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ABSTRACT
A recent line of work in mechanism design has focused on guar-

anteeing incentive compatibility for agents without contingent

reasoning skills: obviously strategyproof mechanisms [22] guarantee
that it is “obvious” for these imperfectly rational agents to behave

honestly, whereas non-obviously manipulable (NOM) mechanisms

[28] take a more optimistic view and ensure that these agents will

only misbehave when it is “obvious” for them to do so. Technically,

obviousness requires comparing certain extrema (defined over the

actions of the other agents) of an agent’s utilities for honest be-

haviour against dishonest behaviour.

We present a technique for designing NOM mechanisms in set-

tings where monetary transfers are allowed based on cycle mono-
tonicity, which allows us to disentangle the specification of the

mechanism’s allocation from the payments. By leveraging this

framework, we completely characterise both allocation and pay-

ment functions of NOM mechanisms for single-parameter agents.

We then look at the classical setting of bilateral trade and study how

much subsidy, if any, is needed to guarantee NOM, efficiency, and

individual rationality. We prove a stark dichotomy: no finite sub-

sidy suffices if agents look only at best-case extremes, whereas no

subsidy at all is required when agents focus on worst-case extremes.

We conclude the paper by characterising the NOM mechanisms

that require no subsidies whilst satisfying individual rationality.
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1 INTRODUCTION
The prevailing solution concept in mechanism design is dominant-

strategy incentive-compatibility, otherwise known as strategyproof-

ness, which stipulates that for any joint strategy of the other agents

a given agent always weakly prefers to act truthfully than dishon-

estly. The canonical example of such a mechanism is the second-

price sealed-bid auction, in which it is always in an agent’s best

interests to submit her true valuation for the item to the auctioneer.

While this is appealing from a theoretical standpoint it relies on
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the assumption that the players of the game act perfectly rationally,

meaning they are able to correctly reason about the behaviour

of the other players as well as solve an optimisation problem to

identify an optimal strategy. This may place a high cognitive or

temporal burden on the player and it can be unrealistic to assume

this is how they act in the real world.

Empirical evidence in fact shows that people facing mechanisms

that are not strategyproof might fail to understand that lying is

beneficial. Examples include mechanisms both with and without

monetary transfers. The Deferred Acceptance Algorithm, used in

many countries to allocate doctors to hospitals, is known to perform

well in practice and produce stable outcomes, even though hospitals

could lie and hire better candidates [27]. Uniform-price auctions

are a natural generalisation of second-price auctions to the multi-

unit case: with a supply of 𝑘 , they charge the winners the (𝑘 + 1)-
th highest bid for each unit received. Variants of uniform-price

auctions are used by search engines to charge for sponsored ad slots

and governments to sell bonds. These auctions are famously not

strategyproof and yet there is little evidence that bidders cheat in

practice [19]. On the other hand, there are manipulable mechanisms

where people can easily figure out how to lie profitably: the Boston

Mechanism for school choice is known to be manipulable [24] and

empirical data shows evidence of misreports [11]. Similarly, there

is evidence of bid shading in pay-as-bid multi-unit auctions [18].

Motivated by these observations, Troyan and Morrill [28] study

non-obvious manipulability, an alternative solution concept to strat-

egyproofness for cognitively limited agents. Under this relaxation,

simply referred to as NOM, a mechanism is allowed to be vulnerable

to certain types of manipulations which are harder to identify by

agents with bounded rationality. Instead of requiring the truthful

action for each agent 𝑖 to be a dominant strategy at each possible

interaction with the mechanism, under non-obvious manipulability

we need only to compare best-case utilities for truthful outcomes

(i.e., the maximum utility, taken over the reports of the other agents,

for 𝑖 when she is truthful) to best-case utilities for dishonest out-

comes, and worst-case utilities for truthful outcomes to worst-case

utilities for dishonest outcomes. This is justified under the assump-

tion that cognitively-limited agents can only identify this type of

obvious manipulation where the benefits occur at the extremes of

her utility function.

In this paper we study NOM mechanisms that use monetary

transfers. We wish to: (i) understand the restrictions NOM imposes

on the social choice function; (ii) characterise both the allocation

functions and payments in NOM mechanisms for the large class of

single-parameter agents; and (iii) assess the power of NOM mech-

anisms for two-sided markets. We develop both conceptual and

technical tools to obtain answers to each of these desiderata.
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1.1 Our Contribution
Our goal is to understand how permissive NOM is as a solution

concept for allocation functions. NOM requires truthtelling to yield

a greater utility than misreporting for every player under the best

and worst outcomes of the mechanism, taken over all actions of the

other players. Therefore the constraints imposed by NOM depend
on both the allocation and payment function since they define these

maximum and minimum utilities, and the utility of every other out-

come must lie between these extremes. The first contribution of this

work is to abstract this dependency using what we call labellings
and use these to extend the cycle monotonicity technique to han-

dle NOM direct-revelation mechanisms. Informally a labelling is a

choice of bid profiles designating the best and worst outcomes for a

given player that the mechanism will define through its allocation

and payments. These induce two types of constraints: incentive-

compatibility constraints, which enforce the NOM property where

the extreme utilities when lying are no better than the extreme

utilities from truthtelling, and labelling-induced constraints, which

ensure the validity of the labels. Given an allocation function 𝑓

and labelling _ for a given agent 𝑖 we can then define a graph G_
𝑖,𝑓

representing the constraints imposed by the mechanism and show

that the existence of payments satisfying these constraints is related

to cycles in this graph.

Theorem 1 (informal). An allocation function 𝑓 is NOM
implementable if and only if there exists a labelling _ such
that G_

𝑖,𝑓
has no negative-weight cycles.

This provides a useful tool for studying the allocation functions

for which we can define payments leading to NOM mechanisms.

We apply this to the well-studied setting of single-parameter agents

where each agent’s type can be expressed as a single number, and

their utility for an allocation is simply the product of their type with

the amount they are allocated. Negative cycles exist in the graph

G_
𝑖,𝑓

when the labels are antimonotone, roughly meaning that for

two types 𝑏𝑖 and 𝑏
′
𝑖
with 𝑏𝑖 < 𝑏′

𝑖
the agent is allocated more for the

label corresponding to 𝑏𝑖 than it does for the label corresponding to

𝑏′
𝑖
. We then prove that a monotone labelling guarantees no negative

cycles and that such a labelling is possible whenever the image of 𝑓𝑖
is rich enough. Roughly speaking 𝑓 is overlapping if for each agent 𝑖

and pair of types 𝑏𝑖 , 𝑏
′
𝑖
the sets {𝑓𝑖 (𝑏𝑖 , 𝑏−𝑖 )}𝑏−𝑖 and {𝑓𝑖 (𝑏′𝑖 , 𝑏−𝑖 )}𝑏−𝑖

have a non-empty intersection.

Theorem 2 (informal). An allocation function 𝑓 is NOM-
implementable for single-parameter agents if and only if 𝑓 is
overlapping.

Our second contribution proves that as long as the labels define a

a monotone restriction of the allocation function then it is possible

to define a NOM payment scheme. This uncovers a connection with

strategyproofness for single-parameter agents, where the allocation

must be monotone for each fixed 𝑏−𝑖 , and when this is the case it

is known what form the payments must take [6]. We observe that

we can take the same payments along the monotone restriction

defined by the labels, while we can easily characterise the payments

associated with the remaining bid profiles. This gives a complete

picture on the power of NOM mechanisms for single-parameter

agents.

We conclude by applying our findings to NOM mechanisms for

two-sided markets where both sides of the market are strategic, a

setting which is widespread but notoriously too complex for strate-

gyproofness. We focus on bilateral trade where a single item may

be sold from a seller to a buyer. We want to guarantee efficiency,

where trade occurs only when the buyer’s valuation is at least the

seller’s production cost; weak budget balance (WBB), for which

we never pay the seller more than we charge the buyer; and indi-

vidual rationality (IR), where the utilities of both buyer and seller

are non-negative. NOM cannot guarantee these three properties

simultaneously [28] so we investigate the extent to which a subsidy

of 𝛼 ≥ 1 guaranteeing we pay the seller at most an 𝛼 factor of what

we receive from the buyer (i.e., 𝛼-WBB) allows us to obtain NOM,

efficiency, and IR simultaneously.

