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ABSTRACT
We consider a variant of the facility location problems where agents

are located on a real line and the facility is fixed at a designated lo-

cation to serve the agents. As the facility cannot be relocated due to

various constraints (e.g., construction costs and regulatory require-

ments), the social planner considers the structural modification

problem of adding a short-cut edge to the real line for improving

the accessibility or costs of the agents to the facility, where the cost

of an agent is measured by their shortest distance to the facility. For

a mechanism design version of the structural modification problem

where the agents are assumed to have private locations, we propose

several strategy-proof mechanisms to elicit truthful locations from

the agents and add a short-cut edge to (approximately) minimize

the total cost or maximum cost of agents. We derive the upper

bounds of these mechanisms and provide lower bounds on the

approximation ratios for both objectives.
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1 INTRODUCTION
In recent years, facility location problems (FLPs) have been well-

studied in the context of approximate mechanism design without

money [2, 6, 22]. In the mechanism design version of the FLPs, a

social planner seeks to locate a facility to serve a set of agents lo-

cated within a metric space (e.g., on a real line) such that the located

facility minimizes a given cost objective that measures the distance

of the agents to the facility. The locations of the agents in the metric

space are private, and each agent has the potential to misreport

their own location to make the facility closer to them. Therefore,

the social planner’s goal is to design a strategy-proof mechanism

that elicits truthful location information from the agents and locates

a facility that (approximately) optimizes a given cost objective. The

FLPs can be used to model realistic scenarios including determining

the location of a physical facility (e.g., a public library, school, or

park) to serve a population [6].
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Our Problem and Approach. In many situations, the location

of the facility (such as library and park) has already been prede-

termined previously even though they can become undesirable or

sub-optimal for the agents. For example, the undesirability and sub-

optimality can be the results of the change in agent compositions,

where the population in the targeted domain (e.g., regions and ar-

eas) are different from the past (e.g., moving of the agents to new

locations), or the change of the social planner’s objective, where

the social objective is now defined based on a new objective that

is different from the past. One direct approach to addressing this

sub-optimality is to “ignore" the previous facility and locate a new

facility subject to the new objective. However, in many situations,

the planner simply cannot discard the previous facility due to inter-

nal and external constraints. For instance, when a facility such as a

school or a library has been located, one cannot simply construct a

new facility to improve accessibility without considering the space,

time, legal regulations, and costs required for the new facility. Thus,

we need a new idea that can help the social planner to improve

the accessibility for the agents when creating a new facility is not

entirely possible.

Recognizing this challenge, existing optimization literature on

facility location (e.g., see [3, 4, 25]) has proposed to structurally

modify the metric space (i.e., discrete networks in their settings)

to minimize the costs of the agents to the facility. The main inter-

pretation of the structural modification approach is that the social

planner can build new edges (e.g., roadways or bridges) or provide

shuttle services between two points in existing metric space to

reduce the distances of the agents to the facility.

Following the existing approach to improve agent accessibility

to the facility, in this paper, we consider the FLPs from a structural

modification perspective by modifying the metric space (i.e., a

real line) to minimize the costs of agents to the facility when the

facility’s location has been fixed. In particular, we focus on a simple,

yet challenging modification methodology, of adding a costless

short-cut edge (e.g., a shuttle service) to the metric space.

Figure 1: An example where a shuttle takes the agents from
one position to the facility directly.

Such FLPs can model a wide range of settings in which social

planners provide free shuttle services to the agents. In our context,
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the shuttle service takes the agents directly from one central loca-

tion 𝑎 to a point 𝑏 near the facility without any stop (see Figure 1).

For instance, a shuttle that takes students on campus to their car

parking lot (for commuting students), academic building, or shop-

ping mall (for students living on campus). A shuttle may also take

residents in a community to their local library. By using the shuttle,

each agent does not incur any traveling costs. Since the shuttle is

usually free, we assume that the short-cut edge has zero cost. Given

the facility’s location, we aim to design strategy-proof mechanisms

to elicit truthful location information from the agents and add a

short-cut edge to the space that (approximately) optimizes given

objectives.

To our best knowledge, no existing work studies the design of

mechanisms for our proposed setting. As discussed earlier, several

works study this variant of FLPs as optimization problems [3, 4, 25]

on discrete networks.

Our Challenges and Contribution. Our main conceptual contri-

bution is the investigation of the FLPs from a structural modification

perspective within the approximate mechanismwithout money par-

adigm [22]. More specifically, we focus on the most fundamental

setting of FLPs where the metric space is a real line. Given this

setting, we are interested in adding a short-cut edge (e.g., shuttle)

to the real line to improve agents’ costs. The line space is the most

studied one in the literature on FLPs, as initiated in the original

work of approximate mechanism design without money [22] since

they can model various natural structures such as the street.

In our variant of FLPs of adding a short-cut edge, there are 𝑛

agents and a facility located on a point in the line. Taking the agent

locations as input, a mechanism selects two points 𝑎, 𝑏 in the line

and forms a short-cut edge (𝑎, 𝑏) with the cost of 0 to the agents.

The (new) cost of an agent is simply the length of the shortest path

from the facility. Intuitively, the zero-cost short-cut edge models

some forms of services or resources provided by the planner that

decreases the travel cost of the agents. For instance, the short-cut

edge can be viewed as a pair of pickup or drop-off points for a facility

shuttle, which is free for all agents. The agents do not incur any

cost for using the service. In this paper, we focus on the maximum

cost objective, which aims to minimize the maximum costs among

all agents, and the social cost objective, which aims to minimize

the total cost of all agents.

In many existing mechanism design variants of FLPs, the agents

have single-peaked preferences [5], where [19] provide a character-

ization of strategy-proof mechanisms. As a result, existing works

can leverage the characterization to design strategy-proof mech-

anisms with good approximation ratios. Unfortunately, agents in

our variant of FLPs do not have single-peaked preferences.Existing

mechanisms for FLPs no longer apply directly, and it is not clear

what mechanisms can be strategy-proof and obtain good approx-

imation ratios. Thus, designing such mechanisms for our variant

of FLPs can be more difficult and challenging. For example, the

mechanisms that connect the facility with the median agent or the

farthest agent either are not strategy-proof or do not provide a good

approximation ratio. However, we are able to obtain results (both

the new mechanisms and lower bounds) that provide a first attempt

to address the new variant of FLPs. The results are summarized in

Table 1. Omitted proofs are in the Appendix.

Table 1: A summary of our results.

Objective Deterministic Randomized

Maximum cost

UB: 3 UB: 2.75

LB: 1.5 LB: 1.5

Social cost

UB: 𝑛 UB: 6

LB: 1.5 LB: 1.02

Section 3 is concerned with the maximum cost objective. We

prove that a TwoExtreme mechanism that adds an edge connecting

the two extreme (leftmost and rightmost) agents is strategy-proof

and 3-approximation. We introduce a new randomized mechanism

(see Mechanism 2, which is the main contribution of this section)

to improve the approximation ratio to 2.75. This mechanism first

designates three points based on leftmost and rightmost agents and

then connects each of them with the facility with probabilities
1

4
, 1
4
,

and
1

2
, respectively. Further, a lower bound of 1.5 is provided for

all randomized strategy-proof mechanisms.

Section 4 is concerned with the social cost objective. While the

TwoExtreme mechanism is 𝑛-approximate, we propose a new ran-

domized 6-approximation mechanism (see Mechanism 3), which

connects the facility with each agent’s location with a probability

proportional to the distance from the facility. This mechanism uses

a similar idea to the proportional mechanism for the FLPs with two

facilities [16]. We present lower bounds 1.5 and 1.02 for determin-

istic and randomized strategy-proof mechanisms, respectively.

