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Abstract
We consider the problem of fairly and efficiently allocating indi-

visible items (goods or bads) under capacity constraints. In this

setting, we are given a set of categorized items. Each category has a

capacity constraint (the same for all agents), that is an upper bound

on the number of items an agent can receive from each category.

Our main result is a polynomial-time algorithm that solves the

problem for two agents with additive utilities over the items. When

each category contains items that are all goods (positively evalu-

ated) or all chores (negatively evaluated) for each of the agents,

our algorithm finds a feasible allocation of the items, which is both

Pareto-optimal and envy-free up to one item. In the general case,

when each item can be a good or a chore arbitrarily, our algorithm

finds an allocation that is Pareto-optimal and envy-free up to one

good and one chore. Full version is available at arXiv [36].
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1 Introduction
The problem of how to fairly divide a set of items among agents

with different preferences has been investigated by many mathe-

maticians, economists, political scientists and computer scientists.

Most of the earlier work focused on how to fairly divide goods,
i.e., items with non-negative utility. In recent years, several works

have considered the division of chores, i.e., items with non-positive

utility, and a few works also considered the division of a mixture

of goods and chores (for example, Aziz et al. [3] and Bérczi et al.

[7]). Indeed, items may be considered as goods for one agent and as

chores for another agent. For example, consider a project that has

to be completed by a team of students. It consists of several tasks

that should be divided among the students, such as: programming

tasks, user-interface tasks and algorithm development tasks. One

student may evaluate the programming tasks as items with negative

utilities and the UI and algorithmic tasks as items with positive

utilities, while another student may evaluate them the other way

around.

Often, there is a constraint by which the items are partitioned

into categories, and each category has an associated capacity, which
defines the maximum number of items in this category that may be

Proc.of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
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assigned to each agent. Considering again the student project exam-

ple, the mentor of the project may want all students to be involved

in all aspects of the project. Therefore, the mentor may partition

the project tasks into three categories: programming, UI, and al-

gorithms, setting a capacity for each category. For example, if the

team consists of two students, and there are 5 programming tasks, 6

UI tasks and 4 algorithm tasks, then a capacity of 3 on programming

and UI tasks and a capacity of 2 on algorithm tasks would ensure

that both students are involved in about the same number of tasks

from each category. Clearly, the capacity constraints should be large

enough so that all of the items in a given category could be assigned

to the agents. An allocation satisfying all capacity constraints is

called feasible.
Note that, without capacity constraints, if one agent evaluates

an item as a good, while another agent evaluates it as a chore,

we can simply give it to the agent who evaluates it as a good,

as done by Aziz et al. [3]. However, with capacities it may not be

possible, which shows that the combination of capacities and mixed

valuations is more difficult than each of these on its own.

Two important considerations in item allocation are efficiency
and fairness. As an efficiency criterion, we use Pareto optimality
(PO), which means that no other feasible allocation is at least as

good for all agents and strictly better for some agent. As fairness

criteria, we use two relaxations of envy-freeness (EF). The stronger
one is envy-freeness up to one item (EF1), which was introduced by

Budish [17], and adapted by Aziz et al. [3] for a mixture of goods

and chores. Intuitively, an allocation is EF1 if for each pair of agents

𝑖, 𝑗 , after removing the most difficult chore (for 𝑖) from 𝑖’s bundle,

or the most valuable good (for 𝑖) from 𝑗 ’s bundle, 𝑖 would not be

jealous of 𝑗 .

With capacity constraints, an EF1 allocation may not exist. For

example, consider a scenario with one category with two items, 𝑜1
and 𝑜2, and capacity constraint of 1. 𝑜1 is a good for both agents

(e.g., 𝑢1(𝑜1) = 𝑢2(𝑜1) = 1), and 𝑜2 is a chore for both agents (e.g.,

𝑢1(𝑜2) = 𝑢2(𝑜2) = −1). Clearly, in every feasible allocation, one

agent must receive the good and the other agent must receive the

chore (due to the capacity constraint), and thus the allocation is not

EF1. Therefore, we introduce a natural relaxation of it, which we

call envy-freeness up to one good and one chore (EF[1,1]). It means

that, for each pair of agents 𝑖, 𝑗 , there exists a chore in 𝑖’s bundle,

and a good in 𝑗 ’s bundle, such that both are in the same category,

and after removing them, 𝑖 would not be jealous of 𝑗 . In the special

case in which, for each agent and category, either all items are

goods or all items are chores (as in the student project example

above), EF[1,1] is equivalent to EF1. We call this special case a same-
sign instance; note that it is still more general than only-goods or

only-chores settings.

We focus on allocation problems between two agents. This case

is practically important. For example, student projects are often
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done in teams of two, and household chores are often carried out

by the two partners. Fair allocation among two agents is the focus

of various papers on fair division [2, 7, 13, 14, 28, 33, 34, 39].

We prove the existence of PO and EF[1,1] allocations with capac-

ity constraints for two agents with arbitrary (positive or negative)

utilities over the items. The proof is constructive: we provide a

polynomial-time algorithm that, for two agents, returns an allo-

cation that is both PO and EF[1,1]. In a same-sign instance, the

returned allocation is PO and EF1.

Our focus on the case of two agents allows us to simultane-

ously make two advancements over the state-of-the-art in capacity-

constrained fair allocation [10, 21]: First, we handle a mixture of

goods and chores, rather than just goods. As we show in Appendix

A in the full version [36], standard techniques used for goods are

not applicable for mixed utilities. Second, we attain an allocation

that is not only fair but also PO. Before this work, it was not even

known if a PO and EF1 allocation of goods with capacity constraints

always exists.

Our algorithm is based on the following ideas. The division

problem can be considered as a matching problem on a bipartite

graph, in which one side represents the agents and the other side

represents the items. We add dummy items and clones of agents

such that in every matching the capacity constraints are guaran-

teed. We assign a positive weight to each agent. We assign, to each

edge between an agent and an item, a weight which is the product

of the agent’s weight and the valuation of the agent to the item.

A maximum-weight matching in this graph represents a feasible

allocation that maximizes a weighted sum of utilities. Every allo-

cation that maximizes a weighted sum of utilities, with positive

agent weights, is Pareto-optimal.
1
Our algorithm first computes a

maximum-weight matching that is also envy-free (EF) for one of

the agents. It then tries to make it EF[1,1], while maintaining it a

maximum-weight matching, by identifying pairs of items that can

be exchanged between the agents, based on a ratio that captures

how much one agent prefers an item relative to the other agent’s

preferences. Every exchange of items is equivalent to increasing

the jealous agent’s weight and decreasing the other agent’s weight.

2 Related Work
Fair division problems vary according to the nature of the objects

being divided, the preferences of the agents, and the fairness cri-

teria. Many algorithms have been developed to solve fair division

problems, for details see the surveys of such algorithms [15], [31],

[12], [11].

In this paper we consider a new setting, which combines goods,

chores, capacity constraints and Pareto-optimality. Note that even

ignoring PO, goods, or both, our result is new.

2.1 Mixtures of Goods and Chores
Bérczi et al. [7] present a polynomial-time algorithm for finding

an EF1 allocation for two agents with arbitrary utility functions

(positive or negative). Chen and Liu [20] proved that the leximin

solution is EFX (a property stronger than EF1) for combinations

1

In fact, maximizing a weighted sum of utilities is stronger than Pareto-optimality.