Theorem 3 (informal). Any NOM, IR and 𝛼-WBB mecha-
nism for bilateral trade has unbounded 𝛼 .

The approach developed in the first two main theorems can be

applied to characterise BNOM and WNOM independently. For our

third main result we first characterise the monotone restrictions

of a given allocation function that will guarantee efficiency, IR,

and either BNOM or WNOM. For the former the unbounded 𝛼

is implied by the incentive-compatibility constraints: using the

explicit payment formulae we show that the buyer must receive the

item for free while the seller must receive some positive payment in

each of their respective best case profiles. For the latter it is implied

by the labelling validity constraints.

We then look beyond using monotone restrictions of the allo-

cation function to construct NOM mechanisms where the labelled

profiles need not appear on a “single line”. Can we be more flexible

in our labelling scheme to derive different payments that would

satisfy IR and finite subsidies for an allocation function that is over-

lapping and efficient? The answer is surprising: even non-single

line BNOM mechanisms require infinite subsidies while non-single

line WNOM mechanisms can guarantee WBB (i.e., no subsidies).

There exists in fact a definition of WNOM labels that implement

first-price auctions. We may also strengthen the notion of incentive-

compatibility on either side of the market to strategyproofness –

for example, the buyer is strategyproof and the seller WNOM – by

combining a first-price auction on one side with a second-price

auction on the other. This leaves the spread to the market designer,

whereas a fully WNOM market would be budget balanced. This

setting may be of interest for some classes of double-sided markets

where the rationality is asymmetric and depends on the role played

in the market.

We conclude by characterising individually rational NOM mech-

anisms that might be inefficient but require no subsidies. Intuitively,

this result says that there exist trading windows defined by payment

thresholds that partition the domain of buyer and seller into three

sets; bids guaranteeing that the trade occurs, bids guaranteeing

that the trade will not occur, and bids where the decision to trade

depends on the bid at the other side of the market.

1.2 Related Work
There has been a growing body of work in the algorithmic mech-

anism design literature that studies agents with bounded ratio-

nality. Li [22] introduced the aforementioned notion of obvious
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strategproofness (OSP) to study settings in which agents lack con-

tingent reasoning skills, and provides two characterisations of such

mechanisms, one from the perspective of contingent reasoning and

the other from that of commitment power. While OSP mechanisms

provide stronger incentive guarantees than strategyproof ones, they

are harder to construct. Where the revelation principle allows us to

restrict our attention to direct mechanisms for strategyproofness,

the same is not true for OSP: the extensive-form implementation of

the mechanism is crucial to a mechanism’s obvious strategyproof-

ness. The relationship between the extensive-form implementation

and the allocation function of OSP mechanisms is studied in [13],

where together with the introduction of the cycle monotonicity vari-

ant for OSP mechanisms with transfers, the authors give bounds on

the approximation guarantee of these mechanisms for scheduling

related machines. Binary allocation problems are then studied in

[12] first for single-parameter agents with small domains and more

recently in [14] for the general case. Further OSP mechanisms using

some form of verification power of the mechanism designer are

given in [15, 16, 20]. OSP mechanisms for combinatorial auctions

with single-minded bidders are given in [9]. Relaxations of OSP

that interpolate between OSP and strategyproofness are studied in

[17].

Troyan and Morrill [28] consider agents with bounded ratio-

nality from the opposite perspective and introduce non-obvious

manipulability (NOM) to study the types of manipulations available

to a cognitively limited agent. In contrast to OSP, where the worst-

case truthful outcome must be at least as good as the best-case

dishonest outcome, NOM stipulates that both the best- and worst-

case truthful outcomes are no worse than the best- and worst-case

dishonest outcomes, respectively. They provide a characterisation

for direct-revelation NOMmechanisms and classify existing mecha-

nisms as either obviously manipulable (OM) or NOM in the settings

of school choice, two-sided matching, and auctions. They show that

a manipulation is obvious if and only if it can be recognised by a

cognitively limited agent. They go on to characterise the class of

NOM matching mechanisms for settings subject to both one-sided

and two-sided manipulations, then show that for generalisations

of first-price and second-price auctions, the former is OM while

the latter is NOM. Finally they show that every efficient, IR, WBB

mechanism for bilateral trade is OM.

Several papers build directly on [28]. Aziz and Lam [7] study

NOM voting rules and provide conditions under which certain

classes of rules are NOM, and this may depend on the number

of outcomes relative to the number of voters. They also provide

algorithms to compute such manipulations using polynomial-time

reductions to the unweighted coalitional manipulation problem,

which yield polynomial-time algorithms under the 𝑘-approval vot-

ing rule. Ortega and Segal-Halevi [23] study indirect NOM mecha-

nisms for cake-cutting and show that relaxing strategyproofness

to NOM resolves the conflict between truthtelling and fairness:

unlike strategyproofness, NOM is compatible with proportionality.

Like [22] they note how incentive properties may vary between

theoretically equivalent mechanisms for agents with bounded ra-

tionality. Psomas and Verma [25] study fairly allocating indivisible

goods to agents with additive valuations. They show the existence

of deterministic NOM mechanisms which achieve envy-freeness

up to one good (EF1), and highlight a conflict for NOM under differ-

ent objective functions – they provide a social welfare maximising

NOM mechanism for 𝑛 ≥ 3 agents and in contrast show that any

optimal mechanism for egalitarian or Nash welfare is obviously

manipulable. They also provide an efficiency-preserving black box

reduction from designing NOM and EF1 mechanisms to designing

EF1 algorithms.

2 PRELIMINARIES
We consider mechanism design settings with the possibility of

monetary transfers. There is a set of 𝑛 agents, where each agent 𝑖

has some type 𝑡𝑖 that comes from a set 𝐷𝑖 of possible types (also

called agent 𝑖’s domain). We let 𝐷 = ×𝑖∈[𝑛]𝐷𝑖 be the set of type
profiles. For a set of possible outcomes 𝑂 an agent’s type describes

for each 𝑜 ∈ 𝑂 the utility she receives from that outcome; it can

therefore be thought of as a function 𝑡𝑖 : 𝑂 → Rmapping outcomes

to numbers. For a type profile 𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑛), player 𝑖 , and type

𝑏𝑖 ∈ 𝐷𝑖 , we use the standard notation (𝑏𝑖 , 𝑡−𝑖 ) to denote the type

profile obtained from 𝑡 by replacing 𝑡𝑖 with 𝑏𝑖 . Furthermore we

define 𝐷−𝑖 = ×𝑗∈[𝑛]\{𝑖 }𝐷 𝑗 .

The agents interact with a mechanism𝑀 that solicits their types

and returns an outcome and a vector of payments. We focus on

direct-revelation1 mechanisms as in [28] in which agents directly

report their types to the mechanism, and based on the type profile

submitted by the agents the mechanism selects an outcome and

vector of payments. We consider a mechanism 𝑀 : 𝐷 → 𝑂 × R𝑛
as a function mapping type profiles to outcome-payment vector

pairs, where 𝑝𝑖 describes the payment made to agent 𝑖 . Agents are

assumed to maximise their utility and are equipped with standard

quasi-linear utility functions so that, on output (𝑜, 𝑝) of the mecha-

nism, agent 𝑖 derives utility 𝑡𝑖 (𝑜) + 𝑝𝑖 . We overload notation and

denote the utility of agent 𝑖 under this output as 𝑡𝑖 (𝑜, 𝑝).
A social choice function 𝑓 : 𝐷 → 𝑂 is a function that maps type

profiles to outcomes, and we say that a mechanism𝑀 implements
a social choice function 𝑓 if and only if for all 𝑡 ∈ 𝐷 the outcome

returned by𝑀 (𝑡) is equal to 𝑓 (𝑡). Note that agent types are private
information, hence each agent 𝑖 may misreport her type as 𝑏𝑖 ≠ 𝑡𝑖
to the mechanism. We will therefore refer to the reports as bids
and the profile submitted to the mechanism as a bid profile. We

use payments to realign the agents’ incentives to satisfy the NOM

property (defined precisely later in this section). In this paper we

focus on designing NOMmechanisms that implement a given social

choice function and therefore, given a social choice function 𝑓 ,

we may view our mechanism as the tuple 𝑀 = (𝑓 , 𝑝) where the
outcome returned by𝑀 on input𝑏 is equal to 𝑓 (𝑏) for all bid profiles
𝑏, and 𝑝 : 𝐷 → R𝑛 is a rule defining the payments made to each

agent for each bid profile 𝑏. Therefore our objective, given 𝑓 , is

to find payment functions 𝑝 such that the resulting mechanism

𝑀 = (𝑓 , 𝑝) is NOM.