Quality of Our Results. In order to highlight the quality of our

lower and upper bounds, we compare our results to the mechanism

design results of FLPs with two facilities (or 2-FLPs). The reason

is that, in our setting, there is one existing facility and the edge

added can be viewed as another (extended) facility. Note that the

mechanisms for FLPs cannot work for our setting directly because

the agents’ preferences are no longer single-peaked. Table 2 sum-

marizes the best-known results for 2-FLPs after years of research

attempts.

Table 2: A summary of the best-known results for FLPs with
two facilities (2-FLPs) [6].

Objective Deterministic Randomized

Maximum cost

UB: 2 UB: 5/3
LB: 2 LB: 1.5

Social cost

UB: 𝑛 − 2 UB: 4

LB: 𝑛 − 2 LB: 1.045

While our results are not tight for deterministic mechanisms,

for maximum cost, we obtain a similar range of upper and lower

bounds as 2-FLPs. For the social cost, we hypothesize that the lower

bound can be much higher (e.g., Ω(𝑛)) given the (𝑛 − 2) results

from 2-FLPs. We note that the techniques used for proving the

lower bound 𝑛 − 2 in 2-FLPs [14] cannot directly work for our

problem, because in our problem a solution consists of two points,

whose possible locations are more difficult to be constrained by the

approximation ratio and strategyproofness.
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For randomized mechanisms, the best-known results for FLPs

and our problem are not tight. In fact, for the maximum cost, we

obtain the same lower bound as the 2-FLPs, and our upper bound

is not too far from 2-FLPs. For the social cost, our lower bound is

similar to those of 2-FLPs. Our upper bound is within a factor of

1.5 of the 2-FLPs.

Thus, our lower and upper bounds (established non-trivially) are

a reasonable initial results for a new problem.

Related Work. Our work is grounded on a string of research for

facility location and network modification problems.

Facility location. The mechanism design problem for FLPs is a prob-

lem where the agents report their private locations in some metric

space, and the social planner determines the facility’s location based

on these reports and the planner’s objective function. There are

many works that focus on designing strategy-proof mechanisms.

For example, Schummer and Vohra [23] characterize deterministic

strategy-proof (SP) mechanisms on the line and tree, Dokow et
al. [10] give a full characterization of SP mechanisms on discrete

lines and cycles, and Alon et al. [1] study the maximum cost objec-

tive on both continuous and discrete graphs. More than a decade

ago, Procaccia and Tennenholtz [22] put forward the agenda of

approximate mechanism design without money, which advocates

the study of strategy-proof mechanisms for various optimization

problems through the lens of the approximation ratio. They pro-

vide tight bounds on the approximation ratio of SP mechanisms for

the single-facility problem. Later, [16, 17] improve the bound for

two-facility problems. After that, many variants centered around

this agenda are extensively studied, for example, preferences over

facilities [12, 24], distance constraint [7, 8], and different cost func-

tions [11, 13]. See [6] for a survey. All these works consider how to

locate the facilities to optimize cost objectives. We focus on how to

modify the structure to minimize agents’ costs when the facility’s

location is fixed.

Edge addition on networks. In previous literature, there are edge

addition optimization problems on discrete networks [9, 18, 20, 21]

related to our work. In these problems, the planner aims to add

shortcut edges to a network to minimize some graph parameters

[4] (e.g., the diameter and average distances) or find the minimum

number of edges to be added to the graph such that the resulting

diameter is no greater than a given number [15]. Theworks of [3, 25]

design algorithms to minimize the distance of agents to the facility

for trees and general networks. All optimization studies above focus

on discrete networks without considerations of strategic agents.

2 PRELIMINARIES
Let 𝑁 = {1, 2, . . . , 𝑛} be the set of agents. Let x = (𝑥1, . . . , 𝑥𝑛)
be the location profile of agents, where 𝑥𝑖 ∈ R is the location of

agent 𝑖 ∈ 𝑁 . The facility has a publicly known location on the

line. Without loss of generality, the facility’s location is located at

point 0. We want to select two points 𝑎, 𝑏 on the line and connect

them via a short-cut edge of length 0. By using the short-cut edge,

each agent does not incur any traveling costs (see Section 1 for

examples).

A (deterministic) mechanism is a function 𝑓 : R𝑛 → R2 that
maps a (reported) location profile x to two points for a new edge.

Given a solution 𝑓 (x) = (𝑎, 𝑏), the cost of agent 𝑖 ∈ 𝑁 is

𝑐𝑜𝑠𝑡 ((𝑎, 𝑏), 𝑥𝑖 ) = min{|𝑥𝑖 |, |𝑥𝑖 − 𝑏 | + |𝑎 |, |𝑥𝑖 − 𝑎 | + |𝑏 |},
that is, the minimum distance to the facility in the modified space.

A randomized mechanism is a function 𝑓 from R𝑛 to a probability

distribution over R2. When 𝑓 (x) is a probability distribution P, the
cost of agent 𝑖 ∈ 𝑁 is the expected distance to the facility, i.e.,

𝑐𝑜𝑠𝑡 (P, 𝑥𝑖 ) = E(𝑎,𝑏 )∼P𝑐𝑜𝑠𝑡 ((𝑎, 𝑏), 𝑥𝑖 ).

Example 2.1. Consider a location profile x = (−2, 3) with 2

agents. The cost of agent 2 is equal to 3. If the planner adds a

new edge (−1, 2) to the line, then the cost of agent 2 decreases to

|𝑥2 − 2| + | − 1| = 2.

A mechanism 𝑓 is strategy-proof, if no agent can benefit from

misreporting a false location, regardless of the strategies of other

agents. That is, for all x ∈ R𝑛 , 𝑖 ∈ 𝑁 and all 𝑥 ′
𝑖
∈ R, we have

𝑐𝑜𝑠𝑡 (𝑓 (x), 𝑥𝑖 ) ≤ 𝑐𝑜𝑠𝑡 (𝑓 (𝑥 ′
𝑖
, x−𝑖 ), 𝑥𝑖 ), where x−𝑖 is the profile of the

locations of all agents in 𝑁 \{𝑖}.

Objectives. In this paper, we shall be interested in strategy-proof

mechanisms that approximately optimize one of two objective func-

tions: minimizing the social cost, or minimizing the maximum cost.

The social cost of a solution 𝑠 = (𝑎, 𝑏) of edges with respect to loca-

tion profile x is 𝑠𝑐 (𝑠, x) = ∑
𝑖∈𝑁 𝑐𝑜𝑠𝑡 (𝑠, 𝑥𝑖 ); the social cost of a distri-

bution P w.r.t. x is 𝑠𝑐 (P, x) = E𝑠∼P [𝑠𝑐 (𝑠, x)]. The maximum cost of
a solution 𝑠 (resp. a distribution P) with respect to location profile x
is𝑚𝑐 (𝑠, x) = max𝑖∈𝑁 𝑐𝑜𝑠𝑡 (𝑠, 𝑥𝑖 ) (resp.𝑚𝑐 (P, x) = E𝑠∼P [𝑚𝑐 (𝑠, x)]).

We say a mechanism is 𝛼-approximation (or equivalently, has

approximation ratio 𝛼) for 𝛼 ≥ 1, if for all instances, the objective

value induced by the mechanism is no greater than 𝛼 times the

optimal value.