When allocating goods without capacity constraints, maximizing a weighted sum of

utilities is equivalent to a stronger efficiency notion called fractional Pareto-optimality
[6, 32, 40].

of goods and chores, for agents with identical valuations. Gafni

et al. [23] present a generalization of both goods and chores, by

considering items that may have several copies. All these works do

not consider efficiency. Efficiency in a setting with goods and chores

is studied by Aziz et al. [3]. They use the round-robin technique for

finding an EF1 and PO division of combinations of goods and chores

between two agents. Similarly, Aziz et al. [4] find an allocation that

is PROP1 (a property weaker than EF1) and PO for goods and chores.

Aleksandrov and Walsh [1] prove that, with tertiary utilities, EFX

and PO allocations always exist for mixed items. However, all of

these works do not handle capacity constraints.

2.2 Constraints
When all agents have weakly additive utilities, the round-robin

protocol finds a complete EF1 division in which all agents receive

approximately the same number of goods [18]. This technique,

together with the envy-graph, has been used for finding a fair di-

vision of goods under capacity constraints [10]. This work has

been extended to heterogeneous capacity constraints [21], and to

maximin-share fairness [26].

Fair allocation of goods of different categories has been studied

by Mackin and Xia [30]. The constraint is that each agent must

receive at least one item per category. Sikdar et al. [37] consider

an exchange market in which each agent holds multiple items of

each category and should receive a bundle with exactly the same

number of items of each category. Nyman et al. [35] study a similar

setting (they call the categories “houses” and the items “rooms”),

but with monetary transfers (“rent”).

Several other constraints have been considered. For example,

Bilò et al. [9] study the fair division of goods such that each bundle

needs to be connected on an underlying graph. Igarashi and Peters

[27] study PO allocation of goods with connectivity constraints.

An overview of the different types of constraints that have been

considered can be found in [38].

2.3 Efficiency and Fairness
There are several techniques for finding a division of goods that is

EF1 and PO. For example, the Maximum Nash Welfare algorithm

selects a complete allocation that maximizes the product of utilities.

It assumes that the agents’ utilities are additive, and the resulting

allocation is both EF1 and PO [18, 42].

In the context of fair cake-cutting (fair division of a continu-

ous resource), Weller [41] proved the existence of an EF and PO

allocation by considering the set of all allocations that maximize

a weighted sum of utilities. We adapted this technique for the set-

ting with indivisible items and capacity constraints. Barman et al.

[6] present a price-based mechanism that finds an EF1 and PO al-

location of goods in pseudo-polynomial time. Similarly, Barman

and Krishnamurthy [5] use a price-based approach to show that

fair and efficient allocations can be computed in strongly polyno-

mial time. The price-based approach can be seen as a “dual” of our

weight-based approach.

Garg et al. [24] present an algorithm for EF1 and PO allocation

of chores when agents have bivalued preferences. With general

additive preferences, the existence of an PO and EF1 allocation of

chores for three agents (without capacity constraints) was proved
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only very recently by Garg et al. [25]. The authors claim that “the

case of chores turns out to be much more difficult to work with,

resulting in relatively slow progress despite significant efforts by

many researchers”. Indeed, for four or more agents, existence is

still open even for only-chores instances and without capacity

constraints.

2.4 Alternative Techniques
Our setting combines a mixture of goods and chores, capacity con-

straints, and a guarantee of both fairness and efficiency. These

three issues were studied in separation, but not all simultaneously.

Although previous works have developed useful techniques, they

do not work for our setting. For example, using the top-trading
graph presented by Bhaskar et al. [8] for dividing chores does not

work when there are capacity constraints. The reason is that if we

allocate an item to the “sink” agent (i.e., an agent that does not envy

any agent) on the top-trading graph, we may exceed the capacity

constraints. As another example, consider the maximum-weighted

matching algorithm of Brustle et al. [16]. It is not hard to modify

the algorithm to work with chores, but adding capacity constraints

on each category might not maintain the EF1 property between the

categories. See Appendix A in the full version [36] for more details.

Therefore, in this paper we develop a new technique for finding

PO and EF1 (or EF[1,1]) allocation of the set of items (goods and

chores), that also maintains capacity constraints.

Table 1 summarizes some of the previous results mentioned in

this section, which are close to our setting.

3 Notations
An instance of our problem is a tuple 𝐼 = (𝑁,𝑀,𝐶, 𝑆,𝑈 ):

● 𝑁 = (︀𝑛⌋︀ is a set of 𝑛 agents.

● 𝑀 = (𝑜1, . . . , 𝑜𝑚) is a set of𝑚 items.

● 𝐶 = (𝐶1,𝐶2, ...,𝐶𝑘) is a set of 𝑘 categories. The categories

are pairwise-disjoint and𝑀 = ⋃𝑗 𝐶 𝑗 .

● 𝑆 = (𝑠1, 𝑠2, ..., 𝑠𝑘) is a list of size 𝑘 , containing the capacity

constraint of each category. We assume that ∀ 𝑗 ∈ (︀𝑘⌋︀:
⋃︀𝐶 𝑗 ⋃︀

𝑛
≤

𝑠 𝑗 ≤ ⋃︀𝐶 𝑗 ⋃︀, 𝑠 𝑗 ∈ N. The lower bound is needed to ensure we

can divide all the items, and not "throw" anything away, and

the upper bound is a trivial bound used for computing the

run-time.

● 𝑈 is an 𝑛-tuple of utility functions 𝑢𝑖 ∶ 𝑀 →R. We assume

additive utilities, that is, 𝑢𝑖(𝑋) ∶= ∑𝑜∈𝑋 𝑢𝑖(𝑜) for 𝑋 ⊆ 𝑀 .

In a general mixed instance, each utility can be any real number

(positive, negative or zero). A same-sign instance is an instance in

which, for each agent 𝑖 ∈ 𝑁 and category 𝑗 ∈ (︀𝑘⌋︀, 𝐶 𝑗 contains only

goods for 𝑖 or only chores for 𝑖 . That is, either 𝑢𝑖(𝑜) ≥ 0 for all

𝑜 ∈ 𝐶 𝑗 , or 𝑢𝑖(𝑜) ≤ 0 for all 𝑜 ∈ 𝐶 𝑗 . Note that, even in a same-sign

instance, it is possible that each agent evaluates different categories

as goods or chores, and that different agents evaluate the same item

differently.

An allocation is a vector𝐴 ∶= (𝐴1,𝐴2, ...,𝐴𝑛), with ∀𝑖, 𝑗 ∈ (︀𝑛⌋︀, 𝑖 ≠

𝑗 ∶ 𝐴𝑖 ∩𝐴 𝑗 = ∅ and ⋃𝑖∈(︀𝑛⌋︀𝐴𝑖 = 𝑀 . 𝐴𝑖 is called "agent 𝑖’s bundle".

An allocation 𝐴 is called feasible if for all 𝑖 ∈ (︀𝑛⌋︀, the bundle 𝐴𝑖

contains at most 𝑠𝑐 items of each category 𝐶𝑐 , for each 𝑐 ∈ (︀𝑘⌋︀.

Definition 3.1 (Due to Aziz et al. [3]). An allocation 𝐴 is called

Envy Free up to one item (EF1) if for all 𝑖, 𝑗 ∈ 𝑁 , at least one of the

following holds:

● ∃𝑇 ⊆ 𝐴𝑖 with ⋃︀𝑇 ⋃︀ ≤ 1, s.t. 𝑢𝑖(𝐴𝑖 ∖𝑇 ) ≥ 𝑢𝑖(𝐴 𝑗).