From Section 4 we focus on a specific class of social choice func-

tions known as allocation functions. Here we assume outcomes to be

real-numbered vectors of length 𝑛 and refer to them as allocations,
and assume an agent’s utility for an allocation 𝑎 depends only on

1
In an upcoming paper [4] we show that NOM direct mechanisms are just as powerful

as indirect ones for single-parameter agents; whether this is the case in general is an

open problem.
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the 𝑖th coordinate of 𝑎. This is done purely for interpretational pur-

poses, since we focus on auction settings in which the mechanism

assigns an amount of some object to each agent and an agent’s type

describes the utility she gets from that allocation.

A familiar solution concept inmechanism design is strategyproof-

ness: a mechanism𝑀 is strategyproof if and only if 𝑡𝑖 (𝑀 (𝑡𝑖 , 𝑏−𝑖 )) ≥
𝑡𝑖 (𝑀 (𝑏𝑖 , 𝑏−𝑖 )) for all 𝑡𝑖 , 𝑏𝑖 ∈ 𝐷𝑖 , all𝑏−𝑖 ∈ 𝐷−𝑖 , and all players 𝑖 . Non-
obvious manipulability, on the other hand, requires agents only to

compare the extremes of their utility function. Informally stated it

says that a manipulation is obvious if either the best-case dishon-
est outcome is strictly greater than the best-case truthful outcome

or the worst-case dishonest outcome is strictly greater than the

worst-case truthful outcome. The best and worst cases are defined

over all bid profiles of the other players excluding 𝑖 . As per [28] a

direct-revelation mechanism is not obviously manipulable (NOM) if
both of the following two properties hold:

sup

𝑏−𝑖

{𝑡𝑖 (𝑀 (𝑡𝑖 , 𝑏−𝑖 ))} ≥ sup

𝑏−𝑖

{𝑡𝑖 (𝑀 (𝑏𝑖 , 𝑏−𝑖 ))}, (1)

inf

𝑏−𝑖
{𝑡𝑖 (𝑀 (𝑡𝑖 , 𝑏−𝑖 ))} ≥ inf

𝑏−𝑖
{𝑡𝑖 (𝑀 (𝑏𝑖 , 𝑏−𝑖 ))} (2)

for every 𝑡𝑖 , 𝑏𝑖 ∈ 𝐷𝑖 and for every player 𝑖 . Note that the 𝑏−𝑖 are
not necessarily the same on each side of the inequalities. If (1)

holds then𝑀 is best-case not obviously manipulable (BNOM) and if

(2) holds then𝑀 is worst-case not obviously manipulable (WNOM).
If either inequality is violated for some 𝑡𝑖 , 𝑏𝑖 ∈ 𝐷𝑖 then 𝑏𝑖 is an

obvious manipulation of𝑀 . If𝑀 = (𝑓 , 𝑝) implements 𝑓 and we can

define payments 𝑝 such that 𝑀 is BNOM (respectively, WNOM)

then we say that 𝑓 is BNOM-implementable (respectively, WNOM-
implementable), and if 𝑓 is both BNOM- andWNOM-implementable

then 𝑓 is NOM-implementable.
In Sections 4 and 5 we consider several additional properties.

A mechanism 𝑀 is individually rational (IR) if 𝑡𝑖 (𝑀 (𝑡𝑖 , 𝑏−𝑖 )) ≥ 0

for all 𝑡𝑖 ∈ 𝐷𝑖 , all 𝑏−𝑖 ∈ 𝐷−𝑖 , and for each player 𝑖 , and it makes

no positive transfers (NPT) if 𝑝𝑖 (𝑏) ≤ 0 for each player 𝑖 and each

𝑏 ∈ 𝐷 . In Section 5 we also study efficiency and budget-balance in

the context of bilateral trade, which we will define when needed.

In order to refer to specific types of some player 𝑖 we enumerate

her domain as 𝐷𝑖 = {𝑡1, 𝑡2, . . . , 𝑡𝑑 }. In Section 4 we focus on single-

parameter agents where player types are treated as scalars and we

assume that 𝑡1 < 𝑡2 < . . . < 𝑡𝑑 . We conclude this section with the

following remark.

Remark 1. If mechanism 𝑀 is strategyproof then it is also NOM,

however the reverse is not necessarily true.

This says that there is some additional flexibility that we may be

able to exploit when designing incentive-compatible mechanisms

for NOM versus strategyproofness. In the following section we

formalise this flexibility in the form of profile labellings and use it

to derive a useful technique for designing NOM mechanisms.

3 PROFILE LABELLINGS TO MONOTONICITY
While strategyproofness requires satisfying a constraint on each

pair of bid profiles (𝑡𝑖 , 𝑏−𝑖 ) and (𝑏𝑖 , 𝑏−𝑖 ) for each pair of types

𝑡𝑖 , 𝑏𝑖 ∈ 𝐷𝑖 and each 𝑏−𝑖 ∈ 𝐷−𝑖 , for NOM we need only compare the

extremes of 𝑖’s utility function. Since the social choice function 𝑓

is given then we may design the payments 𝑝 for some mechanism

𝑀 = (𝑓 , 𝑝) to define these extremes and thus effectively select

which bid profiles to compare for incentive-compatibility. We then

only need to satisfy the respective BNOM and WNOM constraints

for these chosen profiles, in addition to the implicit constraints

imposed by this ordering on the profiles. We model this with profile
labellings, which allow us to designate the type profiles leading to

an agent’s highest and lowest utilities when interacting with the

mechanism, based on her true type and the type she reports.

Definition 1 (Profile labelling). Fix player 𝑖 with domain 𝐷𝑖 and

let 𝑑 = |𝐷𝑖 |. A best-case labelling 𝛽 and worst-case labelling 𝜔 of

mechanism𝑀 for player 𝑖 are matrices 𝛽,𝜔 ∈ |𝐷−𝑖 |𝑑×𝑑 such that

𝛽 𝑗𝑘 ∈ arg sup

𝑏−𝑖 ∈𝐷−𝑖

{𝑡 𝑗 (𝑀 (𝑡𝑘 , 𝑏−𝑖 ))},

𝜔 𝑗𝑘 ∈ arg inf

𝑏−𝑖 ∈𝐷−𝑖

{𝑡 𝑗 (𝑀 (𝑡𝑘 , 𝑏−𝑖 ))}.

The entry in row 𝑗 and column 𝑘 of 𝛽 (respectively, 𝜔) therefore

represents the partial bid profile that, when submitted tomechanism

𝑀 along with player 𝑖’s bid 𝑡𝑘 , results in 𝑖’s greatest (respectively,

least) utility when she has type 𝑡 𝑗 . Often we will use _ to denote

either a best- or worst-case labelling of some mechanism. For a

labelled profile _ 𝑗𝑘 for player 𝑖 , given that we can infer 𝑖’s bid

by looking at the second subscript we will use _ 𝑗𝑘 to refer to the

(full) bid profile (𝑡𝑘 , _ 𝑗𝑘 ) for brevity. When dealing with labellings

for multiple players as in Section 5 we will use a superscript to

differentiate between the two, i.e. _𝑖 and _ 𝑗 for players 𝑖 and 𝑗 ,

respectively.

