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ABSTRACT
An abundance of problems rely on voting, ranging from standard

political elections and committee decisions to coordinated efforts

of multiagent systems. A common and prevalent, yet often un-

derestimated, element of these situations is the substantial effort

required by the voters to examine all alternatives involved and to

form complete preferences. How does limited energy affect collec-

tive decision making? This is the question we address, enriching

the classical framework of voting by incorporating two new param-

eters: the energy limits of the voters, as well as the order in which

the alternatives are presented to them. We focus on two popular

voting rules: Plurality and Borda. We conduct an extensive social

welfare analysis with both analytical and experimental tools, and

we also study the strategic incentives that arise in this setting.
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1 INTRODUCTION
Voting is a tool that plays an increasingly important role in the fields

of artificial intelligence and multiagent systems: From aggregating

the preferences of artificial agents in order to decide about a joint

action to employing online platforms in order to find a consensus

amongst multiple users, methods for collective decisionmaking that

were in the past solely studied by economists are establishing their

value within ample modern applications [9]. Accurately modelling

how voters form their opinions is an essential factor for the success

of such endeavours, which either rely on human behaviour directly,

or are based on simulations of human behaviour through AI.

Yet, research on computational social choice so far severely ig-

nores decision-making patterns that are exhibited by real people,

and constraints itself in stringent assumptions that would rarely

be relevant in practice [3]: A vast majority of formal frameworks

assume that agents in a group will report preferences over the full

set of alternatives in a given voting setting, no matter how large

that set may be. This ideal scenario is arguably difficult to obtain in

reality: people with limited energy, finite time, or bounded atten-

tion cannot be expected to go through numerous pages of options

before reporting their preferences regarding a meeting date in the
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doodle platform, a neighbourhood project in a participatory budget-
ing experience, a hotel in a travel website, a promising candidate in

an election, or a paper in a conference bidding phase [5].

When agents with limited energy report an incomplete part of

their intrinsic preferences, do the collective outcomes bear negative

consequences? If so, are there ways in which we—as mechanism

designers—can alleviate them? These are some of the questions that

this paper targets. Example 1 provides further motivation.

Example 1. Consider a group of five friends about to order dinner

from a delivery app. The app includes three options, in the order

𝑥 , 𝑦, 𝑧. Two patient friends examine all options in detail and form

their preferences: they agree that 𝑧 is the best (followed by 𝑦 and

then by 𝑥 ). Being more impatient, the remaining three friends stop

looking at options after 𝑥 and 𝑦; they know then that they rank the

former above the latter. The preferences and the votes are depicted

in Figure 1, with the votes appearing within shaded boxes.
1
Suppose

that after reporting their preferences, the friends select the option

that is found to be the most desirable one by most of them: option 𝑥 .

However, had all the friends spent the energy examining all options,

they would realise that 𝑧 is actually everyone’s favourite—instead,

they will all have to accept a worse outcome.
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Figure 1: A negative effect of limited energy in voting.

Despite its simplicity, Example 1 brings to the surface all parame-

ters that are relevant for our study: How do the intrinsic preferences

of the voters relate to each other, and what kind of energy limits

prohibit voters from accessing them in full?
2
Do all voters examine

their options in the same order, and what method (i.e., voting rule)
does the group use to reach a collective decision? We will focus

on two famous voting rules, which operate on different aspects of

the voters’ preferences and may produce different outcomes: The

Borda rule and the Plurality rule (note that the latter was implicitly

applied in Example 1) [35]. Plurality relies on little information,

looking at the most preferred alternative of each voter; Borda on the

other hand needs more information, equally distributing points to

the alternatives based on their position in a voter’s preference. Con-

trasting these two voting methods will give us precious insights.
3

1
We will follow this drawing convention throughout the paper.

2
In Example 1 there is a high degree of concordance between the preferences of the

voters and between their energy limits. Even then, we will see that choosing the order

in which the alternatives should be presented to the voters is not straightforward.

3
Comparing Plurality and Borda is standard in social choice. See e.g., [4, 15].
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To measure the effects of limited energy on a group of voters, we

will employ a notion of social welfare from the literature [14, 24].

Our venture is high-reaching for the practical relevance of voting

theory within digital environments: If these effects are found to be

negative and strong, then either the design of a voting platform

needs to be revised, or the voters must be incentivised to devote

more energy when reflecting on their preferences.

We must be careful though: Everything we have discussed so far

hinges on a standard assumption of the social choice community—

that the voters are sincere and simply express their preferences

with their votes. But voters may also act strategically, reporting

untruthful preferences towards an outcome that they consider bet-

ter. Does limited energy offer any protection against such strategic

behaviour? By enriching existing work on voting with incomplete

information, we will later reveal an answer to this question.

Our Contribution. This paper proposes a novel formal frame-
work for the study of voting under limited energy. The landscape

we explore is critical for understanding voting under non-ideal

conditions and for enhancing existing mechanisms. We analytically

compare two voting rules that are central in the field of computa-

tional social choice. Our theoretical contributions regard issues of

social welfare, as well as the voters’ incentives for strategic manipu-

lation. In addition, we provide a comprehensive experimental study,

scrutinising a rich domain of voting contexts. To that end we have

built a voting app, where simulation experiments can be conducted

by the users easily, enabling them to directly confirm our results.

The app can be found in https://github.com/zoi-ter/voting-with-

limited-energy, together with the full version of this paper. The

Appendix is also included in that version.

Related Work. Several streams of literature are related to our

framework, the most pertinent of which is probably preference elic-
itation. Elicitation methods are used to gain information about the

preferences of the voters when access to the complete preferences

is costly, either for the voters themselves or for the mechanism

designer. The parting point with our work is that preference elici-

tation techniques are commonly incremental and interactive, and

aim at finding a suitable collective outcome with minimum queries

[2, 16]. However, we (𝑖) do not have the option to elicit more pref-

erence information from the voters than what their energy permits,

(𝑖𝑖) do not benefit from asking fewer questions than what the vot-

ers are able to answer, and (𝑖𝑖𝑖) cannot modify our pre-selected

process in accordance with the preferences we observe (the order

in which the alternatives are presented to the voters—e.g., in a

query about a restaurant in a delivery app—is fixed in advance and

the voters report their preferences in a single shot). More broadly,

communication complexity is not a concern in our setting.