● ∃𝐺 ⊆ 𝐴 𝑗 with ⋃︀𝐺 ⋃︀ ≤ 1, s.t. 𝑢𝑖(𝐴𝑖) ≥ 𝑢𝑖(𝐴 𝑗 ∖𝐺).

We also define a slightly weaker fairness notion, that we need

for handling general mixed instances, in which an EF1 allocation is

not guaranteed to exist, as shown in Introduction.

Definition 3.2. An allocation 𝐴 is called Envy Free up to one good
and one chore (EF[1,1]) if for all 𝑖, 𝑗 ∈ 𝑁 , there exists a set 𝑇 ⊆ 𝐴𝑖

with ⋃︀𝑇 ⋃︀ ≤ 1, and a set𝐺 ⊆ 𝐴 𝑗 with ⋃︀𝐺 ⋃︀ ≤ 1, such that G and T are of

the same category, and 𝑢𝑖(𝐴𝑖 Ó 𝑇 ) ≥ 𝑢𝑖(𝐴 𝑗 Ó 𝐺).

The uncategorized setting of Aziz et al. [3] can be reduced to our

setting by putting each item in its own category, with a capacity of

1. An allocation is EF[1,1] in the categorized instance if-and-only-if

it is EF1 (by Definition 3.1) in the original instance.

Throughout the paper, any result that is valid for mixed instances

with EF[1,1] is also valid for same-sign instances with EF1. This

follows from the following lemma.

Lemma 3.3. In a same-sign instance, EF[1,1] is equivalent to EF1.

Proof. Suppose that some allocation,𝐴, for a same-sign instance

is EF[1,1]. Therefore, for all 𝑖, 𝑗 ∈ 𝑁 , ∃𝑇 ⊆ 𝐴𝑖 with ⋃︀𝑇 ⋃︀ ≤ 1, and

∃𝐺 ⊆ 𝐴 𝑗 with ⋃︀𝐺 ⋃︀ ≤ 1, such that G and T are of the same category,

and 𝑢𝑖(𝐴𝑖 Ó 𝑇 ) ≥ 𝑢𝑖(𝐴 𝑗 Ó 𝐺).

If ⋃︀𝐺 ⋃︀ = 0 or ⋃︀𝑇 ⋃︀ = 0, then 𝐴 is EF1, by definition. So assume that

⋃︀𝐺 ⋃︀ = ⋃︀𝑇 ⋃︀ = 1. Since G and T are in the same category, and in a

same-sign instance, for each agent 𝑖 ∈ (︀𝑛⌋︀ and category 𝑐 ∈ (︀𝑘⌋︀, 𝐶𝑐

contains only goods for 𝑖 or only chores for 𝑖 , then, for all 𝑗 ∈ (︀𝑛⌋︀,

if 𝐶𝑐 is a category of goods for agent 𝑖 , then 𝑢𝑖(𝐴𝑖 Ó 𝑇 ) ≥

𝑢𝑖(𝐴 𝑗 Ó 𝐺) implies 𝑢𝑖(𝐴𝑖) ≥ 𝑢𝑖(𝐴 𝑗 Ó 𝐺), so both allocations

are EF1 for agent 𝑖 . If 𝐶𝑐 is a category of chores for agent 𝑖 , then

𝑢𝑖(𝐴𝑖 Ó 𝑇 ) ≥ 𝑢𝑖(𝐴 𝑗 Ó 𝐺) implies 𝑢𝑖(𝐴𝑖 Ó 𝑇 ) ≥ 𝑢𝑖(𝐴 𝑗), so again

both allocations are EF1 for agent 𝑖 . □

Remark 3.4. Our new EF[1,1] is reminiscent of another guarantee

called 𝐸𝐹
1

1
, that is, envy-freeness up to adding a good to one agent

and removing a good from another agent [5]. But lemma 3.3 implies

that EF[1,1] is stronger. The reason is that if there are only goods,

it is enough to remove one good from an agent’s bundle, and there

is no need to also add a good to the envious agent’s bundle.

EF[1,1] can be seen as a generalization of EF1 as defined in [Aziz

et al. 2022] to the case of categorized items (you just have to define

one category for every item, with an upper bound equal to one).

Remark 3.5. The restriction in Definition 3.2 that𝐺 and 𝑇 should

be of the same category is essential for Lemma 3.3. To see this,

denote by EF[1,1,U] the unrestricted variant of EF[1,1], allowing

to remove one chore and one good from any category. Suppose

that there are two categories: one of them contains a good (for

both agents) and the other contains a chore (for both agents). If

one agent gets the good and the other agent gets the chore, the

allocation is EF[1,1,U], and it is a same-sign instance, but it is not

EF1.

Any EF[1,1] allocation is clearly EF[1,1,U]. Therefore, proving

that our algorithm returns an EF[1,1] allocation implies two things
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Table 1: Summary of some works on fair allocation of indivisible items

paper agents utilities goods chores constraints fairness PO result

[7] 2 arbitrary v v - EF1 - polynomial-time algorithm

[20] any identical v v - EFX - the leximin solution

[23] any leveled v v - EFX - existence proof

[3] 2 arbitrary v v - EF1 v round-robin technique

[4] any arbitrary v v - PROP1 v polynomial-time algorithm

[1] any tertiary v v - EFX v existence proof

[18] any weakly

additive

v - approximately the same num-

ber

EF1 - round-robin protocol

[10] any additive v - capacity constraints EF1 - round-robin protocol and

envy-graph

[21] any heterog-

eneous

v - heteroge- neous capacity con-

straint

EF1 - polynomial-time algorithm

[26] any additive v - capacity constraint MMS - polynomial-time algorithm

[30] any heterog-

eneous

and

combina-

torial

v - each agent gets at least one item

per category

egalita-

rian

rank

- characterize egalitarian + util-

itarian rank-efficiency of cat-

egorial sequential allocation

mechanisms.

[9] any identical v - each bundle needs to be con-

nected on an underlying graph

EF1 - polynomial-time algorithm

[27] any additive v - bundles must be connected in

an underlying item graph

EF1 v non-existence on a path graph

[18] any additive v - - EF1 v max Nash welfare algorithm

[42] any additive v - each agent has a budget con-

straint on the total cost of items

she receives

1/4-EF1 v max Nash welfare algorithm

[6] any additive v - - EF1 v pseudo-poly. time algorithm

[8] any additive - v - EF1 - polynomial-time algorithm

[16] any additive v - - EF1 - max weighted matching

[19] 3 additive v - - EFX - existence proof

[24] any additive,

bivalued

- v - EF1 v polynomial-time algorithm

We 2 additive v v capacity constraints EF1 ||
EF[1,1]

v polynomial-time algo-
rithm

at once: in general instances, it returns an EF[1,1,U] allocation; and

in same-sign instances, our algorithm returns an EF1 allocation.

Finally, we recall two definitions:

Definition 3.6. Given an allocation 𝐴 for 𝑛 agents, the envy graph
of 𝐴 is a graph with 𝑛 nodes, each represents an agent, and there is

a directed edge 𝑖 → 𝑗 iff 𝑖 envies 𝑗 in allocation 𝐴. A cycle in the

envy graph is called an envy cycle.

Our efficiency criterion is defined next:

Definition 3.7. Given an allocation 𝐴, another allocation 𝐴
′
is

a Pareto-improvement of 𝐴 if 𝑢𝑖(𝐴
′

𝑖) ≥ 𝑢𝑖(𝐴𝑖) for all 𝑖 ∈ 𝑁 , and

𝑢 𝑗(𝐴
′

𝑗) > 𝑢 𝑗(𝐴 𝑗) for some 𝑗 ∈ 𝑁 .