Profile labellings induce two types of constraint. The labelling
constraints induced by _ ∈ {𝛽, 𝜔} ensure that a labelled bid profile

leads to the extreme values of 𝑖’s utility function when she has type

𝑡 𝑗 and bids type 𝑡𝑘 :

𝑡 𝑗 (𝑀 (𝛽 𝑗𝑘 )) ≥ 𝑡 𝑗 (𝑀 (𝑡𝑘 , 𝑏−𝑖 )) for all 𝑏−𝑖 ∈ 𝐷−𝑖 , (3)

𝑡 𝑗 (𝑀 (𝜔 𝑗𝑘 )) ≤ 𝑡 𝑗 (𝑀 (𝑡𝑘 , 𝑏−𝑖 )) for all 𝑏−𝑖 ∈ 𝐷−𝑖 , (4)

for all 𝑡 𝑗 , 𝑡𝑘 ∈ 𝐷𝑖 . Meanwhile the incentive-compatibility constraints
ensure that the extreme values of 𝑖’s utility function when she

reports truthfully to the mechanism are no worse than the extreme

values of her utility function when she misreports her type. Since

the label _ 𝑗𝑘 denotes a bid profile where 𝑖 has type 𝑡 𝑗 and bids type

𝑡𝑘 then for both best- and worst-case labellings we have:

𝑡 𝑗 (𝑀 (_ 𝑗 𝑗 )) ≥ 𝑡 𝑗 (𝑀 (_ 𝑗𝑘 )) for all 𝑡 𝑗 , 𝑡𝑘 ∈ 𝐷𝑖 . (5)

It is worth emphasising that the social choice function 𝑓 is fixed

and that we will use the profile labellings to decide whether pay-

ments exist such that the resulting mechanism is NOM. Not every

labelling will admit such payments since the above constraints may

be unsatisfiable.

We use the labellings to define a graph in order to characterise

the class of NOM-implementable social choice functions. This is

achieved using the cyclic monotonicity technique in a similar man-

ner to Rochet [26], Lavi and Swamy [21], and Ventre [29], among

others. For some social choice function 𝑓 with labelling _ ∈ {𝛽, 𝜔}
for player 𝑖 we construct the weighted directed multigraph G_

𝑖,𝑓
=

(𝑉 , 𝐸_,𝑤) whose node set 𝑉 = 𝐷 is the domain of 𝑓 and whose

edge set encodes the constraints imposed by a NOM mechanism

for 𝑓 . The precise edges in 𝐸_ will vary depending on whether _ is

a best- or worst-case labelling. We annotate each edge of the graph

with a type from 𝑖’s domain and for two nodes 𝑥 and 𝑦 connected
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by an edge annotated with type 𝑡 we write (𝑥,𝑦; 𝑡), or equivalently
𝑥 →𝑡 𝑦. The weight of this edge is 𝑤 (𝑥,𝑦; 𝑡) = 𝑡 (𝑓 (𝑥)) − 𝑡 (𝑓 (𝑦)).
The weight𝑤 (𝐶) of a cycle𝐶 is simply the sum of edge weights on

each edge in the cycle.

The edges of the graph represent the constraints in (3), (4), and

(5). For any labelling _ the edge set 𝐸_ contains the edges {_ 𝑗 𝑗 →𝑡 𝑗

_ 𝑗𝑘 : 𝑡 𝑗 , 𝑡𝑘 ∈ 𝐷𝑖 } representing the incentive-compatibility con-

straints. The labelling constraints for 𝛽 and𝜔 are the reverse of each

other and we have {𝛽 𝑗𝑘 →𝑡 𝑗 (𝑡𝑘 , 𝑏−𝑖 ) : 𝑡 𝑗 , 𝑡𝑘 ∈ 𝐷𝑖 , 𝑏−𝑖 ∈ 𝐷−𝑖 } ⊂
𝐸𝛽 and {(𝑡𝑘 , 𝑏−𝑖 ) →𝑡 𝑗 𝜔 𝑗𝑘 : 𝑡 𝑗 , 𝑡𝑘 ∈ 𝐷𝑖 , 𝑏−𝑖 ∈ 𝐷−𝑖 } ⊂ 𝐸𝜔 .

For any labelling _ of 𝑓 for player 𝑖 , given some bid 𝑡𝑘 ∈ 𝐷𝑖

every edge encoding a labelling constraint is contained within the

subgraph of G_
𝑖,𝑓

that consists only of nodes (𝑡𝑘 , 𝑏−𝑖 ), i.e. profiles
where 𝑖 bids 𝑡𝑘 . We refer to this subgraph as the “𝑘-island” of G_

𝑖,𝑓
.

Thus all labelling constraint edges for profile _ 𝑗𝑘 are contained

in the 𝑘-island of G_
𝑖,𝑓

, while incentive-compatibility constraint

edges are those which for any two types 𝑡 𝑗 , 𝑡𝑘 ∈ 𝐷𝑖 cross from the

𝑗-island to the 𝑘-island of G_
𝑖,𝑓

. This graph allows us to use the cycle

monotonicity technique to characterise the social choice functions

that are NOM-implementable. The proof appears in the full version

of the paper [3] and largely follows standard arguments from the

literature, with some extra care required in the proof of sufficiency.

We note that the result holds only for finite domains.

Theorem 1. Social choice function 𝑓 is BNOM-implementable (re-
spectively, WNOM-implementable) if and only if for each agent 𝑖
there exists a best-case labelling 𝛽 (respectively, worst-case labelling
𝜔) such that G𝛽

𝑖,𝑓
(respectively, G𝜔

𝑖,𝑓
) contains no negative weight

cycles.

Certain cycles are guaranteed to exist in G𝛽

𝑖,𝑓
and G𝜔

𝑖,𝑓
regardless

of the specific labelling. We identify two classes of such cycles:

those contained within a 𝑗-island of G_
𝑖,𝑓

, which purely describe

labelling constraints, and those that traverse different islands, which

correspond to incentive-compatibility constraints. Intuitively the

former class of cycles appears because given a bid 𝑡 𝑗 of player 𝑖 ,

each labelled profile for this bid and some true type from 𝑖’s domain

must yield a higher (respectively, lower) utility from the mechanism

than every other profile where 𝑖 bids 𝑡 𝑗 , including other profiles in

the 𝑗-island labelled with a different true type. We can therefore

select any number of true types from 𝐷𝑖 and form a cycle between

their corresponding labelled profiles in the 𝑗-island. Take any 𝑝

types 𝑡1, 𝑡2, . . . , 𝑡𝑝 ∈ 𝐷𝑖 . There always exist cycles 𝐶
𝛽
𝑝 and 𝐶𝜔

𝑝 of

length 𝑝 in the 𝑗-island with weight:

𝑤 (𝐶𝛽
𝑝 ) =

∑︁
𝑘∈[𝑝 ]

𝑡𝑘 (𝑓 (𝛽𝑘,𝑗 )) − 𝑡𝑘 (𝑓 (𝛽𝑘+1, 𝑗 )), (6)

𝑤 (𝐶𝜔
𝑝 ) =

∑︁
𝑘∈[𝑝 ]

𝑡𝑘 (𝑓 (𝜔𝑘−1, 𝑗 )) − 𝑡𝑘 (𝑓 (𝜔𝑘,𝑗 )). (7)

For the latter class the labelled truthful profiles must yield a greater

utility than a labelled profile where 𝑖 bids, say, 𝑡 𝑗 dishonestly (to

uphold the NOM property), and this dishonest labelled profile must

then yield a higher (respectively, lower) utility than every other

labelled profile in the 𝑗-island. We can again choose any 𝑝 types

and alternate between traversing incentive-compatibility edges and

labelling edges, yielding cycles𝐶
𝛽
𝑝 and𝐶𝜔

𝑝 of length 2𝑝 with weight:

𝑤 (𝐶𝛽
𝑝 ) =

∑︁
𝑘∈[𝑝 ]

𝑡𝑘 (𝑓 (𝛽𝑘,𝑘 )) − 𝑡𝑘 (𝑓 (𝛽𝑘+1,𝑘+1)), (8)

𝑤 (𝐶𝜔
𝑝 ) =

∑︁
𝑘∈[𝑝 ]

𝑡𝑘 (𝑓 (𝜔𝑘−1,𝑘 )) − 𝑡𝑘 (𝑓 (𝜔𝑘,𝑘+1)) . (9)

In both cases the indices −1 and 𝑝 + 1 wrap around to 𝑝 and

1 respectively. The weights above must be non-negative for any

labellings 𝛽 and 𝜔 . In the next section we will use these in our

characterisation of implementable functions for single-parameter

agents.