Another related research theme is that of the possible and neces-
sary winners [17], asking which alternatives may win under com-

plete preferences when we only have incomplete information about

those preferences. It is known that in the worst case, winners of

many voting rules cannot be determined without a large amount

of information being provided by the voters [7]. Lu and Boutilier

[21] propose a method based on minmax regret to select a winner

given incomplete preferences, but this kind of methods do not use

additional information about the origin of incompleteness (which

we have in our framework from the energy limits), and they con-

sider all complete extensions of the reported preferences. Instead,

we want to apply the voting rules directly on the incomplete pref-

erences. Technically, our setting could be studied as a subcase of

the general possible winners problem; conceptually, it is easier to

explain it to the voters (only requiring the explanation of a simple

voting rule rather than of probabilistic calculations), and is also

easier to trust it (because it does not use any assumptions about

the distribution of the hidden preferences but only counts on the

revealed information).

There is a progressively large literature on voting with incom-

plete preferences, from which we adopt some notation and termi-

nology [6, 25, 33]. To the best of our knowledge, none of these

works is concerned with the problem of limited energy, thus our

targets are different. For instance, in a recent article, Ayadi et al. [1]

define approximations for voting rules based on information only

about the top-𝑘 alternatives from a voter’s preference—asking for a

top subset of someone’s preference is not sensible in our setting,

since it would mean that voters are always aware of these specific

alternatives even if they are not presented with them.

Distortion is also a related concept that has attracted the interest

of social choice researchers [27]. It commonly regards the effects

that occur when we apply a voting rule to types of preferences that

are not as refined as the intrinsic ones of the voters (e.g., when

we use the ordinal information from the voters’ cardinal utilities).

Our paper is inspired by work on distortion, but for all we know

similarities between the two frameworks remain only in spirit.

There is a plethora of evidence by social scientists and psycholo-

gists about the bounds in people’s decision making, limited energy

being one of them [12, 30]. Most germane to our paper is the cog-

nitive heuristic of satisficing, which entails searching through the

available alternatives until an acceptability threshold of the voter is

met [32]. What we will later define as energy limits can be thought

to emanate from satisficing.

Paper Overview. Section 2 presents our framework, together

with notation and terminology. Section 3 includes our analytical,

worst-case results on social welfare, and Section 4 elaborates on this

topic by simulation experiments. Section 5 continues with the inves-

tigation of voters’ strategic behaviour in our setting, and Section 6

concludes with a summary of our work and open questions.

2 THE MODEL
The basic ingredients of a voting problem are a group of voters 𝑁 =

{1, . . . , 𝑛} and a set of alternatives𝐴 = {𝑥1, . . . , 𝑥𝑚}. Every voter 𝑖 ∈
𝑁 is associated with an intrinsic preference ranking ≻𝑖 (i.e., a linear
order) over all alternatives in 𝐴. By 𝑥 ≻𝑖 𝑦 we mean that voter 𝑖

prefers 𝑥 ∈ 𝐴 over 𝑦 ∈ 𝐴, conditionally that she is aware of both

alternatives. If 𝑥 ≻𝑖 𝑥1 ≻𝑖 · · · ≻𝑖 𝑥𝑘−1 ≻𝑖 𝑦 ≻𝑖 · · · ≻𝑖 𝑥𝑚 for some

𝑥1, ..., 𝑥𝑘−1 ∈ 𝐴, we say that 𝑥 is on the first level of ≻𝑖 , 𝑥1 on the

second level, etc., and that 𝑥 is 𝑘 levels above 𝑦. A profile is a vector
with the preferences of all voters, denoted by ≻ = (≻1, . . . , ≻𝑛).
We also write ≻−𝒊 for the profile of all voters’ preferences except

for 𝑖’s. Given a subset of alternatives 𝑆 ⊂ 𝐴, we write ≻↾𝑆 for

the restriction of ≻ to 𝑆 . Concretely, the following holds for all

alternatives 𝑥,𝑦 ∈ 𝐴:

𝑥 ≻↾𝑆 𝑦 if and only if 𝑥 ≻ 𝑦 and 𝑥,𝑦 ∈ 𝑆
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Then, ≻↾𝑆= (≻1↾𝑆 , . . . , ≻𝑛↾𝑆 ) is the restriction of ≻ to 𝑆 .

Energy Limits. Every voter 𝑖 ∈ 𝑁 is equipped with an energy
limit 𝑒𝑖 ∈ {2, . . . ,𝑚}, i.e., the number of alternatives she is capa-

ble to consider in the given voting problem.
4
An energy function

𝑒 : 𝑁 → {2, . . . ,𝑚} captures the energy limit of every voter. We call

an energy function 𝑒 non-trivial if 𝑒𝑖 ≠ 𝑚 for all 𝑖 ∈ 𝑁 . Denoting

by Π(𝐴) the set of all permutations of 𝐴, we also define a show
order function 𝑜 : 𝑁 → Π(𝐴), where for each voter 𝑖 , 𝑜𝑖 ∈ Π(𝐴)
indicates the order in which the alternatives are presented to her.

In a voting problem, every voter 𝑖 only examines the first 𝑒𝑖 al-

ternatives from 𝑜𝑖 ; we denote this set by 𝐴(𝑒𝑖 , 𝑜𝑖 ) ⊆ 𝐴, and the

induced (partial) preference ranking by ≻𝑒,𝑜
𝑖

=≻𝑖↾𝐴(𝑒𝑖 ,𝑜𝑖 ) .
5
This is

the reported preference of voter 𝑖 , viz., her vote.

Voting Rules. A voting rule is a function 𝐹 that takes as input a

profile of (possibly partial) preferences ≻𝑒,𝑜= (≻𝑒,𝑜
1

, . . . , ≻𝑒,𝑜𝑛 ) and
outputs a winning alternative. In particular, a positional scoring

rule 𝐹 assigns a score 𝑠𝐹
𝑖
(𝑥) to every alternative 𝑥 depending on

its position in the reported preference ≻𝑒𝑖 ,𝑜𝑖 of voter 𝑖 , and selects

as winner the alternative with the largest accumulated score for

all voters.
6
Equivalently, for every voter 𝑖 and alternative 𝑥 , the

score 𝑠𝐹
𝑖
(𝑥) can be induced from a scoring vector 𝑠𝐹

𝑖
= (𝑠𝐹

1
, . . . , 𝑠𝐹𝑒𝑖 ),

meaning that 𝑠𝐹
1
corresponds to the alternative in 𝐴(𝑒𝑖 , 𝑜𝑖 ) appear-

ing on the first level of the ranking ≻𝑒,𝑜
1

, 𝑠𝐹
2
corresponds to the

second level, etc. We make the typical assumption that ties are

broken according to the lexicographic ordering of the alternatives.

𝐹 (≻𝑒𝑖 ,𝑜𝑖 ) = argmax

𝑥∈𝐴

∑︁
𝑖∈𝑁

𝑠𝐹𝑖 (𝑥)

Two classical positional scoring rules in voting theory are Plurality
and Borda. Plurality gives score 1 to the first alternative in a prefer-

ence ranking and score 0 to all other alternatives; on the other hand,

the (symmetric) Borda score of an alternative 𝑥 is the difference

between the number of alternatives that are ranked below 𝑥 and

the number of alternatives that are ranked above 𝑥 [35].