A feasible allocation 𝐴 is Pareto-Optimal (𝑃𝑂) if no feasible

allocation is a Pareto-improvement of 𝐴.

4 Finding a PO and EF[1,1] Division
In this section, we present some general notions that can be used

for any number of agents.

Then, we present our algorithm that finds in polynomial time

a feasible PO allocation with two agents. In any mixed instance,

this allocation is also EF[1,1]; in a same-sign instance, it is also EF1,

according to Lemma 3.3.

4.1 Preprocessing
We preprocess the instance such that, in any feasible allocation, all

bundles have the same cardinality. To achieve this, we add to each

category 𝐶𝑐 with capacity constraint 𝑠𝑐 , some 𝑛𝑠𝑐 − ⋃︀𝐶𝑐 ⋃︀ dummy

itemswith a value of 0 to all agents. In the new instance, each bundle

must contain exactly 𝑠𝑐 items from each category𝐶𝑐 . From now on,

without loss of generality, we assume that ⋃︀𝑀 ⋃︀ = 𝑚 = ∑𝑐∈(︀𝑘⌋︀ 𝑛𝑠𝑐 .
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This implies that, in every feasible allocation𝐴, we have ⋃︀𝐴𝑖 ⋃︀ =𝑚⇑𝑛

for all 𝑖 ∈ (︀𝑛⌋︀.

4.2 Maximizing a Weighted Sum of Utilities
Our algorithm is based on searching the space of PO allocations.

Particularly, we consider allocations that maximize a weighted sum

of utilities𝑤1𝑢1+𝑤2𝑢2+ ...+𝑤𝑛𝑢𝑛 , where each agent 𝑖 is associated

with a weight𝑤𝑖 ∈ (︀0, 1⌋︀, and𝑤1+𝑤2+ ...+𝑤𝑛 = 1. Such allocations

can be found by solving a maximum-weight matching problem in a

weighted bipartite graph. We denote the set of all agents’ weights

by𝑤 = (𝑤1,𝑤2, ...,𝑤𝑛).

Definition 4.1. For any𝑛 real numbers (weights)𝑤 = (𝑤1,𝑤2, ...,𝑤𝑛),

such that, ∀𝑖 ∈ (︀𝑛⌋︀,𝑤𝑖 ∈ (︀0, 1⌋︀, and𝑤1 +𝑤2 + ... +𝑤𝑛 = 1, let𝐺𝑤 be

a bipartite graph (𝑉1 ∪𝑉2, 𝐸) with ⋃︀𝑉1⋃︀ = ⋃︀𝑉2⋃︀ =𝑚.𝑉2 contains all𝑚

items (of all categories, including dummies). 𝑉1 contains
𝑚
𝑛
copies

of each agent 𝑖 ∈ (︀𝑛⌋︀. For each category 𝑐 ∈ (︀𝑘⌋︀, we choose distinct

𝑠𝑐 copies of each agent and add an undirected edge from each of

them to all the 𝑛𝑠𝑐 items of 𝐶𝑐 . Each edge {𝑖, 𝑜} ∈ 𝐸, 𝑖 ∈ 𝑉1, 𝑜 ∈ 𝑉2
has a weight𝑤(𝑖, 𝑜), where:

𝑤(𝑖, 𝑜) ∶=𝑤𝑖 ⋅𝑢𝑖(𝑜)

An allocation is called𝑤-maximal if it corresponds to amaximum-

weight matching among the maximum-cardinality matchings in

𝐺𝑤 .

Proposition 4.2. Every𝑤-maximal allocation, where𝑤1,𝑤2, . . .

,𝑤𝑛 ∈ (0, 1), is PO.

Proof. Every 𝑤-maximal allocation 𝐴 = (𝐴1,𝐴2, ...,𝐴𝑛) maxi-

mizes the sum𝑤1𝑢1(𝐴1)+𝑤2𝑢2(𝐴2)+ ...+𝑤𝑛𝑢𝑛(𝐴𝑛). Every Pareto-

improvement would increase this sum. Therefore, there can be no

Pareto-improvement, so 𝐴 is PO. □

4.3 Exchanging Pairs of Items
Our algorithm starts with a𝑤-maximal allocation, and repeatedly

exchanges pairs of items between the agents in order to find an

allocation that is also EF[1,1]. To determine which pairs to exchange,

we need some definitions and lemmas.

Definition 4.3. Given a feasible allocation 𝐴 = (𝐴1,𝐴2, ...,𝐴𝑛), an

exchangeable pair is a pair (𝑜𝑖 , 𝑜 𝑗) of items, 𝑜𝑖 ∈ 𝐴𝑖 and 𝑜 𝑗 ∈ 𝐴 𝑗 ,

𝑖, 𝑗 ∈ (︀𝑛⌋︀, 𝑖 ≠ 𝑗 , such that 𝑜𝑖 and 𝑜 𝑗 are in the same category.

This implies that 𝐴𝑖 ∖ {𝑜𝑖}∪ {𝑜 𝑗} and 𝐴 𝑗 ∖ {𝑜 𝑗}∪ {𝑜𝑖} are both

feasible. Additionally, in a same-sign instance, for each agent, 𝑜𝑖 , 𝑜 𝑗
are in the same "type", that is, both goods or both chores.

In this paper, we work a lot with exchangeable pairs, so we use

𝑜𝑖 , 𝑜 𝑗 ∈ 𝐴𝑖 ,𝐴 𝑗 as a shorthand for “𝑜𝑖 ∈ 𝐴𝑖 and 𝑜 𝑗 ∈ 𝐴 𝑗 ”.

4.3.1 Finding a Fair Allocation The following two lemmas

deal with fairness while exchanging exchangeable pairs in a 𝑤-

maximal allocation.

Lemma 4.4. Let 𝐴 be a𝑤-maximal feasible allocation, and let 𝐴′

be another feasible allocation, resulting from 𝐴 by exchanging an
exchangeable pair (𝑜𝑖 , 𝑜 𝑗) between some two agents 𝑖 ≠ 𝑗 . Then there
exists some ordering of the agents, 𝑘1, . . . , 𝑘𝑛 , such that for all 𝑦 > 𝑥 ,
the EF[1,1] condition is satisfied for agent 𝑘𝑦 with respect to agent

𝑘𝑥 in both allocations 𝐴 and 𝐴′. That is, 𝑘𝑦 envies 𝑘𝑥 up to one good
and one chore in both allocations.

In particular, there is at least one agent (agent 𝑘𝑛) for whom both

𝐴 and 𝐴′ are EF[1,1].

Proof. Let 𝐴 = (𝐴1, ..,𝐴𝑛) and 𝐴
′
= (𝐴

′

1
, ...,𝐴

′

𝑛). Let 𝐶𝑐 be the

category that contains both items 𝑜𝑖 , 𝑜 𝑗 . By the pre-processing step,

every bundle in𝐴 contains at least one item from𝐶𝑐 . Sowe canwrite

every bundle𝐴𝑥 , for all 𝑥 ∈ (︀𝑛⌋︀, as:𝐴𝑥 = 𝐵𝑥 ∪{𝑜𝑥} for some 𝑜𝑥 ∈ 𝐶𝑐 .

After the exchange, we have for all 𝑥 ≠ 𝑖, 𝑗 ∶ 𝐴
′

𝑥 = 𝐴𝑥 = 𝐵𝑥 ∪ {𝑜𝑥},

whereas 𝐴
′

𝑖 = 𝐵𝑖 ∪ {𝑜 𝑗},𝐴
′

𝑗 = 𝐵 𝑗 ∪ {𝑜𝑖}.