Given location profile x, let 𝑥𝑙 = min𝑖∈𝑁 𝑥𝑖 and 𝑥𝑟 = max𝑖∈𝑁 𝑥𝑖
be the locations of the leftmost and rightmost agents, respectively.

For ease of notations, we assume there is always a dummy agent

located at 0 (unless the location profile is specified), which indicates

that 𝑥𝑙 ≤ 0, 𝑥𝑟 ≥ 0.

It is easily observed that any edge 𝑒 that is added to the line in

order to minimize the distance from the facility at 0 is only used

in one direction by all shortest paths from 0 that use this edge 𝑒 ,

and thus there must be an optimal solution that adds an edge with

an endpoint 0. This key proposition will be used throughout this

paper to compute the optimum.

Proposition 2.2. For both objectives, there exists an optimal solu-
tion (0, 𝑦) for some point 𝑦 ∈ R.

Proof. First, we show that no new edge can be used by agents

from both sides. Consider any solution (𝑎, 𝑏) with 𝑎 ≤ 𝑏 and any

two agents 𝑖, 𝑗 ∈ 𝑁 with 𝑥𝑖 < 0, 𝑥 𝑗 > 0. If both 𝑖, 𝑗 improve by using

this solution, then it must be |𝑥𝑖−𝑎 |+|𝑏 | < |𝑥𝑖 | and |𝑥 𝑗−𝑏 |+|𝑎 | < 𝑥 𝑗 ;

however, this is impossible. So either 𝑖 or 𝑗 or none of them can

improve by using (𝑎, 𝑏).
Second, let (𝑎∗, 𝑏∗) with 𝑎∗ ≤ 𝑏∗ be an optimal solution, and

denote by 𝑆 the set of agents who gain by using (𝑎∗, 𝑏∗). Assume

w.l.o.g. that it is used by some agents on the right side, i.e., for all

𝑖 ∈ 𝑆 , 𝑥𝑖 > 0. Then clearly 𝑏∗ > 0. The cost of each agent 𝑖 ∈ 𝑆 is

|𝑥𝑖 − 𝑏∗ | + |𝑎∗ |. However, using another solution (0, 𝑏∗), the cost of
every agent 𝑖 ∈ 𝑆 decreases to |𝑥𝑖 −𝑏∗ |. So (0, 𝑏∗) is also an optimal

solution, as desired. □
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3 MINIMIZING THE MAXIMUM COST
We study the maximum cost objective in this section. Given location

profile x, if |𝑥𝑙 | ≤ 𝑥𝑟 , define 𝑙 (x) = min{𝑥 ∈ x | 𝑥 >
𝑥𝑟
3
}, and

𝑏 (x) = max{𝑥 ∈ x | 0 ≤ 𝑥 ≤ 𝑥𝑟
3
}. Intuitively, when there is

an edge connecting point
2𝑥𝑟
3

with the facility, all agents located

in 𝑙 (x) would like to use this edge, while the agents located in

𝑏 (x) go to the facility directly. If |𝑥𝑙 | > 𝑥𝑟 , symmetrically, define

𝑙 (x) = max{𝑥 ∈ x | 𝑥 <
𝑥𝑙
3
}, and 𝑏 (x) = min{𝑥 ∈ x | 𝑥𝑙

3
≤ 𝑥 ≤ 0}.

We write 𝑙 (x), 𝑏 (x) as 𝑙, 𝑏, when no confusion arises.

Proposition 3.1. Given location profile x, if |𝑥𝑙 | ≤ 𝑥𝑟 , then edge
(0, 𝑙+𝑥𝑟

2
) is an optimal solution, and the optimal maximum cost is

𝑂𝑃𝑇 (x) = max{|𝑥𝑙 |, 𝑏, 𝑥𝑟 −𝑙2
}. Symmetrically, if |𝑥𝑙 | > 𝑥𝑟 , the opti-

mal maximum cost is 𝑂𝑃𝑇 (x) = max{𝑥𝑟 , |𝑏 |, 𝑥𝑙−𝑙
2

}.

Proof. Consider |𝑥𝑙 | ≤ 𝑥𝑟 . Recall from Proposition 2.2 that there

is an optimal solution that connects some point with the source 0,

say (0, 𝑦∗). Noting that any edge can facilitate the agents in only one
direction, at least one of the two extreme agents cannot gain from

the new edge, and we have 𝑂𝑃𝑇 (x) ≥ min{|𝑥𝑙 |, 𝑥𝑟 } = |𝑥𝑙 |. If 𝑦∗ <
2𝑥𝑟
3
, then the cost of the agent on 𝑥𝑟 is at least 𝑥𝑟 −𝑦∗ >

𝑥𝑟
3

≥ 𝑏. If

𝑦∗ ≥ 2𝑥𝑟
3
, then the cost of the agent on 𝑏 is 𝑏. So we have𝑂𝑃𝑇 (x) ≥

𝑏. Now it remains to prove𝑂𝑃𝑇 (x) ≥ 𝑥𝑟 −𝑙
2

. Considering the agents

on 𝑙 and 𝑥𝑟 , the best possible case for balancing these two agents is

when 𝑦∗ is the midpoint of 𝑙 and 𝑥𝑟 , and thus𝑚𝑐 ((0, 𝑦∗), x) ≥ 𝑥𝑟 −𝑙
2

.

Combining the above, we have 𝑂𝑃𝑇 (x) ≥ max{|𝑥𝑙 |, 𝑏, 𝑥𝑟 −𝑙2
}. On

the other hand, it is easy to see that (0, 𝑙+𝑥𝑟
2

) achieves a maximum

cost of at most max{|𝑥𝑙 |, 𝑏, 𝑥𝑟 −𝑙2
}, which indicates the optimality.

□

Note that optimal solution is not strategy-proof. Consider an

example with two agents located at x = (4, 6). The optimal solution

is connecting (0, 5), and the agent located at 6 incurs a cost of 1.

However, if this agent misreports her location as 8, the location

profile becomes x′ = (4, 8), and the optimal solution for x′ is (0, 6).
Thus, the agent located at 6 can decrease her cost to zero after

misreporting.

3.1 Deterministic Mechanisms
The following mechanism deterministically connects the two ex-

treme locations 𝑥𝑙 and 𝑥𝑟 of agents. Due to the existence of a dummy

agent on 0, the left (right) endpoint of the new edge is either 0 or

to the left (right) of 0.

Mechanism 1. Given agents’ location profile x = (𝑥1, . . . , 𝑥𝑛),
add new edge 𝑓 (x) = (𝑥𝑙 , 𝑥𝑟 ).

Lemma 3.2. Mechanism 1 is strategy-proof.

Proof. Let x′ = (𝑥 ′
𝑖
, x−𝑖 ) be the location profile when some

agent 𝑖 misreports 𝑥 ′
𝑖
, and let 𝑥 ′

𝑙
, 𝑥 ′𝑟 be the two extreme locations

with respect to x′. By symmetry, it suffices to prove that any agent

𝑖 to the right of 0 (i.e., 𝑥𝑖 > 0) will not lie. If 𝑖 is not an extreme

agent, i.e., 0 < 𝑥𝑖 < 𝑥𝑟 , then it must have 𝑥 ′
𝑙
≤ 𝑥𝑙 and 𝑥𝑟 ≤ 𝑥 ′𝑟 .