The scoring vectors corresponding to our two rules are defined

as follows (where all alternatives in 𝐴 \ 𝐴(𝑒𝑖 , 𝑜𝑖 ), which are not

examined by voter 𝑖 , are assigned score 0):

𝑠Plur𝑖 = (1,

𝑒𝑖−1︷  ︸︸  ︷
0, . . . , 0)

𝑠Borda𝑖 = (𝑒𝑖 − 1, 𝑒𝑖 − 3, . . . , 0, . . . ,−𝑒𝑖 + 3,−𝑒𝑖 + 1)
Note that for the special case of total energy, (i.e., when 𝑒𝑖 =𝑚 for

all 𝑖 ∈ 𝑁 ), we obtain the standard definitions from voting theory.

Social Welfare. We first define the utility that a voter receives

from a voting outcome, and subsequentlymeasure the social welfare

of the group as a whole.We denote voter 𝑖’s utility (orwelfare) when
𝑥 is the winner by𝑤𝑖 (𝑥), and assume that it depends on the voter’s

intrinsic preference ≻𝑖 in an equally distributed, linear fashion:

𝑤𝑖 (𝑥) = (𝑚 − 1) − |𝑦 ∈ 𝐴 : 𝑦 ≻𝑖 𝑥 |
For instance, a voter gets 0 welfare if her intrinsically least pre-

ferred alternative wins, and gets (𝑚 − 1) welfare if her intrinsically
4
For simplicity, we assume that every voter can consider at least two alternatives.

5
The SOI data in the preflib.org website represent such strict incomplete orders.

6
Kruger and Terzopoulou [20] give a definition of scoring rules for partial preferences.

most preferred alternative wins. A debatable feature of this wel-

fare notion is that it can also be seen as an alternative definition

of the Borda scores (corresponding to an affine transformation of

the scores defined above). Yet, we will stick to this notion from

the literature [18, 23] and make an interesting observation: that

the Borda rule, despite its apparent advantages, does not neces-

sarily outperform Plurality. Then, the group’s social welfare when
alternative 𝑥 wins is defined as SW(𝑥) = ∑

𝑖∈𝑁 𝑤𝑖 (𝑥) .
We can compare the quality of the outcomes that our two dif-

ferent rules produce under limited energy in an absolute manner,

by comparing the social welfare values obtained given a particular

profile of preferences and a particular show order.
7
But we can also

measure the collective effects of limited energy in a relative manner,

i.e., by comparing the welfare produced by a rule under limited

energy with the one that would be produced under full energy. To

account for such relative worst-case effects for an energy function 𝑒 ,

we define a notion called Price of Limited Energy (PLE):
8

PLE(𝐹, 𝑒) = max

≻,𝑜

𝑆𝑊 (𝐹 (≻))
𝑆𝑊 (𝐹 (≻𝑒,𝑜 ))

The higher PLE is, the worse-off a group is if its members vote with

limited energy in relation to voting with full energy.

3 THE EFFECTS OF LIMITED ENERGY: A
THEORETICAL ANALYSIS

We are ready to answer the first important question of our paper: Is

limited energy necessarily harmful for a group of voters? Proposi-

tion 1 is not difficult to prove: Limited energy necessarily damages

a group’s social welfare when the Borda rule is applied.

Proposition 1. It holds that 𝑆𝑊 (Borda(≻)) ≥ 𝑆𝑊 (Borda(≻𝑒,𝑜 ))
for every profile ≻, energy function 𝑒 , and show order function 𝑜 .

Proof. The key idea is that the social welfare corresponding to

an alternative 𝑥 is an affine transformation of the Borda score of 𝑥 :

𝑆𝑊 (𝑥) =
∑︁
𝑖∈𝑁

𝑤𝑖 (𝑥) =
∑︁
𝑖∈𝑁

𝑠Borda
𝑖

(𝑥) +𝑚 − 1

2

This implies that 𝑆𝑊 (Borda(≻)) ≥ 𝑆𝑊 (𝑦) for all alternatives𝑦 ∈ 𝐴,

including the alternative 𝑦 = Borda(≻𝑒,𝑜 ). □

On the contrary, when the Plurality rule is applied, limited energy

can be deemed beneficial for a group of voters.

Proposition 2. It holds that 𝑆𝑊 (Plur(≻𝑒,𝑜 )) > 𝑆𝑊 (Plur(≻)) for
some profile ≻, energy function 𝑒 , and show order function 𝑜 .

Proof. Consider the profile ≻ below, where𝑚 = 4, 𝑛 = 5, and

𝐴(𝑒𝑖 , 𝑜𝑖 ) = {𝑥2, 𝑥3, 𝑥4} for all 𝑖 ∈ 𝑁 .

𝑥1

𝑥2

𝑥3

𝑥4

𝑥1

𝑥2

𝑥3

𝑥4

𝑥1

𝑥2

𝑥3

𝑥4

𝑥4

𝑥2

𝑥3

𝑥1

𝑥4

𝑥2

𝑥3

𝑥1

7
Absolute and normalised social welfare is presented in all figures of Section 4.

8
Cf. the well-known game-theoretical notion of Price of Anarchy [19].
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Then, the following proves the proposition: 𝑆𝑊 (Plur(≻𝑒,𝑜 )) =

𝑆𝑊 (𝑥2) = 10 > 9 = 𝑆𝑊 (𝑥1) = 𝑆𝑊 (Plur(≻)). □

We also find one further manner in which Plurality is superior to

Borda: it guarantees that no matter the preferences and the energy

of the voters, there always exist a show order such that the outcome

that would be obtained if voters held full energy is preserved—this

is not the case for the Borda rule (Propositions 3 and 4).

Proposition 3. For every profile ≻ and energy function 𝑒 , it holds
that Plur(≻𝑒,𝑜 ) = Plur(≻) for some show order 𝑜 .

Proof. Choose a show order 𝑜 such that top𝑖 ∈ 𝐴(𝑒𝑖 , 𝑜𝑖 ) for all 𝑖 ,
where topi is the most prefered alternative in ≻𝑖 . □

This is a significant advantage of Plurality if the intrinsic prefer-

ences of the voters are accessible—a rather unrealistic assumption.

Still, these preferences may be approximated via AI, for example

within frameworks of preference learning or recommender systems.

Proposition 4. For some profile ≻𝑒,𝑜 and energy funtion 𝑒 , it holds
that Borda(≻𝑒,𝑜 ) ≠ Borda(≻) for all show orders 𝑜 .