Consider the envy-graph representing the partial allocation

(𝐵1, 𝐵2, . . . , 𝐵𝑛). We claim that it contains no cycle. Suppose that it

contained an envy-cycle. If we replaced the bundles according to

the direction of edges in the cycle, we would get another feasible

allocation which is a Pareto-improvement of the current allocation,

𝐴, which is𝑤-maximal. Contradiction!

Therefore, the envy-graph of (𝐵1, 𝐵2, ..., 𝐵𝑛) has a topological

ordering. Let 𝑘1, . . . , 𝑘𝑛 be such an ordering, so that for all 𝑦 > 𝑥 ,

agent 𝑘𝑦 prefers 𝐵𝑘𝑦 over 𝐵𝑘𝑥 . In both allocations 𝐴 and 𝐴
′
, the

bundles of both 𝑘𝑦 and 𝑘𝑥 are derived from 𝐵𝑘𝑦 and 𝐵𝑘𝑥 by adding

a single good or chore. Therefore, in both 𝐴 and 𝐴
′
, the EF[1,1]

condition is satisfied for agent 𝑘𝑦 w.r.t. agent 𝑘𝑥 . In particular, for

agent 𝑘𝑛 , both these allocations are EF[1,1].
2 □

Lemma 4.4 considered a single exchange. Now, we consider a

sequence of exchanges. The following lemma works only for two

agents — we could not yet extend it to more than two agents.

Lemma 4.5. Suppose there are 𝑛 = 2 agents. Suppose there is a
sequence of feasible allocations 𝐴1

, . . . ,𝐴
𝑥 with the following proper-

ties:
● ∀ 𝑗 ∈ (︀𝑥⌋︀, the allocation 𝐴

𝑗
= (𝐴

𝑗
1
,𝐴

𝑗
2
) is 𝑤-maximal, where

𝑤 = (𝑤1, 𝑗 ,𝑤2, 𝑗) for some𝑤1, 𝑗 ,𝑤2, 𝑗 ∈ (0, 1).
● 𝐴

1 is EF for agent 1 and 𝐴𝑥 is EF for agent 2.
● ∀ 𝑗 ∈ (︀𝑥 − 1⌋︀, 𝐴 𝑗+1 is obtained from 𝐴

𝑗 by a single exchange
of an exchangeable pair between the agents.

Then, for some 𝑗 ∈ (︀𝑥⌋︀, the allocation 𝐴 𝑗 is PO and EF[1,1].

Proof. Every 𝐴
𝑗
is PO by Proposition 4.2. Therefore, it is never

possible for the two agents to envy each other simultaneously. Since

at 𝐴
1
agent 1 is not jealous and at 𝐴

𝑥
agent 2 is not jealous, there

must be some 𝑗 ∈ (︀𝑥 − 1⌋︀ in which 𝐴
𝑗
is EF for 1, and 𝐴

𝑗+1
is EF for

2.

Because 𝐴
𝑗+1

results from 𝐴
𝑗
by exchanging an exchangeable

pair between the agents, by Lemma 4.4, there exists an agent 𝑖 ∈ (︀2⌋︀

such that both 𝐴
𝑗
and 𝐴

𝑗+1
are EF[1,1] for 𝑖 .

If both are EF[1,1] for agent 1, then 𝐴
𝑗+1

is an EF[1,1] allocation.

If both are EF[1,1] for agent 2, then 𝐴
𝑗
is an EF[1,1] allocation. □

To apply Lemma 4.5, we need a way to choose the pair of ex-

changeable items in each step of the sequence, so that the next

allocation in the sequence remains𝑤-maximal. We use the follow-

ing definition.

2

In fact, the result holds not only for an exchange of two items, but also for any

permutation of 𝑛 items of the same category, one item per agent. The proof is the

same.
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Definition 4.6. For a pair of agents 𝑖, 𝑗 ∈ (︀𝑛⌋︀ s.t. 𝑖 ≠ 𝑗 , and a pair of

items (𝑜𝑖 , 𝑜 𝑗), the difference ratio, denoted by 𝑟 𝑗⇑𝑖(𝑜𝑖 , 𝑜 𝑗), is defined
as:

𝑟 𝑗⇑𝑖(𝑜𝑖 , 𝑜 𝑗) ∶=
𝑢 𝑗(𝑜𝑖) −𝑢 𝑗(𝑜 𝑗)

𝑢𝑖(𝑜𝑖) −𝑢𝑖(𝑜 𝑗)

If𝑢 𝑗(𝑜𝑖) = 𝑢 𝑗(𝑜 𝑗), then the ratio is always 0. If𝑢𝑖(𝑜𝑖) = 𝑢𝑖(𝑜 𝑗) (and

𝑢 𝑗(𝑜𝑖) ≠ 𝑢 𝑗(𝑜 𝑗)), then the ratio is defined as +∞ if𝑢 𝑗(𝑜𝑖) > 𝑢 𝑗(𝑜 𝑗),

or −∞ if 𝑢 𝑗(𝑜𝑖) < 𝑢 𝑗(𝑜 𝑗).

4.3.2 The Properties of a𝑤-maximal Allocation The

following lemma is proved in Appendix C in the full version [36].

Lemma 4.7. For any 𝑛 agents, for any 𝑤 = (𝑤1,𝑤2, ...,𝑤𝑛) such
that 𝑤1,𝑤2, ...,𝑤𝑛 ∈ (0, 1), and an allocation 𝐴 = (𝐴1, ...,𝐴𝑛), the
following are equivalent:

(i) 𝐴 is𝑤-maximal.
(ii) Every exchange-cycle does not increase the weighted sum of

utilities. That is, for all 𝑥 ≥ 2, a subset of agents {𝑎1, ..., 𝑎𝑥} ∈ (︀𝑛⌋︀,
and a set of items 𝑜1, ..., 𝑜𝑥 , such that all are in the same category,
and ∀ 𝑗 ∈ (︀𝑥⌋︀, 𝑜 𝑗 ∈ 𝐴𝑎 𝑗 :

𝑤𝑎1𝑢𝑎1(𝑜1) +𝑤𝑎2𝑢𝑎2(𝑜2) + ... +𝑤𝑎𝑥𝑢𝑎𝑥 (𝑜𝑥) ≥

𝑤𝑎1𝑢𝑎1(𝑜𝑥) +𝑤𝑎2𝑢𝑎2(𝑜1) + ... +𝑤𝑎𝑥𝑢𝑎𝑥 (𝑜𝑥−1)

The following lemma follows from Lemma 4.7, but only for two

agents.