After misreporting, the cost of agent 𝑖 becomes 𝑐𝑜𝑠𝑡 (𝑓 (x′), 𝑥𝑖 ) =
min{𝑥𝑖 , 𝑥 ′𝑟 − 𝑥𝑖 + |𝑥 ′

𝑙
|} ≥ min{𝑥𝑖 , 𝑥𝑟 − 𝑥𝑖 + |𝑥𝑙 |} = 𝑐𝑜𝑠𝑡 (𝑓 (x), 𝑥𝑖 ),

implying that 𝑖 cannot gain by misreporting. If 𝑖 is an extreme agent

with 𝑥𝑖 = 𝑥𝑟 , the cost after misreporting becomes 𝑐𝑜𝑠𝑡 (𝑓 (x′), 𝑥𝑖 ) =
min{𝑥𝑟 , |𝑥 ′𝑟 − 𝑥𝑟 | + |𝑥 ′

𝑙
|} ≥ min{𝑥𝑟 , |𝑥𝑙 |} = 𝑐𝑜𝑠𝑡 (𝑓 (x), 𝑥𝑖 ), and thus

there is no incentive to lie. □

We remark that Mechanism 1 indeed satisfies a stronger concept

called group strategy-proofness [22], which means that for any

location profile x and any coalition 𝑆 ⊆ 𝑁 , there is no joint deviation

x𝑆 of the agents in 𝑆 such that all the agents in 𝑆 gain. Now we

prove an approximation ratio of 3.

Theorem 3.3. For the maximum cost objective, Mechanism 1 is
deterministic, strategy-proof and 3-approximation.

Proof. The strategy-proofness is given by Lemma 3.2. For the

approximation ratio, we only consider the case |𝑥𝑙 | ≤ 𝑥𝑟 , as the

other case |𝑥𝑙 | > 𝑥𝑟 is symmetric. By Proposition 3.1, the optimal

maximum cost 𝑂𝑃𝑇 (x) is max{|𝑥𝑙 |, 𝑏, 𝑥𝑟 −𝑙2
}. Clearly, the cost of

each agent 𝑖 with 𝑥𝑖 <
𝑥𝑟
3
is at most |𝑥𝑖 | ≤ max{|𝑥𝑙 |, 𝑏} ≤ 𝑂𝑃𝑇 (x).

It remains to consider each agent 𝑖 with 𝑥𝑖 ≥ 𝑙 ≥ 𝑥𝑟
3
. The distance

of agent 𝑖 to 𝑥𝑟 is 𝑥𝑟 − 𝑥𝑖 , and thus the cost of agent 𝑖 is at most

𝑥𝑟 − 𝑥𝑖 + |𝑥𝑙 | ≤ 𝑥𝑟 − 𝑙 + |𝑥𝑙 |

≤ 2 · 𝑥𝑟 − 𝑙

2

+ |𝑥𝑙 |

≤ 3 ·𝑂𝑃𝑇 (x), (1)

which gives an approximation ratio of 3. □

The following example shows that the approximation ratio 3 of

Mechanism 1 can be attained. Recall that the dummy is not needed

when a location profile is specified.

Example 3.4. Consider a 3-agent instance with location profile

x = (−1, 8, 10). The optimal maximum cost is 𝑂𝑃𝑇 (x) = 1, attained

by solution (0, 9). Mechanism 1 adds edge (−1, 10), and the cost of

agent 2 is 3. Thus, the ratio
3

𝑂𝑃𝑇 (x) = 3.

3.2 Randomized Mechanisms
In the following, we consider randomized mechanisms.

Mechanism 2. Let x = (𝑥1, . . . , 𝑥𝑛) be the location profile of
agents. If |𝑥𝑙 | ≤ 𝑥𝑟 , add an edge 𝑓 (x) = (𝑥𝑙 , 𝑦), where 𝑦 is a random
point defined as follows.

• Case 1. 𝑙 (x) ≥ 2𝑥𝑟
3
. Let 𝑐 (x) = max{|𝑥𝑙 |,min{𝑙 (x), 𝑥𝑟 −

𝑏 (x)}}, and

𝑦 =


𝑐 (x) with probability (w.p.) 1

4

𝑥𝑟 w.p. 1
2

𝑐 (x)+𝑥𝑟
2

w.p. 1
4

• Case 2. 𝑙 (x) < 2𝑥𝑟
3
. Let 𝑑 (x) = max{|𝑥𝑙 |, 2𝑥𝑟3 }, and

𝑦 =


𝑑 (x) w.p. 1

4

𝑥𝑟 w.p. 1
2

𝑑 (x)+𝑥𝑟
2

w.p. 1
4

If |𝑥𝑙 | > 𝑥𝑟 , 𝑓 (x) = (𝑦, 𝑥𝑟 ) is defined symmetrically.

Intuitively, this mechanism designates a point (i.e., 𝑐 (x) or 𝑑 (x))
and connects the facility with this point, 𝑥𝑟 and their midpoint with

probabilities
1

4
, 1
2
, and 1

4
, respectively.
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Case 1

Case 2

Figure 2: Illustration of Mechanism 2.

Figure 2 gives an illustration of the notations in Mechanism

2. It is worth noting that we have 𝑐 (x) ≥ 𝑑 (x) ≥ 2𝑥𝑟
3

whenever

|𝑥𝑙 | ≤ 𝑥𝑟 and 𝑙 (x) ≥ 2𝑥𝑟
3
. We write 𝑐 (x), 𝑑 (x) as 𝑐, 𝑑 , when no

confusion arises. Before the analysis, we give an example to show

how the mechanism works and how bad the performance can be.

Example 3.5. Consider an instance with agents’ location pro-

file x = ( −𝐿
2
, 0, 2𝐿, 3𝐿) for some large number 𝐿 > 0. Then 𝑥𝑙 =

−𝐿
2
, 𝑥𝑟 = 3𝐿,𝑏 (x) = 0, 𝑐 (x) = 𝑙 (x) = 2𝐿. Since 𝑙 (x) ≥ 2𝑥𝑟

3
, the solu-

tion returned by this mechanism is ( −𝐿
2
, 2𝐿), ( −𝐿

2
, 3𝐿), ( −𝐿

2
, 2.5𝐿)

with probability
1

4
, 1
2
, 1
4
, respectively. The maximum cost of the

mechanism in expectation is
1

4
· (𝐿 + | −𝐿

2
|) + 1

2
· (𝐿 + | −𝐿

2
|) + 1

4
·

( 𝐿
2
+ | −𝐿

2
|) = 11𝐿

8
. The optimal solution is (0, 2.5𝐿), and the optimal

maximum cost is 0.5𝐿. Hence, the maximum cost of the mechanism

for this instance is
11

4
times of the optimum.

We show the strategy-proofness of Mechanism 2.

Lemma 3.6. Mechanism 2 is strategy-proof.

Proof. Let x be a location profile with |𝑥𝑙 | ≤ 𝑥𝑟 . We first con-

sider any agent 𝑖 to the left of 0, i.e., 𝑥𝑖 < 0. When telling the

truth, the cost of agent 𝑖 is at most |𝑥𝑖 |. Suppose she misreports

a location 𝑥 ′
𝑖
, and the location profile becomes x′ = (𝑥 ′

𝑖
, x−𝑖 ). If

𝑥 ′
𝑖
< 𝑥𝑙 and |𝑥 ′

𝑖
| ≤ 𝑥𝑟 , the solution does not change. If 𝑥 ′

𝑖
< 𝑥𝑙 and

|𝑥 ′
𝑖
| > 𝑥𝑟 , then a new edge connects some point to the left of 0 with

𝑥𝑟 , which cannot decrease her cost. If 𝑥 ′
𝑖
≥ 0, then the solution is

𝑓 (x′) = (𝑥 ′
𝑙
, 𝑦′) for some random point 𝑦′ ≥ |𝑥 ′

𝑙
|, and the cost is

still |𝑥𝑖 |. So agent 𝑖 cannot gain by misreporting.