4 SINGLE-PARAMETER AGENTS
In this section and the remainder of the paper we apply our analysis

to single-parameter agents. In this setting types can be described by

a single number: when agent 𝑖 has type 𝑡𝑖 she values the outcome

of 𝑓 on input 𝑏 as 𝑡𝑖 (𝑓 (𝑏)) = 𝑡𝑖 · 𝑓𝑖 (𝑏), i.e. the product of her “value
per unit” and her allocation, which allows us to decouple an agent’s

type from the outcome of the mechanism to prove properties of

the latter in isolation. This approach has seen much success in

the literature: Archer and Tardos [6] use it to show that designing

truthful mechanisms reduces to designing monotonic algorithms

(whether they are increasing or decreasing depends on whether

agent types describe costs or valuations), and in such instances

we can derive explicit formulae for truthful payments using the

area under the allocation curve. Other settings for single-parameter

agents include combinatorial auctions [5], machine scheduling [1],

and payment computation [10].

Our goal is to characterise the class of NOM-implementable

allocation functions for single-parameter agents. In the case of

strategyproofness it is well known that the allocation rule must be

monotone in each player’s bid for each fixed 𝑏−𝑖 . For our setting
the shape of the allocation function will depend on the labelling,

so we use the guaranteed cycles of the previous section to argue

some necessary properties of any labelling. Taking 𝑝 = 2 and any

𝑡1, 𝑡2 ∈ 𝐷𝑖 , the weights of all guaranteed labelling cycles in (6) and

(7) must be (𝑡1 − 𝑡2) (𝑓𝑖 (𝛽11) − 𝑓𝑖 (𝛽22)) ≥ 0 and (𝑡1 − 𝑡2) (𝑓𝑖 (𝜔21) −
𝑓𝑖 (𝜔12)) ≥ 0. Similarly, for all guaranteed incentive-compatibility

cycles in (8) and (9) we must have (𝑡1 − 𝑡2) (𝑓𝑖 (𝛽1𝑗 ) − 𝑓𝑖 (𝛽2𝑗 )) ≥ 0

and (𝑡1 − 𝑡2) (𝑓𝑖 (𝜔2𝑗 ) − 𝑓𝑖 (𝜔1𝑗 )) ≥ 0 for any bid 𝑡 𝑗 ∈ 𝐷𝑖 . We need

these inequalities to be satisfied for any two types from player

𝑖’s domain. The following definition describes the “shape” of the

allocation functions guaranteeing this and hence the allocation

functions for which NOM payment schemes exist, allowing us to

recover an analogue to the monotonicity property for strategyproof

mechanisms with the theorem that follows.

Definition 2 (Overlapping). Let 𝑂𝑖 𝑗 = {𝑓𝑖 (𝑡 𝑗 , 𝑏−𝑖 ) : 𝑏−𝑖 ∈ 𝐷−𝑖 }
denote the set of allocations of 𝑓 for player 𝑖 when she submits bid

𝑡 𝑗 , and let 𝑂𝑖 = ×𝑗∈𝐷𝑂𝑖 𝑗 . Allocation function 𝑓 is overlapping for 𝑖
if there exists o = (𝑜1, . . . , 𝑜𝑑 ) ∈ 𝑂𝑖 such that 𝑜1 ≤ 𝑜2 ≤ . . . ≤ 𝑜𝑑 ,

and 𝑓 is overlapping if it is overlapping for each player 𝑖 ∈ [𝑛].

Theorem 2. Allocation function 𝑓 is either BNOM- or WNOM-
implementable for single-parameter agents if and only if it is over-
lapping.
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Due to space restrictions we omit the proof and note that it

can be found in the full version of the paper. As a corollary of

Theorem 2 we can show that as long as 𝑓 is overlapping then it is

straightforward to achieve both BNOM andWNOM simultaneously.

The only extra condition imposed is that unless the function 𝑓 is

constant for player 𝑖 on bid 𝑡 𝑗 – that is, it allocates the same amount

𝑓𝑖 (𝑡 𝑗 , ·) to 𝑖 whenever she bids 𝑡 𝑗 , no matter the bid profile of the

other players – then the best- and worst-case labelled profiles must

be different.

We use the fact that 𝑓 is overlapping to prove sufficiency in

Theorem 2 by defining a particular “simple” labelling in which the

best- and worst-case outcomes for a given bid of player 𝑖 all occur

at the same bid profile, no matter her type. Such labellings, which

we call single-line labellings, allow us to precisely characterise the

payments that lead to incentive-compatibility.

Definition 3 (Single-line mechanism). A labelling _ is single-line
if for every player 𝑖 , for every bid 𝑡 𝑗 ∈ 𝐷𝑖 we have _𝑘 𝑗 = _ℓ 𝑗 for

every pair of types 𝑡𝑘 , 𝑡ℓ ∈ 𝐷𝑖 . A single-line mechanism is one whose

payments are defined on a social choice function 𝑓 whose labelling

is single-line.

When a labelling _ is single-line then we will index it simply by

the agent’s bid: if player 𝑖 bids 𝑡 𝑗 in a single-line mechanism then

labelled profile associated with this bid is denoted _ 𝑗 . After using

these labellings to derive explicit payment formulae for single-line

mechanisms we will then show in Section 5 that more general

labellings can lead to different payments.

Archer and Tardos [6] show that a work function that allocates

chores (where types describe costs as opposed to valuations) admits

truthful payments if and only if it is non-increasing and charac-

terise these payments using the area under the allocation function.

Apt and Heering [2] recently provided an elementary proof of

the uniqueness of these payment functions using a little-known

result from the theory of real functions. It is straightforward to

derive a similar result in our setting for single-line mechanisms:

we show that NOM payments exist if and only if one can find a

non-decreasing collection of outcomes for the best- and worst-cases

of the function. Fixing such a labelling _, we may treat 𝑓 as a func-

tion only in player 𝑖’s bid 𝑏𝑖 and derive the following payments by

solving the resulting differential equations from [6] in the same

way.

Theorem 3. Social choice function 𝑓 is NOM-implementable if and
only if 𝑓 is overlapping. When this is the case and the resulting
mechanism (𝑓 , 𝑝) uses a single-line labelling, the payments 𝑝 take
the form

𝑝𝑖 (𝑡 𝑗 , _ 𝑗 ) = ℎ𝑖 (_) − 𝑡 𝑗 𝑓𝑖 (𝑡 𝑗 , _ 𝑗 ) +
∫ 𝑡 𝑗

0

𝑓𝑖 (𝑢, _𝑢 ) d𝑢, (10)

for each agent 𝑖 , whereℎ𝑖 (_) = ℎ𝑖 (_1, . . . , _𝑑 ) is an arbitrary function
that depends only on the (best- or worst-case) labelling _ ∈ {𝛽,𝜔}.

Requiring IR and NPT further restricts the above payments.

When agents value the outcome of 𝑓 we have ℎ𝑖 (𝛽) = ℎ𝑖 (𝜔) = 0,

while when they incur some cost then ℎ𝑖 (𝛽) ≥
∫ 𝑡 𝑗
0

𝑓𝑖 (𝑢, 𝛽𝑢 ) d𝑢
and ℎ𝑖 (𝜔) ≥

∫ 𝑡 𝑗
0

𝑓𝑖 (𝑢,𝜔𝑢 ) d𝑢 for all 𝑏 ∈ 𝐷𝑖 . The remaining pay-

ments (i.e., for bid profiles which are not best- or worst-case inputs

for player 𝑖) must simply satisfy the labelling constraints induced

by 𝛽 and 𝜔 . For each 𝑡 𝑗 , 𝑡𝑘 ∈ 𝐷𝑖 we simply require 𝑡 𝑗 (𝑓𝑖 (𝛽 𝑗 )) +
𝑝𝑖 (𝛽𝑘 ) ≥ 𝑡 𝑗 (𝑓𝑖 (𝑡𝑘 , 𝑏−𝑖 )) + 𝑝𝑖 (𝑡𝑘 , 𝑏−𝑖 )) ≥ 𝑡 𝑗 (𝑓𝑖 (𝜔𝑘 )) + 𝑝𝑖 (𝜔𝑘 ) for
each 𝑏−𝑖 ∈ 𝐷−𝑖 . It is important to note the transition from finite to

infinite domains, done both to mirror the setting of [6] and to use

in the upcoming section. Conceptually this is not an issue and in

the case of finite domains we can simply replace the above integral

with a summation.