Lemma 4.8. Suppose there are 𝑛 = 2 agents. For any𝑤1,𝑤2 ∈ (0, 1)

and an allocation 𝐴 = (𝐴1,𝐴2), the following are equivalent:
(i) 𝐴 is𝑤-maximal, for𝑤 = (𝑤1,𝑤2).
(ii) For any exchangeable pair 𝑜1, 𝑜2 ∈ 𝐴1,𝐴2, exactly one of the

following holds:

𝑢1(𝑜1) > 𝑢1(𝑜2) and 𝑤1⇑𝑤2 ≥ 𝑟2⇑1(𝑜1, 𝑜2) or

𝑢1(𝑜1) = 𝑢1(𝑜2) and 𝑢2(𝑜2) ≥ 𝑢2(𝑜1) or

𝑢1(𝑜1) < 𝑢1(𝑜2) and 𝑤1⇑𝑤2 ≤ 𝑟2⇑1(𝑜1, 𝑜2)

Proof. The only exchange-cycle in a 2-agents allocation is a

replacement of an exchangeable pair 𝑜1, 𝑜2 ∈ 𝐴1,𝐴2 between the

agents. Then, according to Lemma 4.7, for any exchangeable pair

𝑜1, 𝑜2 ∈ 𝐴1,𝐴2,

𝑤1𝑢1(𝑜1) +𝑤2𝑢2(𝑜2) ≥𝑤1𝑢1(𝑜2) +𝑤2𝑢2(𝑜1) (1)

𝑤1𝑢1(𝑜1) −𝑤2𝑢2(𝑜1) ≥𝑤1𝑢1(𝑜2) −𝑤2𝑢2(𝑜2) (2)

𝑤1(︀𝑢1(𝑜1) −𝑢1(𝑜2)⌋︀ ≥𝑤2(︀𝑢2(𝑜1) −𝑢2(𝑜2)⌋︀ (3)

The claim in (ii) is an algebraic manipulation of (3), so (ii) ⇐⇒

(3). And since (i) ⇐⇒ (3), also (i) ⇐⇒ (ii). □

Lemma 4.9. For any𝑛 agents, in any𝑤-maximal allocation𝐴 (with
positive weights), for any 𝑖, 𝑗 and an exchangeable pair 𝑜𝑖 , 𝑜 𝑗 ∈ 𝐴𝑖 ,𝐴 𝑗 ,
the following implications hold:

𝑢 𝑗(𝑜𝑖) ≥ 𝑢 𝑗(𝑜 𝑗) Ô⇒ 𝑢𝑖(𝑜𝑖) ≥ 𝑢𝑖(𝑜 𝑗)

𝑢 𝑗(𝑜𝑖) > 𝑢 𝑗(𝑜 𝑗) Ô⇒ 𝑢𝑖(𝑜𝑖) > 𝑢𝑖(𝑜 𝑗)

Proof. By Lemma 4.7, since 𝐴 is a𝑤-maximal allocation, each

exchange-cycle does not increase the sum of the matching. In par-

ticular, for 𝑥 = 2, if we define 𝑎1 = 𝑖, 𝑎2 = 𝑗, 𝑜1 = 𝑜𝑖 , 𝑜2 = 𝑜 𝑗 , we

have:

𝑤𝑖𝑢𝑖(𝑜𝑖) +𝑤 𝑗𝑢 𝑗(𝑜 𝑗) ≥𝑤𝑖𝑢𝑖(𝑜 𝑗) +𝑤 𝑗𝑢 𝑗(𝑜𝑖)

Which is equal to:

𝑤𝑖(︀𝑢𝑖(𝑜𝑖) −𝑢𝑖(𝑜 𝑗)⌋︀ ≥𝑤 𝑗 (︀𝑢 𝑗(𝑜𝑖) −𝑢 𝑗(𝑜 𝑗)⌋︀

𝑤𝑖 and 𝑤 𝑗 are both positive, so if the left term is positive or non-

negative, the right term must to be positive or non-negative too,

respectively. □

Lemma 4.9 implies that, in any exchangeable pair 𝑜𝑖 , 𝑜 𝑗 ∈ 𝐴𝑖 ,𝐴 𝑗

in a 𝑤-maximal allocation, there are two cases: (a) Both agents

prefer the same item (𝑜𝑖 or 𝑜 𝑗 ); (b) Agent 𝑖 prefers 𝑜𝑖 and agent

𝑗 prefers 𝑜 𝑗 . In case (a), we say that the exchangeable pair has a

preferred item.

Definition 4.10. Consider a 𝑤-maximal allocation 𝐴 and an ex-

changeable pair 𝑜𝑖 , 𝑜 𝑗 ∈ 𝐴𝑖 ,𝐴 𝑗 , for some 𝑖, 𝑗 ∈ (︀𝑛⌋︀. 𝑜𝑖 is called a pre-
ferred item in the exchangeable pair (𝑜𝑖 , 𝑜 𝑗) if both 𝑢 𝑗(𝑜𝑖) > 𝑢 𝑗(𝑜 𝑗)

and 𝑢𝑖(𝑜𝑖) > 𝑢𝑖(𝑜 𝑗).

Lemma 4.11. For any 𝑛 agents, in any 𝑤-maximal allocation 𝐴,
if an agent 𝑗 envies some agent 𝑖 , then there is an exchangeable pair
𝑜𝑖 , 𝑜 𝑗 ∈ 𝐴𝑖 ,𝐴 𝑗 , and 𝑜𝑖 is the preferred item.

Proof. If 𝑗 envies 𝑖 , then 𝑢 𝑗(𝐴𝑖) > 𝑢 𝑗(𝐴 𝑗). Since both 𝐴𝑖 and

𝐴 𝑗 contain the same number of items in each category, there must

be a category in which, for some item pair 𝑜𝑖 , 𝑜 𝑗 ∈ 𝐴𝑖 ,𝐴 𝑗 , agent 𝑗

prefers 𝑜𝑖 to 𝑜 𝑗 . By Lemma 4.9, agent 𝑖 too prefers 𝑜𝑖 to 𝑜 𝑗 . So 𝑜𝑖 is

a preferred item. □

4.3.3 Maintaining the𝑤-maximality The following lemma

shows that, by exchanging items, we canmove from one𝑤-maximal

allocation to another𝑤
′
-maximal allocation (for a possibly different

weight-vector𝑤
′
). This lemma, too, works only for two agents.

Lemma 4.12. Suppose there are𝑛 = 2 agents. Let𝐴 be a𝑤-maximal
allocation, for𝑤 = (𝑤1,𝑤2). Suppose there is an exchangeable pair
𝑜1, 𝑜2 ∈ 𝐴1,𝐴2 such that:

(1) 𝑢2(𝑜1) > 𝑢2(𝑜2), that is, 𝑜1 is the preferred item.
(2) Among all exchangeable pairs in which 𝑜1 is the preferred item,

this pair has a largest difference-ratio 𝑟
2⇑1
(𝑜1, 𝑜2).

Let 𝐴′ be the allocation resulting from exchanging 𝑜1 and 𝑜2 in 𝐴.
Then, 𝐴′ is𝑤 ′-maximal for some𝑤 ′ = (𝑤 ′

1
,𝑤
′

2
) with𝑤 ′

1
≤𝑤1,𝑤

′

2
≥

𝑤2,𝑤
′

1
∈ (0, 1),𝑤

′

2
∈ (0, 1).

Proof sketch. The lemma can be proved by using Lemmas

4.8, 4.9, the maximality condition in the lemma [condition 2] and

Definition 4.6.

The idea of the proof is to define𝑤
′

1
,𝑤
′

2
∈ (0, 1) such that

𝑤
′

1

𝑤′
2

=

𝑟
2⇑1
(𝑜1, 𝑜2),𝑤

′

1
+𝑤
′

2
= 1. Then, 0 <

𝑤
′

1

𝑤′
2

≤
𝑤1

𝑤2

, and𝑤
′

1
≤𝑤1,𝑤

′

2
≥𝑤2.