Next, we consider agent 𝑖 to the right of 0, i.e., 𝑥𝑖 > 0. We claim

that agent 𝑖 will not report a location 𝑥 ′
𝑖
such that 𝑥 ′

𝑙
≠ 𝑥𝑙 , which

enables us to focus on the case 𝑥𝑙 = 𝑥 ′
𝑙
.

Claim 1. If agent 𝑖 with 𝑥𝑖 > 0 misreports a location 𝑥 ′
𝑖
< 0 such

that 𝑥 ′
𝑙
≠ 𝑥𝑙 , she cannot decrease the cost.

Proof.When 𝑥 ′
𝑙
≠ 𝑥𝑙 , there are two cases: |𝑥 ′𝑙 | > 𝑥 ′𝑟 , and 𝑥

′
𝑟 ≥ |𝑥 ′

𝑙
| >

|𝑥𝑙 |. Note that the cost when telling the truth is at most 𝑥𝑖 . First,

we consider the case when |𝑥 ′
𝑙
| > 𝑥 ′𝑟 . For agent 𝑖 with 0 < 𝑥𝑖 < 𝑥𝑟 ,

when she misreports 𝑥 ′
𝑖
such that |𝑥 ′

𝑙
| > 𝑥 ′𝑟 = 𝑥𝑟 , the cost is at least

min{𝑥𝑖 , |𝑥𝑟 −𝑥𝑖 | +𝑥𝑟 } = 𝑥𝑖 , which indicates that she will not lie. For

agent 𝑖 with 𝑥𝑖 = 𝑥𝑟 , when she misreports 𝑥 ′
𝑖
such that |𝑥 ′

𝑙
| > 𝑥 ′𝑟 ,

the cost is at least min{𝑥𝑟 , |𝑥𝑟 − 𝑥 ′𝑟 | + 𝑥 ′𝑟 } = 𝑥𝑟 = 𝑥𝑖 . So she has no

incentive to lie.

Second, we consider the case when 𝑥 ′𝑟 ≥ |𝑥 ′
𝑙
| > |𝑥𝑙 |. For agent

𝑖 with 𝑥𝑖 > 0, by changing 𝑥𝑙 to 𝑥
′
𝑙
, the corresponding loss in the

left side is |𝑥 ′
𝑙
− 𝑥𝑙 |; however, the benefit in the right side is at most

|𝑥 ′
𝑙
− 𝑥𝑙 |, implying that she cannot gain. Claim 1 is proved.

Now we focus on the case 𝑥𝑙 = 𝑥 ′
𝑙
. For agent 𝑖 with 0 < 𝑥𝑖 ≤ 𝑥𝑟

3
,

note that she always goes to the source directly in every case. The

cost is 𝑥𝑖 , and does not change whenever misreporting.

For agent 𝑖 with
𝑥𝑟
3

< 𝑥𝑖 <
2𝑥𝑟
3
, such agents exist only in Case 2

of Mechanism 2. If she misreports 𝑥 ′
𝑖
such that the location profile

x′ is still in Case 2, because 𝑥𝑖 < 𝑑 ≤ 𝑑′, she cannot improve. If she

misreports 𝑥 ′
𝑖
such that x′ falls in Case 1, because 𝑥𝑟 ≤ 𝑥 ′𝑟 , |𝑥 ′𝑙 | = |𝑥𝑙 |

and 𝑥𝑖 < 𝑑 ≤ 𝑐 ≤ 𝑐′, she cannot improve.

For agent 𝑖 with
2𝑥𝑟
3

≤ 𝑥𝑖 ≤ 𝑥𝑟 , we discuss the two cases respec-

tively.

Case 1. 𝑙 (x) ≥ 2𝑥𝑟
3
. If none of 𝑥𝑟 , 𝑙 (x), 𝑏 (x) changes after misre-

porting, the cost does not change as well. If 𝑏 changes and 𝑥𝑟 does

not change, it must be still in Case 1, and we discuss two subcases

as follows.

• Case a. 𝑙 (x) ≤ 𝑥𝑟 − 𝑏. It implies 𝑐 = max{|𝑥𝑙 |, 𝑙}. When

𝑥𝑖 ≠ 𝑙 , it must be either 𝑐 = 𝑐′ = |𝑥𝑙 |, or 𝑐′ ≤ 𝑐 = 𝑙 < 𝑥𝑖 : in

the former case, the solution does not change; in the latter

case, by the probability distribution, agent 𝑖 cannot improve.

When 𝑥𝑖 = 𝑙 , if 𝑐 = |𝑥𝑙 |, because 𝑥𝑖 ≤ 𝑥 − |𝑥𝑙 | ≤ 𝑐′, agent 𝑖
cannot improve; if 𝑐 = 𝑙 = 𝑥𝑖 , by the probability distribution,

the cost of agent 𝑖 will not decrease no matter how 𝑐 moves.

• Case b. 𝑥𝑟 −𝑏 (x) < 𝑙 (x). It implies that 𝑐 = max{|𝑥𝑙 |, 𝑥𝑟 −𝑏}.
By 𝑏′ ≥ 𝑏, it must be 𝑐′ ≤ 𝑐 . Then it is easy to see that,

whenever, 𝑐 = |𝑥𝑙 | < 𝑥𝑖 or 𝑙 (x) ≤ 𝑥𝑖 ≤ 𝑥 = |𝑥𝑙 | or 𝑐 =

𝑥𝑟 − 𝑏 < 𝑙 (x) ≤ 𝑥𝑖 , the cost cannot decrease.

If 𝑥𝑟 , 𝑏 do not change and 𝑙 decreases, we discuss two subcases

𝑙 (x′) ≥ 2𝑥𝑟
3

and 𝑙 (x′) < 2𝑥𝑟
3
.

• Case c. 𝑙 (x′) ≥ 2𝑥𝑟
3
. It must be 𝑐′ ≤ 𝑐 . The only possible way

for improvement is 𝑙 (x) ≤ 𝑥𝑖 <= |𝑥𝑙 |; however, in this case,

𝑐 = 𝑐′, and thus the cost is the same.

• Case d. 𝑙 (x′) <
2𝑥𝑟
3
. Clearly, we have 𝑑′ = 𝑑 ≤ 𝑐 . The

only possible way for improvement is 𝑙 (x) ≤ 𝑥𝑖 < 𝑐 = |𝑥𝑙 |;
however, in this case, 𝑐 = |𝑥𝑙 | = 𝑑 , and thus the cost is the

same.

If 𝑥𝑟 , 𝑏 do not change and 𝑙 increases (implying 𝑙 (x) = 𝑥𝑖 ), we

also discuss two subcases 𝑙 (x′) ≥ 2𝑥𝑟
3

and 𝑙 (x′) < 2𝑥𝑟
3
.

• Case e. 𝑙 (x′) ≥ 2𝑥𝑟
3
. It must be 𝑐′ ≤ 𝑐 . If 𝑥𝑟 − 𝑏 ≤ 𝑙 , then

𝑐′ = 𝑐 , and thus the cost is the same. If 𝑙 < 𝑥𝑟 − 𝑏, then

𝑥𝑖 = 𝑙 ≤ 𝑐 ≤ 𝑐′, and agent 𝑖 cannot improve.

