so we
design the exploration-first model to solve this problem. In the
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Table 4: The red colour numbers The meaning of abbrevia-
tions are: env1(SD): environment 1 and standard methods,
env2(SD): environment 2 and standard methods env1(EF):
environment 1 and all methods with exploration-first model,
env2(EF): environment 1 and all methods with exploration-
first model.

MADDM FNA BC RV

env1(SD) 5.19 ± 7.68 3.76±5.95 2.85±7.51 3.27±2.84
env2(SD) 42.69 ± 27.38 30.89±33.03 35.46±28.11 34.16±16.31
env1(EF) 7.09 ± 4.43 5.15±4.32 6.26±4.79 3.24±2.93
env2(EF) 44.97 ± 22.84 38.89±24.11 37.58±22.68 34.14±16.20

first few decisions, the model selects all advisors for answering to
increase the accuracy of the answer and then back to the method’s
standard advisor selection strategy.We use this model before rounds
1-15, respectively, and the results show that the three methods
perform best when the model is used before the 10 round. Therefore,
we added the exploration-first model to our method, FNA and BC
and did additional experiments in two environments.

4.2 Results
We now compare the utility obtained by the different methods we
considered. Table 4 shows the mean and standard deviation of the
utility in every environment. Overall, our MADDM method has
the best performance in terms of the average utility in almost all
environments. In all the experiments, the average utilities obtained
by the exploration-first methods are significantly bigger than the
others. Moreover, the standard deviation of the utilities is also
reduced, which means that the result is more consistent. We did 600
(3*50*4) pairs of Mann-Whitney Tests between MADDM and FNA,
BC, and Random Voting (RV) with 50 different average advisors’
accuracy in four different environments. We observe that 527 out
of the 600 results have significant differences (𝑝 < 0.05/3).

Figure 2 describes the utility curves of different methods as the
advisors’ accuracy increases. In the vast majority of cases, MADDM
gets more utility than FNA and BC for all the possible accuracy. In
the right graph in Figures 2a and 2b, we compare the utilities when
all the methods use the exploration-first based model.

RV is better than the other three methods when the mean ad-
visors’ accuracy is low. When there is no ground truth and a sig-
nificant proportion of bias, the methods with the trustworthiness
model are easily misled by malicious advisors. Once the trustwor-
thiness model is misled, then malicious users take the initiative to
sabotage future decisions. However, we observe that MADDM is
less prone to be sabotaged. This is due to the fact that MADDM
selects more advisors at the beginning and decreases as trustwor-
thiness is updated, which means MADDM has stronger robustness
to malicious advisors than FNA and BC.

Similarly, we observe that the performances ofMADDMaremore
robust to the manipulation of the bad advisors when the average
cost of the advisors and the decision values are bigger. Since the
decisions in the environment, 2 are more valuable than the ones
in the environment 1, MADDM chooses more advisors to make
decisions together at the beginning in environment 2, which helps

to increase the reliability of the answer. Therefore, based on this
idea, we partially addressed this issue by using the exploration-first-
based methods. The disadvantage of the exploration-first is that it
uses more cost for building trustworthiness. It does not perform
as well as standard methods when the mean advisors’ accuracy is
high. However, we do not know the real distribution of the mean
advisors’ accuracy and decision values before asking, so it is worth
using some cost at first to improve the method’s expected utility.

MADDM automatically selects the advisors by balancing the ad-
visor’s cost and the decision values without any hyper-parameters,
which makes MADDM less prone to select an insufficient number
of advisors or to waste costs. In the two methods based on cost-
effectiveness, they need to set the number of advisors and budget
proportion to control the advisor cost. If the prior distribution is
unknown, the values of these hyper-parameters are difficult to de-
termine. Furthermore, if the advisor cost is too small, the reliability
of the output answer is not enough. While if the cost is too high,
it causes a waste of advisor costs. For example, in Figure 2b, we
observe that FNA does not select enough advisors when the mean
advisors’ accuracy is less than 0.8, whereas the best performance
of BC has a gap with MADDM when the mean advisors’ accuracy
is higher than 0.65.

5 CONCLUSION
In this paper, we introduceMulti-Advisor DynamicDecision-Making
Method (MADDM), a novel approach for making optimal decisions
in sequential decision-making settings with no ground truth. The
model takes into account multiple variables, including the decision
of profits and loss, advisors’ costs, and trustworthiness. It selects
advisors by balancing the advisors’ costs and the value of making
the correct decisions. It also makes decisions by combining the
advice from multiple advisors without access to the ground truth
and dynamically learns the trustworthiness of advisors without
prior information. We test our method through decision-answer
experiments in a simulated environment. We also introduce two
benchmark methods, one using a fixed number of advisors (FNA)
and another one using a fixed budget (BC), which are combined
with state-of-the-art sampling and aggregating methods. The re-
sults show that MADDM significantly outperforms the benchmark
methods.

An interesting direction for future work is moving from binary
answers to multiple answers, making our approach applicable to
more scenarios. This requires changing the calculations of the prob-
abilities to deal with more than two outcomes. The first challenge
in doing so is calculating the confidence value and how to use it for
updating the trustworthiness. The second challenge is adjusting the
weights of the weighted voting approach and the Bayesian method
for making the decision. Another interesting direction is dealing
with multiple simultaneous decisions at each point, which requires
us to consider the allocation of advisors to each of the decisions.
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