Then we look at all the exchangeable pairs (𝑜
∗

1
, 𝑜
∗

2
) in the new

allocation 𝐴
′
, resulting from the exchange, and show that they

satisfy all the conditions of Lemma 4.8(ii) with𝑤
′

1
,𝑤
′

2
, which are:

(a) 𝑢1(𝑜
∗

1
) > 𝑢1(𝑜

∗

2
) and 𝑟

2⇑1
(𝑜1, 𝑜2) ≥ 𝑟2⇑1(𝑜

∗

1
, 𝑜
∗

2
) or

(b) 𝑢1(𝑜
∗

1
) = 𝑢1(𝑜

∗

2
) and 𝑢2(𝑜

∗

2
) ≥ 𝑢2(𝑜

∗

1
) or

(c) 𝑢1(𝑜
∗

1
) < 𝑢1(𝑜

∗

2
) and 𝑟

2⇑1
(𝑜1, 𝑜2) ≤ 𝑟2⇑1(𝑜

∗

1
, 𝑜
∗

2
)

The exchangeable pairs in 𝐴
′
can be divided into four types:

(1) The exchangeable pairs (𝑜
∗

1
, 𝑜
∗

2
) that have not moved.

(2) The pair (𝑜2, 𝑜1).

(3) Pairs in the form (𝑜
∗

1
, 𝑜1), 𝑜

∗

1
∈ 𝐴
′

1
, 𝑜
∗

1
≠ 𝑜2.
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Table 2: Utilities of the agents in the example.

𝑜1 𝑜2 𝑜3 𝑜4 𝑜5 𝑜6

Agent 1 0 -1 -4 -5 0 2

Agent 2 0 -1 -2 -1 -1 0

(4) Pairs in the form (𝑜2, 𝑜
∗

2
), 𝑜
∗

2
∈ 𝐴
′

2
, 𝑜
∗

2
≠ 𝑜1.

We show that each pair of each type satisfies its own condition

out of (a), (b) and (c). Therefore, by Lemma 4.8, 𝐴
′
is𝑤

′
-maximal

allocation, for (𝑤
′

1
,𝑤
′

2
).

The complete proof with all the technical arguments can be

found in Appendix D in the full version [36]. □

4.4 Algorithm for Two Agents
Throughout this subsection we consider general mixed instances,

for simplicity. By Lemma 3.3, for same-sign instances all the results

hold with EF1 instead of EF[1,1].

Let us start with an intuitive description of the algorithm, for

two agents. Suppose that𝑤2 is a function of𝑤1, and consider the

line𝑤1 +𝑤2 = 1,𝑤1 ≥ 0,𝑤2 ≥ 0, which describes the collection of

all pairs of non-negative weights 𝑤1,𝑤2 ∈ (︀0, 1⌋︀ whose sum is 1.

Each point on this line represents a𝑤
′
-maximal allocation, for some

weight-vector𝑤
′
. In every such allocation, there are no envy-cycles

in the envy graph, so there is at most one envious agent.

The algorithm starts with an initial allocationwhich is amaximum-

weight matching in the graph𝐺𝑤 , where𝑤 = (0.5, 0.5), correspond-

ing to the center of the line. This initial allocation is PO (By Lemma

4.2) and EF for at least one agent. If it is EF for both agents then we

are done. Otherwise, depending on the envious agent, the algorithm

decides which side of the line to go to. If agent 2 envies, we need

to improve 2’s weight, so we go towards (0,1). If agent 1 envies,

we need to go towards (1,0). Therefore, as long as the allocation

is not EF[1,1], the algorithm swaps an exchangeable pair chosen

according to Lemma 4.12, thus maintaining the search space as

the space of the𝑤-maximal allocations. Note that since the items

of the exchanged pair are both in the same category, the capacity

constraints are also maintained. Lemma 4.5 implies that some point

on the line gives a feasible EF[1,1] and PO division.

Specifically, the exchange pairs are determined as follows. For

each item 𝑜 we can define a linear function 𝑓𝑜(𝑤1):

𝑤1𝑢1(𝑜) −𝑤2𝑢2(𝑜) =𝑤1𝑢1(𝑜) − (1 −𝑤1)𝑢2(𝑜)

=𝑤1𝑢1(𝑜) −𝑢2(𝑜) +𝑤1𝑢2(𝑜)

=(𝑢1(𝑜) +𝑢2(𝑜))𝑤1 −𝑢2(𝑜)

If we draw all those functions in one coordinate system, each

pair of lines intersects at most once. In total there are 𝑂(𝑚
2
) inter-

sections, where𝑚 = ∑𝑐∈(︀𝑘⌋︀ ⋃︀𝐶𝑐 ⋃︀, the total number of items, in all

categories (including the dummies).

For example, consider the same-sign instance 𝐼 = (𝑁,𝑀,𝐶, 𝑆,𝑈 )

where 𝑁 = (︀2⌋︀,𝐶 = {𝐶1,𝐶2}, 𝐶1 = {𝑜1, 𝑜2, 𝑜3, 𝑜4},𝐶2 = {𝑜5, 𝑜6},

𝑆 = {2, 1} and𝑈 is shown in Table 2. The corresponding lines for

the items are depicted in Figure 1. The meaning of each point of in-

tersection is a possible switching point for these two items between

the agents. Clearly, the replacement will only take place between

exchangeable pairs, i.e. items in the same category, which are in

0.2 0.4 0.6 0.8 1

−2

2

𝑤1

𝑓𝑜(𝑤1) 𝑜1
𝑜2
𝑜3
𝑜4
𝑜5
𝑜6

Figure 1: The corresponding lines for the items in the exam-
ple.

different agents’ bundles at the time of the intersection. According

to Definition 4.6, at each intersection point of the lines of 𝑜1 and

𝑜2,
𝑤1

𝑤2

=
𝑢2(𝑜1)−𝑢2(𝑜2)

𝑢1(𝑜1)−𝑢1(𝑜2)
= 𝑟

2⇑1
(𝑜1, 𝑜2) holds. The largest 𝑟 value is

obtained on the right side of the graph, and as we progress to the

left side its value decreases.

In this example, the algorithm starts with the allocation 𝐴 =

(𝐴1,𝐴2) in the point (0.5, 0.5), which is 𝐴1 = {𝑜1, 𝑜2, 𝑜6},𝐴2 =

{𝑜3, 𝑜4, 𝑜5}. Note that for each category, 1’s items are the top lines.

In this initial allocation, 2 envies by more than one item, so we start

exchanging items in order to increase𝑤2. The first intersecting pair

(whenwe go left) is 𝑜5, 𝑜6. It is an exchangeable pair, so we exchange

it and update the allocation to 𝐴1 = {𝑜1, 𝑜2, 𝑜5},𝐴2 = {𝑜3, 𝑜4, 𝑜6}.

This is an EF1 allocation, so we are done.

If at some point there are multiple intersections of exchangeable

pairs, we swap the pairs in an arbitrary order.

Lemma 4.13. If Algorithm 1 exchanges the last exchangeable pair
in the item-pairs list (that is initialized in step 8), then the resulting
allocation is envy-free for agent 2.

Proof. After the last exchange, there is no exchangeable pair

(𝑜1, 𝑜2), 𝑜1, 𝑜2 ∈ 𝐴1,𝐴2 for which 𝑜1 is the preferred item. Therefore,

by Lemma 4.11, agent 2 is not jealous. □

Theorem 4.14. Algorithm 1 always returns an allocation that
is𝑤-maximal with positive weights (and thus PO), and satisfies the
capacity constraints. The allocation is EF[1,1], and EF1 for a same-sign
instance.