• Case f. 𝑙 (x′) < 2𝑥𝑟
3
. Clearly, we have 𝑑′ = 𝑑 ≤ 𝑐 . The only

possible way for improvement is 𝑥𝑖 = 𝑙 < 𝑐 = |𝑥𝑙 |; however,
in this case, 𝑐 = |𝑥𝑙 | = 𝑑′, and thus the cost is the same.

Now we discuss when 𝑥𝑟 changes. If 𝑥 ′𝑟 < 𝑥𝑟 , then it must be

𝑥𝑖 = 𝑥𝑟 , and is easy to see that agent 𝑖 cannot decrease the cost,

because the random point 𝑦 moves to the left in expectation. If

𝑥𝑟 < 𝑥 ′𝑟 , let Δ = 𝑥 ′𝑟 − 𝑥𝑟 be the difference. When 𝑓 (x′) comes

from Case 1, we have 𝑐′ − 𝑐 ≤ Δ and
𝑥 ′
𝑟+𝑐′
2

− 𝑥𝑟+𝑐
2

≤ Δ. By the

probability distribution and 𝑥𝑖 ≤ 𝑥𝑟 , the expected cost of agent 𝑖

will never decrease. Similarly, when 𝑓 (x′) comes from Case 2, we

have |𝑑′ − 𝑐 | ≤ Δ and
𝑥 ′
𝑟+𝑑 ′

2
− 𝑥𝑟+𝑐

2
≤ Δ, and also the expected cost

of agent 𝑖 will never decrease.
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Case 2. 𝑙 (x) < 2𝑥𝑟
3
. If 𝑥𝑟 does not change (i.e., 𝑥

′
𝑟 = 𝑥𝑟 ), then x′

is still in Case 2, and by 𝑑′ = 𝑑 , the solution also does not change.

So it suffices to consider two subcases 𝑥 ′𝑟 < 𝑥𝑟 and 𝑥𝑟 < 𝑥 ′𝑟 . Let
𝑓 (x) = (𝑥𝑙 , 𝑦) and 𝑓 (x′) = (𝑥𝑙 , 𝑦′).

• Case g. 𝑥 ′𝑟 < 𝑥𝑟 . It implies 𝑥𝑖 = 𝑥𝑟 . If x′ is still in Case 2, we

have 𝑑′ < 𝑑 , and the expectation of 𝑦′ is smaller than that of

𝑦. So the cost of agent 𝑖 will increase. If x′ is in Case 1, then

there must be an agent 𝑗 with 𝑥 𝑗 = 𝑙 (x′) ≤ 2𝑥𝑟
3
. It follows

that 𝑐′ ≤ 𝑑 , and the expectation of 𝑦′ is smaller than that of

𝑦. Therefore, agent 𝑖 has no incentive to lie.

• Case h. 𝑥𝑟 < 𝑥 ′𝑟 . Let Δ = 𝑥 ′𝑟 − 𝑥𝑟 be the difference. If x′ is
still in Case 2, we have |𝑑′ − 𝑑 | ≤ Δ and | 𝑥

′
𝑟+𝑑 ′

2
− 𝑥𝑟+𝑑

2
| ≤ Δ.

By the probability distribution and 𝑥𝑖 ≤ 𝑥𝑟 , the expected

cost of agent 𝑖 will never decrease. If x′ is in Case 1, then

there must be an agent 𝑗 with 𝑥 𝑗 = 𝑏′ ≥ 𝑥𝑟
3
. It follows that

𝑐′ ≤ max{|𝑥𝑙 |, 𝑥 ′𝑟 − 𝑏′} ≤ max{|𝑥𝑙 |, 𝑥𝑟 + Δ − 𝑥𝑟
3
}, and thus

𝑐′−𝑑 ≤ Δ, | 𝑥
′
𝑟+𝑐′
2

− 𝑥𝑟+𝑑
2

| ≤ Δ. By the probability distribution,
the expected cost of agent 𝑖 will never decrease.

Therefore, no agent can gain by misreporting, which establishes

the proof. □

In the following we prove the approximation ratio, by a case

discussion of which value 𝑐 or 𝑑 takes.

Theorem 3.7. For the maximum cost objective, Mechanism 2 is
randomized, strategy-proof, and 2.75-approximation.

Proof. The strategy-proofness is given by Lemma 3.6. For the

approximation ratio, we only consider the case |𝑥𝑙 | ≤ 𝑥𝑟 , as the

other case |𝑥𝑙 | > 𝑥𝑟 is symmetric. By Proposition 3.1, the optimal

maximum cost is 𝑂𝑃𝑇 (x) = max{|𝑥𝑙 |, 𝑏, 𝑥𝑟 −𝑙2
}. Let 𝑓 (x) = (𝑥𝑙 , 𝑦)

be the output of the mechanism. Clearly, the cost of each agent 𝑖

with 𝑥𝑖 ≤ 𝑥𝑟
3
is at most |𝑥𝑖 | ≤ max{|𝑥𝑙 |, 𝑏} ≤ 𝑂𝑃𝑇 (x). It remains

to consider the cost of each agent 𝑖 with 𝑥𝑖 ≥ 𝑙 (x) >
𝑥𝑟
3
. Let Δ

be the maximum cost of such agents, and it suffices to prove that

E[Δ] ≤ 11

4
·𝑂𝑃𝑇 (x). We discuss two cases that correspond to the

two cases in the definition of Mechanism 2.

Case 1. 𝑙 (x) ≥ 2𝑥𝑟
3
. If 𝑐 = |𝑥𝑙 |, it implies 𝑐 ≥ 2𝑥𝑟

3
. Since 𝑥𝑖 ≥

𝑙 (x), the distance of agent 𝑖 to 𝑦 is at most
𝑥𝑟
3

≤ 𝑐 = |𝑥𝑙 | for
every realization of the probability distribution. Therefore, we have

E[Δ] ≤ |𝑥𝑙 | + |𝑥𝑙 | ≤ 2 · 𝑂𝑃𝑇 (x). If 𝑐 = 𝑥𝑟 − 𝑏 ≤ 𝑙 (x), w.p. 1

4
we

have 𝑦 = 𝑐 and Δ ≤ 𝑐𝑜𝑠𝑡 (𝑓 (x), 𝑥𝑟 ) ≤ 𝑥𝑟 − 𝑦 + |𝑥𝑙 | = 𝑏 + |𝑥𝑙 |; w.p.
1

2
, 𝑦 = 𝑥𝑟 , and Δ ≤ 𝑐𝑜𝑠𝑡 (𝑓 (x), 𝑙 (x)) ≤ 𝑦 − 𝑙 (x) + |𝑥𝑙 | ≤ 𝑏 + |𝑥𝑙 |;

w.p.
1

4
, 𝑦 =

𝑐+𝑥𝑟
2

, and Δ ≤ 𝑥𝑟 −𝑐
2

+ |𝑥𝑙 | = 𝑏
2
+ |𝑥𝑙 |. Hence, we have

E[Δ] ≤ 7𝑏
8
+ |𝑥𝑙 | ≤ 15

8
·𝑂𝑃𝑇 (x), as desired.

If |𝑥𝑙 | < 𝑐 = 𝑙 (x) < 𝑥𝑟 −𝑏, w.p. 1
4
,𝑦 = 𝑐 and Δ ≤ 𝑐𝑜𝑠𝑡 (𝑓 (x), 𝑥𝑟 ) ≤

𝑥𝑟 − 𝑐 + |𝑥𝑙 |; w.p. 12 , 𝑦 = 𝑥𝑟 and Δ ≤ 𝑐𝑜𝑠𝑡 (𝑓 (x), 𝑙 (x)) ≤ 𝑥𝑟 − 𝑐 + |𝑥𝑙 |;
w.p.