5 BILATERAL TRADE
We now apply our previous analysis to bilateral trade. In this setting

there are two agents, 𝐵 and 𝑆 , where 𝐵 is a potential buyer of an

item that 𝑆 may produce and sell. The buyer has a valuation 𝑣 ∈ 𝐷𝐵

for the item and the seller incurs a cost 𝑐 ∈ 𝐷𝑆 for producing

the item. We assume 𝐷𝐵 = 𝐷𝑆 = [0, 1], and let 𝐷 = 𝐷𝐵 × 𝐷𝑆 .

A mechanism for bilateral trade is a tuple 𝑀 = (𝑓 , 𝑝) where 𝑓 :

𝐷 → {0, 1} indicates whether a trade takes place and 𝑝 : 𝐷 → R≥0
describes the payments. The buyer’s utility is therefore given by

𝑢𝐵 (𝑀 (𝑥,𝑦)) = 𝑣 ·𝑓 (𝑥,𝑦)−𝑝𝐵 (𝑥,𝑦) and the seller’s by𝑢𝑆 (𝑀 (𝑥,𝑦)) =
𝑝𝑆 (𝑥,𝑦) − 𝑐 · 𝑓 (𝑥,𝑦).

In addition to individual rationality (defined in Section 2) we

focus on the following properties: a mechanism 𝑀 = (𝑓 , 𝑝) is
efficient when 𝑓 (𝑥,𝑦) = 1 if and only if 𝑥 ≥ 𝑦 for all (𝑥,𝑦) ∈ 𝐷 ;

and weakly budget balanced if 𝑝𝑆 (𝑥,𝑦) ≤ 𝑝𝐵 (𝑥,𝑦) for all (𝑥,𝑦) ∈ 𝐷 .

Troyan and Morrill [28] show that every efficient, individually

rational, weakly budget balanced mechanism for bilateral trade is

obviously manipulable, hence we relax budget balance and say that

𝑀 is 𝛼-weakly budget balanced if 𝑝𝑆 (𝑥,𝑦) ≤ 𝛼 · 𝑝𝐵 (𝑥,𝑦) for 𝛼 ≥ 1.

We begin by showing that single-line mechanisms cannot resolve

the impossibility result with any bounded subsidy.

5.1 A single line induces unbounded subsidy
We first note the form taken by the explicit payment formulae for

single-line mechanisms from Theorem 3. In this setting the buyer

must pay 𝑝𝐵 (𝑥, _𝐵𝑥 ) = ℎ𝐵 (_𝐵)+𝑥 𝑓 (𝑥, _𝐵𝑥 )−
∫ 𝑥

0
𝑓 (𝑢, _𝐵𝑢 ) d𝑢 while the

seller must receive 𝑝𝑆 (_𝑆𝑦, 𝑦) = ℎ𝑆 (_𝑆 ) +𝑦𝑓 (_𝑆𝑦, 𝑦) −
∫ 𝑦

0
𝑓 (_𝑆𝑢 , 𝑢) d𝑢,

where _𝐵 is any labelling for the buyer (and thus) represents a bid of

the seller and _𝑆 is any labelling for the seller (and thus represents

a bid of the buyer). Again notice that if we have IR and NPT then

ℎ𝐵 (_𝐵) goes to zero, while for the seller ℎ𝑆 (_𝑆 ) must be at least

the area under the curve.

The following facts will be useful. Let 𝑥 and 𝑦 be bids of the

buyer and seller, respectively. For any efficient IR mechanism we

require 𝑝𝐵 (𝑥,𝑦) ≤ 𝑥 and 𝑝𝑆 (𝑥,𝑦) ≥ 𝑦 for all 𝑥 ≥ 𝑦, while for 𝑥 < 𝑦

we have 𝑝𝐵 (𝑥,𝑦) = 0. Therefore whenever trade does not take place

the utility of the buyer is 0 no matter her valuation. In Lemma 1 we

show that for a single-line mechanism the curves representing the

best- and worst-case outcomes of 𝑓 are constant. Since the buyer

values the itemwhile the seller incurs a cost for it then by Theorem 2

the best- and worst-case outcomes of 𝑓 must be non-decreasing for

the buyer and non-increasing for the seller. If𝑀 = (𝑓 , 𝑝) is NOM
and 𝑓 takes values in {0, 1} then there must be a threshold at which,

for all bids that are at least this threshold for some player, their

best- or worst-case allocation from the mechanism flips from one

value to the other. We formalise this in the following lemma and

show for both the buyer and the seller that these thresholds must

be placed at the extremes, i.e. 0 or 1.
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Lemma 1. In any efficient, IR, single-line BNOM mechanism the
best-case outcomes always occur for both the buyer and the seller when
the trade is executed, while in any efficient, IR, single-line WNOM
mechanism the worst-case outcomes always occur for both the buyer
and the seller when the trade is not executed.

Proof. Let𝑀 = (𝑓 , 𝑝) be an efficient, IR, single-line NOMmech-

anism and first consider the threshold for best-case outcomes from

the buyer’s side. Since 𝑓 is non-decreasing let \𝐵 be a threshold bid

of the buyer such that 𝑓 (𝑥, 𝛽𝐵𝑥 ) = 1 for all 𝑥 ≥ \𝐵 . Now take 𝑥 < \𝐵
and let 𝑦 be a bid of the seller such that 𝑓 (𝑥,𝑦) = 1. By the BNOM

labelling constrains we have𝑢𝐵 (𝑀 (𝑥, 𝛽𝐵𝑥 )) = 0 ≥ 𝑣−𝑝𝐵 (𝑥,𝑦) for all
𝑣 ∈ 𝐷𝐵 , so 1 ≤ 𝑝𝐵 (𝑥,𝑦) ≤ 𝑥 , where the second inequality follows

from IR and efficiency. Now we have 1 ≤ 𝑥 < \𝐵 where \𝐵 ∈ [0, 1],
hence there is no 𝑥 such that 𝑥 < \𝐵 . Thus \𝐵 = 0 and trade always

occurs in the buyer’s best-case outcome.

Now consider the seller. Since 𝑓 must be non-increasing in her

bid there again must be a threshold \𝑆 ∈ [0, 1] such that 𝑓 (𝛽𝑆𝑦, 𝑦) =
1 for all𝑦 ≤ \𝑆 and 0 otherwise. For some bid𝑦 > \𝑆 of the seller her

best case utility is𝑢𝑆 (𝑀 (𝛽𝑆𝑦, 𝑦)) = 𝑝𝑆 (𝛽𝑆𝑦, 𝑦) = ℎ𝑆 (𝛽𝑆 )+𝑦𝑓 (𝛽𝑆𝑦, 𝑦)−∫ 𝑦

0
𝑓 (𝛽𝑆𝑢 , 𝑢) d𝑢. Since 𝑐 describes the seller’s cost then ℎ𝑆 (𝛽𝑆 ) must

be at least the area under the curve. Settingℎ𝑆 (𝛽𝑆 ) to this area gives
𝑝𝑆 (𝛽𝑆𝑦, 𝑦) = 𝑦𝑓 (𝛽𝑆𝑦, 𝑦) +

∫
1

𝑦
𝑓 (𝛽𝑆𝑢 , 𝑢) d𝑢 so her best-case utility is 0.

2

Now take any 𝑥 such that 𝑓 (𝑥,𝑦) = 1. By the BNOM constraints we

have 𝑢𝑆 (𝑀 (𝑥,𝑦)) = 𝑝𝑆 (𝑥,𝑦) − 𝑐 ≤ 0 for all 𝑐 . Combining this with

individual rationality we have 𝑐 ≥ 𝑝𝑆 (𝑥,𝑦) ≥ 𝑦, which gives us a

contradiction if we take 𝑐 < 𝑦. Thus 𝑦 ≤ \𝑆 for all 𝑦 and so \𝑆 = 1,

meaning trade always occurs in the seller’s best-case outcome.

We can apply similar reasoning to show that trade does not occur

for the buyer or seller in their worst-case outcome, no matter their

bid. Full details are provided in the full version of the paper. □

As a corollary of Lemma 1 we have 𝑝𝐵 (𝑥, 𝜔𝐵
𝑥 ) = 𝑝𝑆 (𝜔𝑆

𝑦, 𝑦) = 0

for all 𝑥,𝑦 since trade does not occur at the worst-case profiles.