Proof. A matching in 𝐺𝑤 graph always gives each agent 𝑠𝑐

items of category 𝐶𝑐 . Thanks to the dummy items, all possible

allocations that satisfy the capacity constraints can be obtained

by a matching. The first allocation that the algorithm checks is

some 𝑤-maximal allocation, where 𝑤 = (𝑤1,𝑤2),𝑤1,𝑤2 ∈ (0, 1),

so by Proposition 4.2, this is a PO allocation. At each iteration, it

exchanges an exchangeable pair, (𝑜1, 𝑜2), such that𝑢2(𝑜1) > 𝑢2(𝑜2),

and among all the exchangeable pairs with 𝑢2(𝑜1) > 𝑢2(𝑜2) it has

the largest 𝑟
2⇑1
(𝑜1, 𝑜2), so by Lemma 4.12, the resulting allocation
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Algorithm 1 Finding an EF[1,1] and PO division for two agents

// Step 1: Find a 𝑤-maximal feasible allocation that is EF for

some agent.

1: 𝐴 = (𝐴1,𝐴2)← a𝑤-maximal allocation, for𝑤1 =𝑤2 = 0.5.

2: if 𝐴 is EF[1,1] then
3: return 𝐴

4: end if
5: if 𝐴 is EF for agent 2 then
6: replace the names of agent 1 and agent 2

7: end if
// We can now assume that agent 2 is jealous.

// Step 2: Build a set of item-pairs whose replacement increases

agent 2’s utility:

8: item-pairs ← all the exchangeable pairs 𝑜1, 𝑜2 ∈ 𝐴1,𝐴2, for

which 𝑢2(𝑜1) > 𝑢2(𝑜2).

9: current-pair← (𝑜1, 𝑜2) where 𝑟2⇑1(𝑜1, 𝑜2) is maximal.

// Step 3: Switch items in order until an EF[1,1] allocation is

found:

10: while 𝐴 = (𝐴1,𝐴2) is not EF[1,1] do
11: Switch current-pair between the agents.

12: Update item-pairs list and current-pair (Steps 8, 9).

13: end while
14: return 𝐴

is also𝑤
′
-maximal for some𝑤

′
= (𝑤

′

1
,𝑤
′

2
),𝑤
′

1
,𝑤
′

2
≥ 0. In addition,

since the items are in the same category, the allocation remains

feasible. The first allocation in the sequence is, by step 1, envy-free

for agent 1. By Lemma 4.13, the last allocation in the sequence is

envy-free for agent 2. So by Lemma 4.5, there exists some iteration

in which the allocation is PO and EF[1,1], and EF1 for a same-sign

instance. □

Theorem 4.15. The runtime of Algorithm 1 is 𝑂(𝑚4
).

Proof. Step 1 can be done by finding a maximum weighted

matching in a bipartite graph 𝐺𝑤 . Its time complexity is 𝑂(⋃︀𝑉 ⋃︀)
3

(Fredman and Tarjan [22]), where ⋃︀𝑉 ⋃︀ = 2𝑚, the number of vertices

in the graph. Thus, 𝑂(𝑚
3
) is the time complexity of step 1.

At step 2 we go through all the categories 𝑐 ∈ (︀𝑘⌋︀, at each we

create groups𝐴1,𝑐 ,𝐴2,𝑐 which contain agent 1’s and agent 2’s items

from 𝐶𝑐 in 𝐴. It can be done in
𝑚
2
⋃︀𝐶𝑐 ⋃︀ =𝑚𝑠𝑐 . Now we have ⋃︀𝐴1,𝑐 ⋃︀ =

⋃︀𝐴2,𝑐 ⋃︀ = 𝑠𝑐 . Then, we iterate over all the pairs 𝑜1, 𝑜2 ∈ 𝐴1,𝑐 ,𝐴2,𝑐 ,

and add them to the list, which takes 𝑠
2

𝑐 time. In total, building

item-pairs list is ∑𝑐∈(︀𝑘⌋︀(𝑚𝑠𝑐 + 𝑠
2

𝑐 ) = 𝑂(∑𝑐∈(︀𝑘⌋︀𝑚𝑠𝑐) = 𝑂(𝑘𝑚
2
).

The item-pairs list size is ∑𝑐∈(︀𝑘⌋︀ 𝑠
2

𝑐 = 𝑂(𝑚
2
), and then finding its

maximum takes 𝑂(𝑚
2
). In total, step 2 takes 𝑂(𝑘𝑚

2
) time.

The upper bound on the number of iterations in the while loop

at step 3 is the number of intersection points between items, which

is at most 𝑂(𝑚
2
). At each iteration we switch one exchangeable

pair, (𝑜1, 𝑜2), and update the pairs-list. The only pairs that should

be updated (deleted or added) are those that contain 𝑜1 or 𝑜2. There

are at most 2𝑚 = 𝑂(𝑚) such pairs. Finding the maximum is𝑂(𝑚
2
).

In total, step 3 takes 𝑂(𝑚
4
) time.

Overall, the time complexity of the algorithm is𝑂(𝑚
4
) (because

𝑚 ≥ 𝑘 necessarily). □

5 Conclusion and Future Work
We presented the first algorithm for efficient nearly-fair allocation

of mixed goods and chores with capacity constraints. We believe

that our paper provides a good first step in understanding fair divi-

sion of mixed resources under cardinality constraints. Our proofs

are modular, and some of our lemmas can be used in more general

settings.

5.1 Three or More Agents
The most interesting challenge is to generalize our algorithm to

three or more agents. Proposition 4.2 and Lemmas 4.4, 4.7, 4.9, 4.11

work for any number of agents, but the other lemmas currently

work only for two agents.

Algorithm 1 essentially scans the space of𝑤-maximal allocations:

it starts with one 𝑤-maximal allocation, and then moves in the

direction that increases the utility of the envious agent. To extend

it to 𝑛 agents, we can similarly start with a𝑤-maximal allocation

corresponding to𝑤 = (1⇑𝑛, . . . , 1⇑𝑛), i.e., identical weights for each

of the agents. These weights represent a point in an 𝑛-dimensional

space. Then, we can exchange items to benefit an envious agent,

in order to increase their weight and improve their utility. In case

there are several envious agents, we can select one that is at the

“bottom” of the envy chain. For example, in the SWAP algorithm of

Biswas and Barman [10], the swap is done in a way that benefits the

envious agent with the smallest utility. Similarly, in the envy-graph

algorithm of Lipton et al. [29], the next item is given to an agent

with no incoming edges in the envy-graph (an agent who is not

envied by any other agent). The exchanges should be done in an

order that preserves the 𝑤-maximality and ensures we reach an

EF[1,1] allocation. The two main Lemmas that should be extended

to ensure the above two conditions are Lemma 4.12 and Lemma 4.5.

We have not yet been able to develop such a method and prove its

correctness. Finding an EF1+PO allocation for 𝑛 = 3 agents seems

hard even when there is a single category with only goods.

5.2 More General Constraints
Another possible generalization is to more general constraints. Ca-

pacity constraints are a special case ofmatroid constraints, by which
each bundle should be an independent set of a given matroid (see

[10] for the definitions). Lemmas 4.2, 4.4, 4.5, 4.9 and 4.12 do not

use categories, and should work for general matroids. The other

lemmas should be adapted.

Finally, we assumed that both agents have the same capacity

constraints. We do not know if our results can be extended to agents

with different capacity constraints (e.g. agent 1 can get at most 7

items while agent 2 can get at most 3 items). Specifically, the proof

of Lemma 4.4 does not work — if (𝐴1,𝐴2) is feasible, then (𝐴2,𝐴1)

might be infeasible.
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