1

4
, 𝑦 =

𝑐+𝑥𝑟
2

and Δ ≤ 𝑥𝑟 −𝑐
2

+ |𝑥𝑙 |. So we have

E[Δ] ≤ 7

8

· (𝑥𝑟 − 𝑐) + |𝑥𝑙 |

≤ 7

4

· 𝑥𝑟 − 𝑙 (x)
2

+ |𝑥𝑙 | ≤
11

4

·𝑂𝑃𝑇 (x) .

Case 2. 𝑙 (x) <
2𝑥𝑟
3
. If 𝑑 = |𝑥𝑙 | ≥ 2𝑥𝑟

3
, for every realization of

the probability distribution and for every agent considered (i.e.,

𝑥𝑖 ≥ 𝑙 (x)), it must satisfy min{|𝑥𝑖 |, |𝑥𝑖 − 𝑦 |} ≤ 𝑥𝑟
2

≤ |𝑥𝑙 |, that is,

both the distances to 𝑦 and to 0 are no more than |𝑥𝑙 |. Then we

have E[Δ] ≤ |𝑥𝑙 | + |𝑥𝑙 | ≤ 2 ·𝑂𝑃𝑇 (x).
If 𝑑 =

2𝑥𝑟
3
, w.p.

1

4
, we have 𝑦 = 𝑑 and Δ ≤ 𝑥𝑟 − 𝑑 + |𝑥𝑙 |; w.p.

1

2
, 𝑦 = 𝑥𝑟 and Δ ≤ 𝑥𝑟 − 𝑙 (x) + |𝑥𝑙 |; w.p. 1

4
, 𝑦 =

𝑑+𝑥𝑟
2

and Δ ≤
𝑑+𝑥𝑟
2

− 𝑙 (x) + |𝑥𝑙 |. Hence, we have

E[Δ] ≤ 1

4

· (𝑥𝑟 − 𝑑) + 1

2

· (𝑥𝑟 − 𝑙 (x))

+ 1

4

·
(
𝑥𝑟 + 𝑑

2

− 𝑙 (x)
)
+ |𝑥𝑙 |

=
7

4

· 𝑥𝑟 − 𝑙 (x)
2

+ |𝑥𝑙 |

≤ 11

4

·𝑂𝑃𝑇 (x),

which completes the proof. □

We end this section by providing a lower bound for randomized

strategy-proof mechanisms. The instance construction follows from

that in proof of Theorem 3.4 in [22] for facility location problems.

Theorem 3.8. No randomized strategy-proof mechanism has ap-
proximation ratio less than 3

2
for the maximum cost.

Proof. Let 𝑓 be a randomized strategy-proof mechanism. Con-

sider a location profile x = (𝐿, 𝐿 + 1) for some large 𝐿 > 0. We have

that 𝑓 (x) = P, where P is a distribution over R2. It is easy to see

that either agent 1 or agent 2 has a cost at least
1

2
. Assume w.l.o.g.

that 𝑐𝑜𝑠𝑡 (P, 𝑥2) ≥ 1

2
.

Now consider location profile x′ = (𝐿, 𝐿 + 2). Let 𝑓 (x′) = (𝑎′, 𝑏′)
with 𝑎′ ≤ 𝑏′ be the outcome, where 𝑎′, 𝑏′ ∈ R are random variables.

By the strategy-proofness, it must be that E[|𝑥2 − 𝑏′ | + |𝑎′ |] ≥ 1

2
,

otherwise in instance x agent 2 can gain by deviating from 𝑥2 to

𝑥 ′
2
. Hence, in instance x′, the expected maximum cost is at least

3

2
, while the optimal maximum cost is 1. Thus the ratio is at least

3

2
. □

4 MINIMIZING THE SOCIAL COST
This section is devoted to the social cost objective. While a loose

upper bound𝑛 for deterministic mechanisms is given byMechanism

1, we propose a randomized one (Mechanism 3) with a constant

performance guarantee.

4.1 Deterministic Mechanisms
We present upper and lower bounds as follows.

Theorem 4.1. Mechanism 1 is 𝑛-approximation for the social cost
objective.

Proof. We assume w.l.o.g. that there exists an optimal solution

(0, 𝑦∗) with 0 < 𝑦∗ ≤ 𝑥𝑟 . Let (𝑁1, 𝑁2, 𝑁3) be a partition of the agent
set 𝑁 , where 𝑁1 = {𝑖 ∈ 𝑁 | 𝑥𝑖 ≤ 0}, 𝑁2 = {𝑖 ∈ 𝑁 | 0 < 𝑥𝑖 ≤ 𝑦∗

2
}

and 𝑁3 = {𝑖 ∈ 𝑁 | 𝑥𝑖 >
𝑦∗

2
}. The agents in 𝑁3 can decrease the

distance to 0 by using edge (0, 𝑦∗), while agents in𝑁1 and𝑁2 cannot

gain. Then the optimal social cost is

𝑂𝑃𝑇 (x) =
∑︁

𝑖∈𝑁1∪𝑁2

|𝑥𝑖 | +
∑︁
𝑖∈𝑁3

|𝑥𝑖 − 𝑦∗ |.
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We have

𝑠𝑐 (𝑓 (x), x)
𝑂𝑃𝑇 (x) ≤

∑
𝑖∈𝑁1∪𝑁2

|𝑥𝑖 | +
∑

𝑖∈𝑁3

( |𝑥𝑟 − 𝑥𝑖 | + |𝑥𝑙 |)∑
𝑖∈𝑁1∪𝑁2

|𝑥𝑖 | +
∑
𝑖∈𝑁3

|𝑦∗ − 𝑥𝑖 |

≤
𝑛 · |𝑥𝑙 | +

∑
𝑖∈𝑁3

|𝑥𝑟 − 𝑥𝑖 |
|𝑥𝑙 | +

∑
𝑖∈𝑁3

|𝑦∗ − 𝑥𝑖 |

≤
𝑛 · |𝑥𝑙 | + |𝑁3 | ·max𝑖∈𝑁3

|𝑥𝑟 − 𝑥𝑖 |
|𝑥𝑙 | +max𝑖∈𝑁3

|𝑥𝑟 − 𝑥𝑖 |
≤ 𝑛,

where the third inequality comes from the fact that

∑
𝑖∈𝑁3

|𝑦∗−𝑥𝑖 | ≥
|𝑥𝑟 − 𝑦∗ | + |𝑥𝑖 − 𝑦∗ | ≥ |𝑥𝑟 − 𝑥𝑖 | for any 𝑖 ∈ 𝑁3. □

We notice that the approximation ratio 𝑛 of Mechanism 1 is

achievable by an instance with 𝑛 agents’ location profile

x = (−𝐿, 2𝐿, 2𝐿, . . . , 2𝐿).

The optimal solution (2𝐿, 0) has a social cost of 𝐿, while the solution
(2𝐿,−𝐿) returned by Mechanism 1 has a social cost of | − 𝐿 | + (𝑛 −
1)𝐿 = 𝑛𝐿. The ratio is

𝑛𝐿
𝐿

= 𝑛.

Next, we prove a lower bound.

Theorem 4.2. No deterministic strategy-proof mechanism has
approximation ratio less than 3

2
for the social cost.