Proof. Consider the profile≻ = (≻1, ≻2, ≻3) where 𝑥1 ≻1 𝑥2 ≻1

𝑥3, 𝑥2 ≻2 𝑥3 ≻2 𝑥1, and 𝑥3 ≻3 𝑥1 ≻3 𝑥2 . The Borda winner (after

tie-breaking) is Borda(≻) = 𝑥1. Suppose that 𝑒1 = 2, while 𝑒2 =

𝑒3 = 3. There are three possibilities for the alternatives shown to

voter 1, while the other two voters are shown all alternatives: First,

𝐴(𝑒1, 𝑜1) = {𝑥1, 𝑥2}, in which case Borda(≻𝑒,𝑜 ) = 𝑥3 ≠ 𝑥1; second,

𝐴(𝑒1, 𝑜1) = {𝑥2, 𝑥3}, in which case Borda(≻𝑒,𝑜 ) = 𝑥2 ≠ 𝑥1; third,

𝐴(𝑒1, 𝑜1) = {𝑥1, 𝑥3}, in which case Borda(≻𝑒,𝑜 ) = 𝑥3 ≠ 𝑥1. □

Although in some scenarios limited energy comes with social

advantages for Plurality, Theorem 1 shows that in the worst case,

limited energy is always damaging to social welfare, meaning that

𝑃𝐿𝐸 (Plur, 𝑒) ≥ 1 for every energy function 𝑒 . In addition, Theorem 1

proves that even the slightest amount of missing information is

enough to skew the collective outcome for both rules.

Theorem 1. Let 𝐹 be the Plurality rule or the Borda rule, and 𝛼 some
real number. Then:

𝑃𝐿𝐸 (𝐹, 𝑒) =
{
1 if 𝑒𝑖 =𝑚 for all 𝑖 ∈ 𝑁

𝛼 > 1 otherwise

Proof. For an energy functionwhere every voter has full energy,

it is obvious that 𝑃𝐿𝐸 (𝐹, 𝑒) = 1. Suppose now that 𝑒𝑖 ≠𝑚 for some

𝑖 ∈ 𝑁 . Withoug loss of generality, take 𝑒1 ≠ 𝑚. Recalling that

𝑒𝑖 ≥ 2 for all 𝑖 ∈ 𝑁 , we construct a profile ≻ with 𝑛 = 3 as shown in

Figure 2, where 𝑥1 ∉ 𝐴(𝑒1, 𝑜1), 𝑥2 ∈ 𝐴(𝑒1, 𝑜1), 𝑥1 ∈ 𝐴(𝑒2, 𝑜2), and
𝑥2 ∈ 𝐴(𝑒3, 𝑜3). As an illustration, we depict below a case where

𝑒2 =𝑚 − 1 and 𝑒1 = 𝑒3 =𝑚:

Clearly, 𝐹 (≻) = 𝑥1 and 𝐹 (≻𝑒,𝑜 ) = 𝑥2 for 𝐹 being either Plurality or

Borda. Since 𝑆𝑊 (𝑥1) > 𝑆𝑊 (𝑥2), we have that 𝑃𝐿𝐸 (𝐹, 𝑒) > 1. □

Because our notion of social welfare is by definition maximised

by the Borda rule in the special case of full energy, a question arises

of whether the superiority of Borda is preserved under limited

energy as well. Interestingly, we will next show that under limited

energy, we may even observe opposite effects.

𝑥1

𝑥2

𝑥3

.

.

.
𝑥𝑚

𝑥1

𝑥2

𝑥3

.

.

.
𝑥𝑚

𝑥2

𝑥1

𝑥3

.

.

.
𝑥𝑚

Figure 2: PLE increase under minimum lack of energy.

Proposition 5. It holds that 𝑆𝑊 (Plur(≻𝑒,𝑜 )) > 𝑆𝑊 (Borda(≻𝑒,𝑜 ))
for some profile ≻, energy function 𝑒 , and show order function 𝑜 .

Proof. Consider the profile ≻ below, where 𝑚 = 7, 𝑛 = 3,

𝐴(𝑒𝑖 , 𝑜𝑖 ) = {𝑥1, . . . , 𝑥6} for 𝑖 ∈ {1, 2}, and 𝐴(𝑒3, 𝑜3) = {𝑥2, . . . , 𝑥7}.

𝑥1

𝑥2

.

.

.

𝑥6

𝑥7

𝑥1

𝑥2

.

.

.

𝑥6

𝑥7

𝑥1

𝑥2

.

.

.

𝑥6

𝑥7

Then, we have that 𝑆𝑊 (Plur(≻𝑒,𝑜 )) = 𝑆𝑊 (𝑥1) = 18 > 15 =

𝑆𝑊 (𝑥2) = 𝑆𝑊 (Borda(≻𝑒,𝑜 )). □

In Section 4, the experiments will convince us that the profile

in the proof of Proposition 5 does not constitute a rare example.

This proof reveals a relevant intuition: Since Borda is sensitive to

more information regarding voters’ preferences, minor gaps in this

information are able to alter the voting outcome—this is not true

for Plurality outcomes, which can remain the same under more

significant changes in the input profile. Yet, Plurality is inferior to

Borda in the worst case: it produces a higher PLE (Theorem 2).

Lemma 1 is used in the proof of Theorem 2. Given a natural

number 𝑘 ≤ 𝑛, we denote by 𝑘.min𝑖∈𝑁 𝑒𝑖 a set 𝑆 ∈ {2, . . . ,𝑚}𝑘
such that |𝑆 | = 𝑘 and 𝑒𝑖 ≤ 𝑒 𝑗 for every 𝑒𝑖 ∈ 𝑆 and 𝑒 𝑗 ∉ 𝑆 .

Lemma 1. Let 𝛼 = ⌊ 𝑛
𝑚−1 ⌋ + 1 if ⌊ 𝑛

𝑚−1 ⌋ ∉ N+ and 𝛼 = 𝑛
𝑚−1

otherwise. The following holds for every non-trivial function 𝑒 :

𝑃𝐿𝐸 (Plur, 𝑒) ≥ 𝑛(𝑚 − 1)∑
𝛼.min𝑖∈𝑁 𝑒𝑖 𝑒𝑖 − 1

Proof. We will prove that for any non-trivial energy function 𝑒

we can construct a profile ≻ and a show order function 𝑜 such that

the required lower bound PLE for is realised.