Conversely the buyer’s best outcome must be when she gets the

item and pays nothing, while the seller’s must occur when she

produces the item and is paid at least her bid. For any IR, NPT, single-

line BNOM mechanism 𝑀 best-case payments are as in (10), so

𝑝𝐵 (𝑥, 𝛽𝐵𝑥 ) = 0 and 𝑝𝑆 (𝛽𝑆𝑦, 𝑦) ≥ 𝑦+
∫
1

𝑦
𝑓 (𝛽𝑆𝑢 , 𝑢) d𝑢 = 1. The following

result shows that single-line mechanisms are not flexible enough

to avoid the impossibility of [28] without unbounded subsidy.

Theorem 4. Any efficient, IR, single-line BNOM or WNOM mecha-
nism with 𝛼-WBB has unbounded 𝛼 .

Proof. We first prove the result for BNOM mechanisms. From

Lemma 1 we know that 𝑓 (𝑥, 𝛽𝐵𝑥 ) = 𝑓 (𝛽𝑆𝑦, 𝑦) = 1 for any 𝑥 ∈ 𝐷𝐵 and

𝑦 ∈ 𝐷𝑆 , while 𝑝𝐵 (𝑥, 𝛽𝐵𝑥 ) = 0 and 𝑝𝑆 (𝛽𝑆𝑦, 𝑦) ≥ 𝑦. Since in the best

case the buyer pays zero while the seller receives at least her cost,

we may prove the claim by providing a bid profile that appears on

the best-case curves of both the buyer and seller. Take any bid 𝑥 of

the buyer and let 𝑦 = 𝛽𝐵𝑥 > 0 be a bid of the seller. Since 𝑓 (𝑥,𝑦) = 1

then 𝑝𝑆 (𝑥,𝑦) ≥ 𝑦 by efficiency and IR. The labelling constraints

2
We can of course pay the seller more, as long as it doesn’t interfere with incentives.

We will be using this lemma to prove the impossibility of (bounded) 𝛼-WBB, so if we

can show this when we are being frugal then the claim will hold even when using

more generous payments. Thus we set ℎ𝑆 (𝛽 ) to be as small as possible, i.e. exactly

the area under the curve, and this is enough to prove the unboundedness.

require 𝑢𝑆 (𝑀 (𝑥,𝑦)) ≥ 𝑢𝑆 (𝑀 (𝛽𝑆𝑦, 𝑦)) for all 𝑦 and so 𝑝𝑆 (𝛽𝑆𝑦, 𝑦) ≥
𝑝𝑆 (𝑥,𝑦) ≥ 𝑦. Since 𝑦 = 𝛽𝐵𝑥 then 𝑝𝑆 (𝛽𝑆𝑦, 𝑦) ≥ 𝑝𝑆 (𝑥, 𝛽𝐵𝑥 ) ≥ 𝑦 > 0,

while 𝑝𝐵 (𝑥, 𝛽𝐵𝑥 ) = 0. Therefore at (𝑥, 𝛽𝐵𝑥 ) the buyer pays 0 while
the seller must receive some positive amount.

Now let𝑀 = (𝑓 , 𝑝) be an efficient, IR, single-line WNOMmecha-

nism and consider a bid 𝑥 ∈ 𝐷𝐵 of the buyer for which 𝑓 (𝑥,𝜔𝐵
𝑥 ) = 0

and thus 𝑝𝐵 (𝑥,𝜔𝐵
𝑥 ) = 𝑢𝐵 (𝑀 (𝑥,𝜔𝐵

𝑥 )) = 0. Let 𝑦 ∈ 𝐷𝑆 be a bid of

the seller such that 𝑓 (𝑥,𝑦) = 1 and note that by efficiency 𝑥 ≥ 𝑦.

Since the worst utility of the buyer is 0 then 𝑝𝐵 (𝑥,𝑦) ≤ 𝑣 and thus

we need 𝑝𝐵 (𝑥,𝑦) ≤ min{𝑥 : 𝑥 ≥ 𝑦} = 𝑦. Now consider the seller

with bid 𝑦 ∈ 𝐷𝑆 such that 𝑓 (𝜔𝑆
𝑦, 𝑦) = 0. Let 𝑥 ∈ 𝐷𝐵 be a bid of the

buyer such that 𝑓 (𝑥,𝑦) = 1. By the labelling constraints we have

𝑝𝑆 (𝑥,𝑦) − 𝑐 ≥ 𝑝𝑆 (𝜔𝑆
𝑦, 𝑦) ≥ 0, hence 𝑝𝑆 (𝑥,𝑦) ≥ 𝑐 for all 𝑐 (since𝑀

is single-line) and thus 𝑝𝑆 (𝑥,𝑦) ≥ max{𝑦 : 𝑥 ≥ 𝑦} = 𝑦.

Now consider the bid profile (1, Y). The buyer must pay at most

Y while the seller is to receive at least 1, and since Y is arbitrary we

get the desired result. □

5.2 Avoiding subsidies by changing the labelling
Single-line mechanisms are overly restrictive if we want to design

efficient, IR, and 𝛼-WBB NOM mechanisms for bilateral trade, so

we now explore if the issue of unbounded subsidy is avoided by

considering more general labellings and hence payments. We show

that while this works in a strong sense for WNOM mechanisms,

where we can achieve exact (i.e. 𝛼 = 1) budget balance, surprisingly

unbounded subsidies are inherent in any BNOMmechanism. For the

following two results it is enough to consider domains 𝐷𝐵 = [0, 1]
and 𝐷𝑆 = {0, 1}.

Theorem 5. There is an efficient, IR, WBB, WNOM mechanism.

Proof. Consider the labelling𝜔𝐵
for the buyer such that𝜔𝐵

𝑗𝑘
= 1

if and only if 𝑡 𝑗 ≥ 𝑡𝑘 , and 0 otherwise. Observe that for all 𝑥 ∈ 𝐷𝐵

every cycle within the 𝑥-island of G𝜔
𝐵,𝑓

have non-negative weight:

the 𝑥-island contains exactly two nodes (𝑥, 0) and (𝑥, 1), and 𝜔𝐵

ensures that each two-cycle has weight at least 𝑥 (𝑓 (𝑥, 0)− 𝑓 (𝑥, 1))+
(𝑥−Y) (𝑓 (𝑥, 1)−𝑓 (𝑥, 0)) = Y > 0 (i.e. for 𝑡 𝑗 = 𝑥 and 𝑡𝑘 = 𝑥−Y). Recall
that incentive-compatibility edges are the only ones to traverse

different islands, and note with the following that incorporating

these into a cycle of labelling edges results in no negative cycles. The

shortest such cycle has the form (𝑥, 1) →𝑥 (𝑥 ′, 0) →𝑥 ′ (𝑥 ′, 1) →𝑥 ′

(𝑥, 1) for 𝑥 ′ > 𝑥 , and its weight is minimised when 𝑥 ′ = 𝑥 + Y for

some Y > 0; the weight of the cycle therefore always non-negative.

It is straightforward to verify that these are the only types of cycle

induced by the labelling, and that increasing the length of the cycle

will only increase its weight. Thus 𝑓 is WNOM-implementable. It

now remains to derive the payments this labelling produces.

Fix a bid 𝑡 𝑗 of the buyer. Since 𝜔 𝑗 𝑗 = 1 then trade does not occur

and we have 𝑢𝐵 (𝑀 (𝑡 𝑗 , 1)) = 0 for all 𝑣 . Since 𝜔𝑖 𝑗 = 0 for 𝑡𝑖 < 𝑡 𝑗
then trade occurs and we have 𝑣 − 𝑝𝐵 (𝑡 𝑗 , 0) ≤ 𝑢𝐵 (𝑀 (𝑡 𝑗 , 1)) = 0.

Thus for all 𝑣 < 𝑡 𝑗 we have 𝑝𝐵 (𝑡 𝑗 , 0) ≥ 𝑣 and so 𝑝𝐵 (𝑡 𝑗 , 0) tends to 𝑡 𝑗 .
Combining this with IR we have 𝑡 𝑗 ≤ 𝑝𝐵 (𝑡 𝑗 , 0) ≤ 𝑡 𝑗 and therefore

when the trade occurs the buyer pays her bid, and 0 otherwise.

Therefore this labelling induces first-price payments for the buyer.