The profile ≻ is built as follows: Let 𝑥 be the lexicographically

fist alternative in 𝐴. We choose an alternative 𝑦 ≠ 𝑥 and place

it at the first position of every voter’s ranking ≻, meaning that

𝑆𝑊 (Plur(≻)) = 𝑆𝑊 (𝑦) = 𝑛(𝑚 − 1). Then, we partition 𝑁 into 𝛼

subsets of voters, with as many subsets as possible having size𝑚−1.
In each of these subsets with size𝑚− 1, every alternative in𝐴 \ {𝑦}
is ranked first in the preference ≻𝑒,𝑜

𝑖
of exactly one voter 𝑖; if one of

these subsets has size 𝑘 ≤ 𝑚− 1, then 𝑥 and 𝑘 − 1 other alternatives
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from 𝐴 \ {𝑦} are ranked first in the preference ≻𝑒,𝑜
𝑖

of exactly one

voter 𝑖 . Clearly, no alternative can have a strictly larger Plurality

score than 𝑥 in ≻𝑒,𝑜
, so 𝑥 is a Plurality winner under limited energy.

To obtain the social welfare for 𝑥 that appears in the denominator of

the fraction in the statement, we ensure that whenever voter 𝑖 does

not rank 𝑥 first in ≻𝑒,𝑜
𝑖

, she will rank it last, and only the 𝛼 voters

with the smallest energy will rank 𝑥 first. Thus, 𝑆𝑊 (Plur(≻𝑒,𝑜 )) =
𝑆𝑊 (𝑥) = ∑

𝛼.min𝑖∈𝑁 𝑒𝑖 𝑒𝑖 − 1. Figure 3 exemplifies our construction

with𝑚 = 4, 𝑛 = 7, and 𝑒𝑖 = 2 for all 𝑖 ∈ 𝑁 (the remaining positions

in the rankings are filled arbitrarily). □

𝑦

𝑥

𝑦

𝑤

𝑧

𝑥

𝑦

𝑧

𝑤

𝑥

𝑦

𝑥

𝑦

𝑤

𝑧

𝑥

𝑦

𝑧

𝑤

𝑥

𝑦

𝑥

𝑦

𝑤

𝑧

𝑥

Figure 3: Profile construction for the PLE calculation of Plu-
rality.

The lower bound for the PLE of the Plurality rule is not strict.

See an example with 𝑚 = 4, 𝑛 = 4, and 𝑒𝑖 = 2 for all 𝑖 ∈ 𝑁 in

the profile ≻ of Figure 4. We have that 𝑆𝑊 (Plur(≻)) = 𝑆𝑊 (𝑦) =
(𝑛 − 1) (𝑚 − 1) = 9, and that 𝑆𝑊 (Plur(≻𝑒,𝑜 )) = 1. This gives us

𝑃𝐿𝐸 (Plur, 𝑒) ≥ 9, while Lemma 1 only gives us 𝑃𝐿𝐸 (Plur, 𝑒) ≥ 6.

𝑧

𝑤

𝑦

𝑥

𝑦

𝑤

𝑧

𝑥

𝑦

𝑧

𝑤

𝑥

𝑦

𝑥

Figure 4: Non-strict PLE lower bound for Plurality.

Our lower bound for Plurality is always exceeded by Borda, under

minimal assumptions on the number of voters and alternatives.

Theorem 2. Let 𝑚 ≥ 4 and 𝑛 ≥ 6. It holds that 𝑃𝐿𝐸 (Plur, 𝑒) >

𝑃𝐿𝐸 (Borda, 𝑒) for every non-trivial energy function 𝑒 .

Proof. Lemma 1 provides a lower bound for Plurality’s PLE.

It suffices to show that Borda’s PLE is always smaller than that.

Recall that we define 𝛼 = ⌊ 𝑛
𝑚−1 ⌋ + 1 if ⌊ 𝑛

𝑚−1 ⌋ is not an inte-

ger, and 𝛼 = 𝑛
𝑚−1 otherwise. We claim that 𝑆𝑊 (Borda(≻𝑒,𝑜 )) >∑

𝑖∈𝛼.min𝑖∈𝑁 𝑒𝑖 𝑒𝑖 −1 for all ≻, 𝑒 , and 𝑜 . If this holds, since any possi-

ble social welfare is at most𝑚(𝑛 − 1), the PLE of Borda will smaller

than the lower bound for the PLE of Plurality.

To prove our claim, suppose for contradiction that there exist≻, 𝑒 ,

and 𝑜 such that 𝑆𝑊 (Borda(≻𝑒,𝑜 )) ≤ ∑
𝑖∈𝛼.min𝑖∈𝑁 𝑒𝑖 𝑒𝑖 − 1 (∗). Let

Borda(≻𝑒,𝑜 ) = 𝑥 . Because 𝑥 is the Borda winner, every time an

alternative 𝑦 ≠ 𝑥 appears in a ranking within ≻𝑒,𝑜
at a position 𝑘 ≥

0 levels above 𝑥 , it must also appear in some other ranking at a

position ℓ ≥ 𝑘 levels below 𝑥 . But if𝑚 ≥ 4 and 𝑛 ≥ 6:

𝛼 ≤ ⌊ 𝑛

𝑚 − 1

⌋ + 1 ≤ 𝑛

𝑚 − 1

+ 1 <
𝑛

𝑚 − 2

≤ 𝑛

2

So, from (∗) we know that the levels below 𝑥 in ≻𝑒,𝑜
are in total

at most

∑
𝛼.min𝑖∈𝑁 𝑒𝑖 𝑒𝑖 − 1 <

∑
𝑛
2
.min𝑖∈𝑁 𝑒𝑖

𝑒𝑖 − 1. This means that

the levels above 𝑥 in ≻𝑒,𝑜
are in total strictly more than

𝑛
2
(𝑒 − 1),

where 𝑒 ∈ max(𝛼.min𝑖∈𝑁 𝑒𝑖 ). Hence, it is impossible for 𝑥 to be

the Borda winner, and we have reached a contradiction. □

4 THE EFFECTS OF LIMITED ENERGY: AN
EXPERIMENTAL ANALYSIS

This section sheds more light to the effects of limited energy on

voters. Complementing the analytical methodology of Section 3

that contributed to a qualitative study of the voting rules, we now

employ a quantitative approach. Via extensive simulation experi-

ments, we measure the social welfare in multiple voting contexts.

In particular, we control a number of crucial parameters:

• The distribution of the intrinsic preference profiles.
• The distribution of the energy limits of the voters.
• The distribution of the show orders applied to the voters.

• The voting rule to be used.

To illustrate how the interaction of all the above parameters may

affect our results, consider the following example.

Example 2. Suppose we have three alternatives and three voters

with identical preferences and energy limits (𝑒𝑖 = 2 for all 𝑖). What

is the optimal distribution of the show orders for the Plurality rule,

given that we don’t know the voters’ exact preferences?

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

If every voter is shown the alternatives in the same order, then

there are three possibilities: voters will all examine the set {𝑥,𝑦},
or {𝑥, 𝑧}, or {𝑦, 𝑧} (the last case is depicted above). So, there is 2/3
probability for alternative 𝑥 (i.e., the alternative offering the highest

social welfare) to win; else, 𝑦 will win. If on the other hand the

show order of the alternatives is different for every voter, there is

6/7 > 2/3 probability for alternative 𝑥 to be selected: even if one

of the voters does not examine it and ranks 𝑦 first, the other two

voters will ensure the optimal plurality winner; this will only fail

if one voter is presented with 𝑦 and then 𝑧 and another voter is

presented with 𝑧 and then 𝑦, causing 𝑦 to be the plurality winner.

Example 2 targets two extreme cases regarding the discordance

between the voters’ show orders: no discordance at all (meaning

extremely coherent show orders), and as high discordance as possi-

ble (meaning totally divergent show orders). The experiments help

us examine intermediate values of discordance, as well as various

types of preference profiles. Note that when we turn our attention

to preference profiles, our focus is similar: we will inspect coherent

profiles where voters hold close preferences, but also divergent

profiles with contrasting preferences.

4.1 Sampling Method
The sampling method that we employ is based on the Plackett-Luce
ranking distribution [22, 26, 31] and is “Mallow-like”, in the sense
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of using a reference ranking to which voters’ preferences can be

more or less similar. This distribution has been found to be practical

for simulating choice data [13] and offers high degree of freedom

regarding the domains it can model. Our version works as follows.

We first fix a reference ranking ≻ over 𝐴 for the intrinsic pref-

erences of the voters (similarly for the show orders). Let 𝐺 be a

Gaussian distribution over the real numbers, with a given mean

and entropy. We sample the alternatives appearing in voter 𝑖’s pref-

erence ≻𝑖 sequentially: We draw a value 𝑘 from 𝐺 and place on

the first level of ≻𝑖 the alternative from the ⌈𝑘⌉th level of ≻ (if

⌈𝑘⌉ ∉ {1, . . . ,𝑚}, we draw again); we then draw another value ℓ

and place on the second level of ≻𝑖 the alternative from the ⌈ℓ⌉th
level of ≻ (if ⌈ℓ⌉ ∉ {1, . . . ,𝑚} or ⌈ℓ⌉ = ⌈𝑘⌉, we draw again); we

continue until all𝑚 alternatives are sampled for ≻𝑖 .
More specifically, we consider Gaussian distributions with en-

tropy capturing the degree of discordance between the voters (rang-

ing in [0, 2]): high entropy means high discordance.
9
For the voters’

energy limits, we draw values from 𝐺 , with normalised mean in

[0, 1]. To account for different voting scenarios, we call the profiles

(also the show orders and the voters’ energy) coherent, similar, or
divergent when the entropy of their corresponding 𝐺 distribution

is 0.2, 1, or 1.8, respectively. We call the energy low, medium, or

high when the corresponding mean is 0.2, 0.5, and 0.8, respectively.

We sample 3000 preference profiles for each combination of

parameters.
10

We discuss results for different numbers of voters,

from 10 to 1000, and 5 alternatives. Note that it is not clear whether

the number of voters has positive or negative effects on social

welfare. For example, take similar profiles and medium coherent

energy, with coherent show orders. The social welfare produced

by Plurality (similarly by Borda) is on average the same with 10,

100, and 1000 voters, but on large groups we observe more extreme

behaviour (Figures 10 and 11 in the Appendix).

In Sections 4.2 and 4.3, our results concern the optimal show

orders (♠), the comparative performance of the two voting rules (★),

and the performance of the voting rules in relation to the discor-

dance between the energy limits of the voters (♦). These results
are easily verifiable in the app; in the interest of space we do not

provide relevant figures in the main body of the paper (a screenshot

that exemplifies the user interface of the app and the way that our

results are demonstrated in it can be seen in Figure 5). Throughout

the experiments, we optimise, compare, and contrast the produced

(normalised) social welfare values of the two voting rules.

4.2 High/Medium Energy
We discover that in most cases, it is optimal to apply similar show or-

ders to the voters (based on our Gaussian distribution with entropy

around 1). See for example Figure 5. This fails in two contexts:
11

♠ For similar or divergent profiles and medium coherent en-

ergy, maximising show order entropy is optimal for Borda,

especially for larger groups (around 1000 voters).

♠ For similar or divergent profiles and medium coherent en-

ergy, minimising show order entropy is optimal for Plurality.

9
The Gaussian distribution with the highest entropy is the uniform distribution.

10
Conducting recurrent experiments, we observed that sampling 3000 profiles is suffi-

cient to obtain negligible deviations in the results we present.

11
This can be seen in Figure 12 in the Appendix, which involves the same parameters

as Figure 5 except for having coherent instead of divergent energy.

To present the comparative performance of the rules, we distinguish

two cases. The former concerns all contexts where Plurality is better

than Borda, independently of the show orders’ distribution.

★ For fewer voters or divergent profiles, Plurality performs

better than Borda. For coherent profiles or for more voters

and high energy, Plurality performs close to optimally (see

Figure 13 in the Appendix for an illustration) and thus is

trivially better than Borda (recall also the insight provided

by Proposition 5).

★ For many voters (around 1000), similar profiles, and medium

energy, Plurality always performs better for coherent show

orders and Borda always performs better for divergent show

orders. For similar show orders, Plurality is better only when

we have divergent energy limits.

The next point highlights a basic difference between the two rules.

♦ Plurality performs best for coherent energy, contrary to

Borda that for many voters, performs best for divergent

energy. See examples in the Appendix, Figures 14 and 15.

4.3 Low Energy
We solve the same exercises for voters with low energy. We see

again that similar show orders (linked to entropy around 1) consti-

tute the optimal choice in most cases, except for two contexts for

larger groups (around 1000 voters); Figures 16, 17, and 18 in the Ap-

pendix exemplify a standard case and the exceptions, respectively:

♠ For similar or divergent profiles and coherent energy, max-

imising the show order entropy is optimal for Borda.

♠ For similar or divergent profiles and similar energy, a smaller

show order entropy of around 0.5 is optimal for Plurality.
12

A significant observation is reinforced next: The advantages of

Plurality are very prominent for small groups.

★ For few voters, Plurality’s performance is always better than

Borda’s (or close to it), independently of the show orders.

★ For many voters (around 1000), Plurality almost always per-

forms better for coherent show orders and Borda for di-

vergent show orders.
13

For similar show orders Plurality is

better only when we have divergent energy limits.

Our final remark concerns the comparison between groups with

various energy distributions. As opposed to Section 4.2, now it does

not hold that coherent energy is beneficial to Plurality.

♦ Both rules perform best for divergent energy, with Plurality

exhibiting greater differences than Borda.
14

4.4 The Big Picture
Here is an overview of our experimental results.

To start, choosing a show order distribution of medium entropy

is often the best we can do. The only settings where we should

differentiate concern some groups with low to medium energy and

non-coherent preferences: the show orders that we should then

12
Note the difference with the case of higher energy in Section 4.2, where completely

minimising the show order entropy was optimal for Plurality.