Now consider payments for the seller where she gets paid her own

bid when trade occurs. It is straightforward to verify that these
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payments for the seller are strategyproof and therefore NOM by

Remark 1. When trade occurs the payments are 𝑝𝐵 (𝑥,𝑦) = 𝑥 and

𝑝𝑆 (𝑥,𝑦) = 𝑦, and 0 otherwise. Since trade occurs only when 𝑥 ≥ 𝑦

then the payment given to the seller never exceeds the amount

extracted from the buyer, hence we achieve (exact) weak budget

balance. □

With the following we show that moving away from single-line

mechanisms does not avoid the issue of unbounded subsidies for

BNOM as it does for WNOM. The proof, which we omit in the

interest of space, is by case analysis on all possible labellings be-

tween two types of the buyer’s domain and reveals that no labelling

results in a mechanism that bypasses the negative result, even if

we restrict to these two types. Each labelling falls into one of four

cases: it is single-line, for which we have already proved subsidies

are unbounded; it is invalid and leads to a negative cycle, meaning

NOM payments are impossible by Theorem 1; it induces no nega-

tive cycles but otherwise leads to contradiction when taken with

IR and efficiency; or it leaves us with the same payments as in the

single-line case, meaning unbounded subsidies are unavoidable.

Theorem 6. There is no efficient, IR, 𝛼-WBB, BNOM mechanism
with bounded 𝛼 .

5.3 Characterising IR, WBB, NOM bilateral
trade mechanisms

We close our analysis of NOM bilateral trade mechanisms by provid-

ing a full characterisation of the class of IR,WBB, NOMmechanisms

for this setting. We introduce some notation to conveniently formu-

late our characterisation. For a number 𝑥 we denote by succ𝐵 (𝑥)
and prec𝐵 (𝑥) respectively the least element in 𝐷𝐵 strictly greater

than 𝑥 and the greatest element strictly less than 𝑥 . We use succ𝑆 (𝑦)
and prec𝑆 (𝑦) analogously for the seller’s domain𝐷𝑆 . Let𝐻𝐵 denote

the least element in 𝐷𝐵 that is greater than every element in 𝐷𝑆 ,

and 𝐿𝐵 the greatest element in 𝐷𝐵 that is less than every element

in 𝐷𝑆 . For a mechanism we may partition the type space into three

sets: 𝑀𝐵
0
, 𝑀𝐵

1
, and 𝑀𝐵

01
. 𝑀𝐵

0
consists of all bids of the buyer for

which trade is guaranteed not to happen, 𝑀𝐵
1
consists of all bids

for which trade surely happens, and𝑀𝐵
01

consists of the remaining

elements of 𝐷𝐵 , where trade depends on the seller’s bid. The sets

𝑀𝑆
0
,𝑀𝑆

1
, and𝑀𝑆

01
can be defined analogously for the seller.

For a mechanism𝑀 define the utility interval 𝐼𝐵 (𝑀, 𝑣, 𝑥) for the
buyer as the two numbers (ℓ, ℎ) such that ℓ = min{𝑢𝐵 (𝑀 (𝑥,𝑦)) :

𝑦 ∈ 𝐷𝑆 } and ℎ = max{𝑢𝐵 (𝑀 (𝑥,𝑦)) : 𝑦 ∈ 𝐷𝑆 }, and define

𝐼𝑆 (𝑀,𝑐,𝑦) analogously for the seller. The NOM property imposes

that 𝐼𝐵 (𝑀, 𝑣, 𝑣) ≥ 𝐼𝐵 (𝑀, 𝑣, 𝑥) for all 𝑣, 𝑥 ∈ 𝐷𝐵 and that 𝐼𝑆 (𝑀,𝑐, 𝑐) ≥
𝐼𝑆 (𝑀,𝑐,𝑦) for all 𝑐,𝑦 ∈ 𝐷𝑆 .

Theorem 7. A deterministic bilateral trade mechanism 𝑀 for do-
mains 𝐷𝐵, 𝐷𝑆 is IR, WBB, and NOM if and only if there are thresholds
𝑝min

𝐵
, 𝑝max

𝐵
, 𝑝min

𝑆
, 𝑝max

𝑆
, where 𝑝min

𝐵
≤ 𝑝max

𝐵
and 𝑝min

𝑆
≤ 𝑝max

𝑆
, such

that:

(1) When trade doesn’t occur the buyer’s and the seller’s price are
both zero. When trade occurs the buyer’s price always exceeds
the seller’s price, both prices are non-negative, the buyer’s price
is less than their valuation, and the seller’s price is at least the
buyer’s valuation.

(2) The set𝑀𝐵
0
contains all types in 𝐷𝐵 less than 𝑝min

𝐵
, the set𝑀𝐵

1

contains all types in 𝐷𝐵 greater than 𝑝max

𝐵
, and𝑀𝐵

01
contains

all types in 𝐷𝐵 in between 𝑝min

𝐵
and 𝑝max

𝐵
. If 𝑝min

𝐵
is itself in

𝐷𝐵 then 𝑝min

𝐵
is in either 𝑀𝐵

0
or 𝑀𝐵

01
. Similarly if 𝑝max

𝐵
is in

𝐷𝐵 then 𝑝max

𝐵
is in either𝑀𝐵

1
or𝑀𝐵

01
.

(3) For every type 𝑥 ∈ 𝑀𝐵
01
∪𝑀𝐵

1
the buyer’s payment in outcome

𝑀 (𝑥,𝑦) is at least 𝑝min

𝐵
for all 𝑦 ∈ 𝐷𝑆 , and there exists some

𝑦 ∈ 𝐷𝑆 such that in outcome 𝑀 (𝑥,𝑦) trade occurs and the
buyer pays 𝑝min

𝐵
. For every type 𝑥 ∈ 𝑀𝐵

1
the buyer’s payment

in outcome𝑀 (𝑥,𝑦) is at most 𝑝max

𝐵
for all 𝑦 ∈ 𝐷𝑆 , and there

exists a 𝑦 ∈ 𝐷𝑆 such that in outcome𝑀 (𝑥,𝑦) trade occurs at
price 𝑝max

𝐵
.

(4) (Analogous to point 2 but for the seller) The set𝑀𝑆
0
includes all

types in 𝐷𝑆 greater than 𝑝max

𝑆
, the set𝑀𝑆

1
includes all types in

𝐷𝑆 less than 𝑝min

𝑆
, and the set𝑀𝑆

01
consists of all types in 𝐷𝑆

in between 𝑝min

𝑆
and 𝑝max

𝑆
. If 𝑝min

𝑆
itself is in 𝐷𝑆 , then 𝑝min

𝑆
is

either in 𝑀𝑆
1
or 𝑀𝑆

01
. Similarly, if 𝑝max

𝐵
is in 𝐷𝑆 then 𝑝max

𝐵
is

in𝑀𝑆
01

or𝑀𝑆
1
.

(5) (Analogous to point 3 but for the buyer) For every type 𝑦 ∈
𝑀𝑆
01

∪𝑀𝑆
1
there is some 𝑥 ∈ 𝐷𝐵 such that in outcome𝑀 (𝑥,𝑦)

trade occurs with seller’s price 𝑝max

𝑆
. For every type 𝑦 ∈ 𝑀𝑆

1

there is furthermore a 𝑥 ∈ 𝐷𝐵 such that in outcome 𝑀 (𝑥,𝑦)
trade occurs at price 𝑝min

𝑆
.

6 CONCLUSIONS
This paper introduces a framework for designing NOMmechanisms

with payments. We formalise the added flexibility of such mecha-

nisms in the form of labellings which allows us to characterise the

set of implementable allocation functions. We apply our analysis to

bilateral trade and show a surprising dichotomy between BNOM

and WNOM with regards to budget balance – we provide an ef-

ficient, IR, 𝛼-WBB WNOM mechanism and show that no BNOM

mechanism exists with bounded 𝛼 . In light of our results we believe

that NOM mechanisms deserve to be better understood, and rea-

soning about the labellings inherent to such mechanisms appears

to be a useful way to do so. There are a number of settings in the

mechanism design literature to which our framework could be ap-

plied next, particularly the various auction settings not covered by

[28]. Following [7] it would of course be useful to explore computa-

tional aspects to these mechanisms and further how the two sides

of NOM relate to one another. Our general characterisation can

also be helpful in better understanding multidimensional domains

for which strategyproofness is known be restrictive [8].
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