13
The only exceptions being similar or diverging profiles with similar energy against

Plurality, and coherent or diverging profiles with diverging energy against Borda.

14
A minor exception for Plurality is the case of coherent show orders, where groups

with divergent energy are not obviously better.
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Figure 5: Plurality’s and Borda’s social welfare for various show orders, similar profiles, medium divergent energy, 1000 voters.

choose are contingent on the voting rule in use. What is also evident

is that divergent show orders may only benefit Borda (and are

detrimental to Plurality), and vice versa for coherent show orders.

Secondly, the performance of Plurality in our framework is espe-

cially favourable: For groups with high energy, and even in some

cases with medium energy, the collective outcomes that Plurality

produces are almost always the ones maximising social welfare. In

cases where Plurality is non-optimal, which of the two rules gives

better outcomes is an intricate matter of other parameters.

Finally, whether it is profitable to apply each of our rules to

groups with coherent or divergent energy depends on the amount

of energy that voters have: if their energy is low, groups with

divergent energy limits perform better for both rules; otherwise—

for high enough energy—groups with coherent energy limits are

best for Plurality.

5 STRATEGIC VOTING
Another fundamental aspect of voting methods is their suscepti-

bility to strategic manipulation. So far we have implicitly made a

rather simplistic assumption regarding the relationship between the

preferences of the voters and their reported votes—namely that they

coincide. This is a reasonable starting point for a study in computa-

tional social choice; next, it is sensible to move one step forward

and wonder whether this is a safe assumption in our framework.

We suppose it is common knowledge that every voter has some

energy limit and can compare at least two alternatives, and that

the alternatives are presented to every voter in some order. We ask

whether voters have an incentive to misrepresent their intrinsic

preferences—beyond what is caused by their limited energy—in

view of obtaining a favourable outcome. To begin with, let us settle

the background. We will build on the standard game-theoretical

model of strategic voting in which voters have full information
about the intrinsic preferences of other members in their group [11,

29], granting additional flexibility with respect to the information

they have about the specific energy and show order functions.

To include informational uncertainty, we generalise upon the

model of Conitzer et al. [8] and Reijngoud and Endriss [28], also

put in use by other works, e.g., [10, 34]. We denote by I the infor-
mation function: I𝑖 (≻, 𝑒, 𝑜) is the set of profiles of (possibly partial)

preferences that voter 𝑖 deems possible, given a profile of (intrinsic)

preferences ≻, an energy function 𝑒 , and a show order function 𝑜 .

An information function I is at least as informative as an informa-

tion function I′
if I𝑖 (≻, 𝑒, 𝑜) ⊆ I′

𝑖
(≻, 𝑒, 𝑜) for all 𝑖 , ≻, 𝑒 , 𝑜 .

Note that voter 𝑖 is only aware of the alternatives 𝐴(𝑒𝑖 , 𝑜𝑖 ) ⊆ 𝐴.

Hence, the profiles she considers possible will only involve this

subset. Definition 1 formalises two opposite scenarios.

Definition 1. We say that I provides:

• full-energy and full-order information if

I𝑖 (≻, 𝑒, 𝑜) = {≻𝒆,𝒐↾𝐴(𝑒𝑖 ,𝑜𝑖 ) }, for all ≻, 𝑒 , 𝑜 , and 𝑖
• zero-energy and zero-order information if

I𝑖 (≻, 𝑒, 𝑜) = {(≻𝒆′,𝒐′

−𝒊 ↾𝐴(𝑒𝑖 ,𝑜𝑖 ) , ≻
𝑒𝑖 ,𝑜𝑖
𝑖

) for all 𝑜′ ∈ Π(𝐴)𝑛 ,
𝑒′ ∈ {2, ..., |𝐴|}𝑛}, for all ≻, 𝑒 , 𝑜 , and 𝑖

Intuitively, under full-energy and full-order information a voter

knows everything about the reported preferences of her peers (con-

ditionally on her own energy and show order); under zero-energy

and zero-order information, she knows nothing about them. We

define the manipulability of a voting rule in the lines of Reijngoud

and Endriss [28], who focus on a safe kind of manipulation, i.e., one

where the voters report an untruthful preference only if there is no

possible profile where this could lead to an inferior outcome.

Definition 2. Consider an energy function 𝑒 and an information

function I. A rule 𝐹 is manipulable on a profile ≻ by voter 𝑖 via

≻′
𝑖
≠≻𝑒,𝑜

𝑖
if for some order function 𝑜 two conditions hold:

(1) 𝐹 (≻′
−𝒊, ≻

′
𝑖
) ≻𝑖 𝐹 (≻′

−𝒊, ≻
𝑒,𝑜
𝑖

), for some profile ≻′∈ I𝑖 (≻, 𝑒, 𝑜)
(2) 𝐹 (≻′′

−𝒊, ≻
𝑒,𝑜
𝑖

) ≻𝑖 𝐹 (≻′′
−𝒊, ≻

′
𝑖
), for no profile ≻′′∈ I𝑖 (≻, 𝑒, 𝑜)

Since voters are allowed to submit partial preferences, manipula-

tion may be of two different kinds: voters may either omit pairwise
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comparisons between alternatives they have examined, or flip their
truthful preferences. We borrow the following definitions [20]:

15

Definition 3. We say that ≻′
is induced from ≻ by:

• omission when for all 𝑥,𝑦 ∈ 𝐴, 𝑥 ≻′ 𝑦 implies that 𝑥 ≻ 𝑦;

• flipping when for all 𝑥,𝑦 ∈ 𝐴, 𝑥 ≻′ 𝑦 holds if and only if

𝑥 ≻ 𝑦 or 𝑦 ≻ 𝑥 .

We say that a voting rule is manipulable by omission (flipping)

if it is manipulable on some profile ≻ by voter 𝑖 via ≻′
𝑖
≠≻𝑒,𝑜

𝑖
and

≻′
𝑖
is induced from ≻𝑒,𝑜

𝑖
by omission (flipping).

Lemma 2 verifies a natural relation of information functions—it

is a direct analogue of Lemma 1 by Reijngoud and Endriss [28].

Lemma 2. If I is at least as informative as I′, then a voting rule
that is manipulable under I′ will also be manipulable under I.

The next two theorems characterise the energy limits instigating

manipulability. Plurality is susceptible to manipulation even under

very low energy—this is not the case for Borda, which requires a

slightly higher amount of energy to be manipulated by omission.

Theorem 3. Under any information function, the Plurality rule
is manipulable for an energy function 𝑒 by omission (similarly by
flipping) if and only if 𝑒𝑖 ≥ 3 for some voter 𝑖 .

Proof. First, with 𝑒𝑖 < 3 for all 𝑖 , no voter has an incentive to

manipulate. So consider an arbitrary energy function 𝑒 and suppose

without loss of generality that 𝑒1 ≥ 3. Take I to be the zero-energy

and zero-order information function. We will show that Plurality

is manipulable for I and the statement will follow from Lemma 2.

Take a two-voter profile ≻ and a function 𝑜 such that ≻↾𝐴(𝑒1,𝑜1 )=
(≻1, ≻2), where 𝑥3 ≻1 𝑥1 ≻1 𝑥2 and 𝑥2 ≻2 𝑥1 ≻2 𝑥3. We have

that ≻↾𝐴(𝑒1,𝑜1 )∈ I1 (≻, 𝑒, 𝑜) and Plur(≻↾𝐴(𝑒1,𝑜1 ) ) = 𝑥2. Under zero-

energy and zero-order information, voter 1 is aware of the intrinsic

preference ≻2, but only knows that 𝑒2 ≥ 2. This guarantees her

that 𝑥3 cannot be the Plurality winner in ≻𝑒,𝑜
. By submitting the

untruthful partial preference 𝑥1 ≻′
1
𝑥2 instead of her truthful one,

voter 1 has nothing to lose—yet, she can ensure a preferable outcome

under some possible profile because Plur(≻′
1
, ≻2) = 𝑥1. Similarly,

voter 1 could flip her preference to 𝑥1 ≻′
1
𝑥2 ≻′

1
𝑥3. □

Theorem 4. Under any information function, the Borda rule is
manipulable for an energy function 𝑒 by flipping if and only if 𝑒𝑖 ≥ 3

for some voter 𝑖 .

Proof. Consider ≻↾𝐴(𝑒1,𝑜1 )= (≻1, ≻2), where 𝑥2 ≻1 𝑥1 ≻1 𝑥3
and 𝑥1 ≻2 𝑥2 ≻2 𝑥3. As in the proof of Theorem 3, under any energy

and show order information voter 1 knows that 𝑥3 cannot be the

Borda winner: she can manipulate with 𝑥2 ≻′
1
𝑥3 ≻′

1
𝑥1. □

Theorem 5. Under any information function, the Borda rule is
manipulable for an energy function 𝑒 by omission if and only if
𝑒𝑖 ≥ 5 for some voter 𝑖 .

Proof. Suppose first that 𝑒𝑖 ≤ 4 for all voters 𝑖 , and consider

≻′
𝑖
to be induced from ≻𝑖 by omission. From the contrapositive of

Lemma 2, it suffices to show that the Borda rule is not manipulable

15
Note that Kruger and Terzopoulou [20] also consider manipulation by adding pair-

wise comparisons in a voter’s preference. In our model this is not meaningful, since

the voters are not aware of any alternatives beyond the ones they have examined.

under full-energy and full-order information. Precisely because

|𝐴(𝑒𝑖 , 𝑜𝑖 ) | ≤ 4 for all 𝑖 ∈ 𝑁 , and by definition of the Borda rule for

partial preferences, we have that 𝑠Borda (≻𝑖 ) (𝑥) − 𝑠Borda (≻𝑖 ) (𝑦) ≥
𝑠Borda (≻′

𝑖
) (𝑥) −𝑠Borda (≻′

𝑖
) (𝑦) for all alternatives 𝑥,𝑦 such that 𝑥 ≻𝑖

𝑦. Theorem 2 of Kruger and Terzopoulou [20] then tells us that

voter 𝑖 cannot manipulate by reporting ≻′
𝑖
instead of ≻𝑖 .16

Then, suppose that 𝑒𝑖 ≥ 5 for some 𝑖 and take I to be the

zero-energy and zero-order information function. We will show

that Borda is manipulable for I, so by Lemma 2 it is manipu-

lable for every information function. Consider a two-voter pro-

file ≻ and a function 𝑜 such that ≻↾𝐴(𝑒1,𝑜1 )= (≻1, ≻2), where
𝑥2 ≻1 𝑥1 ≻1 𝑥5 ≻1 𝑥4 ≻1 𝑥3 and 𝑥1 ≻2 𝑥2 ≻2 𝑥3 ≻2 𝑥4 ≻2 𝑥5. We

have that ≻↾𝐴(𝑒1,𝑜1 )∈ I1 (≻, 𝑒, 𝑜) and Borda(≻↾𝐴(𝑒1,𝑜1 ) ) = 𝑥1. Inde-

pendently of voter 2’s energy and the order inwhich the alternatives

are presented to her, it is never harmful for voter 1 to submit the

untruthful partial preference ≻′
1
= 𝑥2 ≻1 𝑥5 ≻1 𝑥4 ≻1 𝑥3 instead of

her truthful one. It may even be beneficial: Borda(≻′
1
, ≻2) = 𝑥2. □

Note that the informational assumptions of this section are con-

sequences of limited energy: although the voters know the intrinsic

preferences of their peers to some extent, they are restricted both

with respect to the alternatives of which they are aware themselves

and the votes of the other members in their group that result from

the applied show orders. To the best of our knowledge, this set

of assumptions has not been considered before in strategic vot-

ing, and our results cannot be reproduced in existing frameworks.

Nonetheless, we do enforce a large pool of literature in social choice,

indicating that strategic behavior is often unavoidable.

6 CONCLUSION
We present a framework for limited energy in voting. We formalise

two important notions—the voters’ energy limits and the order

in which the alternatives are presented to them—and focus on

the two most prominent scoring rules: Plurality and Borda. We

provide a foundational analysis of social welfare, conduct extensive

simulation experiments, and also explore the strategic incentives

of voters with limited energy.

We stress a number of take-home messages: With small groups,

high energy, or coherent show orders, Plurality should be preferred

to Borda; but Borda is better with large groups and divergent show

orders. Under low energy, groups with divergent energy perform

better. Overall, the fact that Plurality is less sensitive to loss of

information is advantageous in many contexts. The Borda rule

however is slightly more immune to strategic behaviour, demanding

more energy from those that manipulate by omission.

This paper paves the way for intriguing research outside its

current scope. Indicatively: How robust are our results for differ-

ent notions of social welfare or different voting rules? What is the

computational complexity of discovering the optimal show order

given a profile distribution? Is it easy to compute the PLE value

for different energy functions, and if not, are there desirable ap-

proximations? Which are the exact conditions on the energy and

the preferences of the voters under which a mechanism designer

can control the voting outcome by selecting suitable show orders?

Possible directions are plentiful.

16
This is rather intuitive: Not being able to increase the score difference between a

more preferred and a less preferred alternative, a voter has no incentive to manipulate.
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