Proof. Consider the agents’ location profile x = (−1, 1). Let 𝑓
be a deterministic strategy-proof mechanism. Assume without loss

of generality that 𝑓 (x) facilitates agent 1. Because a solution can

only facilitate agents on a single side, agent 2 must go to the facility

directly and have a cost of 1.

Suppose agent 2 misreports her location as 𝑥 ′
2
= 3

2
, and the

location profile becomes x′ = (−1, 3
2
). Let 𝑓 (x′) = (𝑦1, 𝑦2) with

𝑦1 ≤ 𝑦2. The optimal solution (0, 3
2
) has a social cost of 1. By the

approximation ratio, the social cost of 𝑓 (x′) should be less than

3

2
, and thus 𝑓 (x′) must facilitate agent 2. Thus, under instance x′,

agent 1 has a cost of 1, and agent 2 has cost |𝑦2 − 3

2
| + |𝑦1 | < 1

2
. It

follows that |𝑦2 − 1| + |𝑦1 | < 1.

Now consider instance x. Under the solution 𝑓 (x′), agent 2 has
a cost |𝑦2 − 1| + |𝑦1 | < 1. Therefore, after misreporting 𝑥 ′

2
, agent 2

in x can decrease her cost, a contradiction. □

4.2 Randomized Mechanisms
The following randomized mechanism adds an edge that connects

each agent’s location with the facility location 0, with a probability

proportional to her distance from 0. It is proven to be strategy-proof

and 6-approximation.

Mechanism 3. Given location profile x, for each agent 𝑘 ∈ 𝑁 with
𝑥𝑘 ≠ 0, return (0, 𝑥𝑘 ) with probability |𝑥𝑘 |∑

𝑖∈𝑁 |𝑥𝑖 | .

In the following lemma we show the strategy-proofness.

Lemma 4.3. Mechanism 3 is strategy-proof.

Proof. For an arbitrary agent 𝑘 ∈ 𝑁 , we show that she cannot

gain by misreporting. W.l.o.g. assume that 𝑘 is to the right of 0, i.e.,

𝑥𝑘 > 0. Define 𝑁0 = {𝑖 ∈ 𝑁 | 𝑥𝑖 ≤ 0}, 𝑁1 = {𝑖 ∈ 𝑁 | 0 < 𝑥𝑖 < 𝑥𝑘 }
and 𝑁2 = {𝑖 ∈ 𝑁 \{𝑘} | 𝑥𝑖 ≥ 𝑥𝑘 , }. Define 𝐷0 =

∑
𝑖∈𝑁0

|𝑥𝑖 |, 𝐷1 =∑
𝑖∈𝑁1

𝑥𝑖 , 𝐷2 =
∑
𝑖∈𝑁2

𝑥𝑖 , and 𝐷 =
∑
𝑖∈𝑁 \{𝑘 } |𝑥𝑖 | = 𝐷0 + 𝐷1 + 𝐷2.

When reporting truthfully, the cost of agent 𝑘 is

𝑐𝑜𝑠𝑡 (𝑓 (x), 𝑥𝑘 ) =
𝐷0

𝐷 + 𝑥𝑘
𝑥𝑘 +

∑︁
𝑖∈𝑁1

𝑥𝑖

𝐷 + 𝑥𝑘
(𝑥𝑘 − 𝑥𝑖 ) +

∑︁
𝑖∈𝑁2

𝑥𝑖

𝐷 + 𝑥𝑘
min{𝑥𝑘 , 𝑥𝑖 − 𝑥𝑘 }.

Suppose that agent 𝑘 misreports 𝑥 ′
𝑘
so that the location profile

becomes x′ = (x−𝑘 , 𝑥 ′𝑘 ). We discuss three cases: 0 ≤ 𝑥 ′
𝑘

≤ 𝑥𝑘 ,

𝑥 ′
𝑘
> 𝑥𝑘 and 𝑥 ′

𝑘
< 0.

Case 1. 0 ≤ 𝑥 ′
𝑘
≤ 𝑥𝑘 . The cost of agent 𝑘 becomes

𝑐𝑜𝑠𝑡 (𝑓 (x′), 𝑥𝑘 )=
𝐷0 · 𝑥𝑘
𝐷 + 𝑥 ′

𝑘

+
∑︁
𝑖∈𝑁1

𝑥𝑖

𝐷 + 𝑥 ′
𝑘

(𝑥𝑘 − 𝑥𝑖 )+

𝑥 ′
𝑘

𝐷 + 𝑥 ′
𝑘

(𝑥𝑘 − 𝑥 ′
𝑘
) +

∑︁
𝑖∈𝑁2

𝑥𝑖

𝐷 + 𝑥 ′
𝑘

min{𝑥𝑘 , 𝑥𝑖 − 𝑥𝑘 }.

After a simple computation, we have

𝑐𝑜𝑠𝑡 (𝑓 (x′), 𝑥𝑘 ) − 𝑐𝑜𝑠𝑡 (𝑓 (x), 𝑥𝑘 )

≥ ( 𝐷0

𝐷 + 𝑥 ′
𝑘

− 𝐷0

𝐷 + 𝑥𝑘
)𝑥𝑘 +

𝑥 ′
𝑘

𝐷 + 𝑥 ′
𝑘

− 𝑥𝑘

𝐷 + 𝑥𝑘
+

( 𝐷1

𝐷 + 𝑥 ′
𝑘

− 𝐷1

𝐷 + 𝑥𝑘
) + ( 𝐷2

𝐷 + 𝑥 ′
𝑘

− 𝐷2

𝐷 + 𝑥𝑘
)

=
𝐷0𝑥𝑘 + 𝐷1 + 𝐷2 + 𝑥 ′

𝑘

𝐷 + 𝑥 ′
𝑘

− 𝐷0𝑥𝑘 + 𝐷1 + 𝐷2 + 𝑥𝑘

𝐷 + 𝑥𝑘

≥ 0.

So agent 𝑘 cannot gain.

Case 2. 𝑥 ′
𝑘
> 𝑥𝑘 . The cost of agent 𝑘 becomes

𝑐𝑜𝑠𝑡 (𝑓 (x′), 𝑥𝑘 ) =
𝐷0 · 𝑥𝑘
𝐷 + 𝑥 ′

𝑘

+
∑︁
𝑖∈𝑁1

𝑥𝑖

𝐷 + 𝑥 ′
𝑘

(𝑥𝑘 − 𝑥𝑖 )+

𝑥 ′
𝑘
min{𝑥𝑘 , 𝑥 ′𝑘 − 𝑥𝑘 }

𝐷 + 𝑥 ′
𝑘

+
∑︁
𝑖∈𝑁2

𝑥𝑖 min{𝑥𝑘 , 𝑥𝑖 − 𝑥𝑘 }
𝐷 + 𝑥 ′

𝑘

.

We have

𝑐𝑜𝑠𝑡 (𝑓 (x′), 𝑥𝑘 ) − 𝑐 (𝑓 (x), 𝑥𝑘 )

≥ 𝑥𝑘 (
𝐷0

𝐷 + 𝑥 ′
𝑘

− 𝐷0

𝐷 + 𝑥𝑘
+ 𝐷1

𝐷 + 𝑥 ′
𝑘

− 𝐷1

𝐷 + 𝑥𝑘
+ 𝐷2

𝐷 + 𝑥 ′
𝑘

− 𝐷2

𝐷 + 𝑥𝑘
)+

𝑥 ′
𝑘

𝐷 + 𝑥 ′
𝑘

min{𝑥𝑘 , 𝑥 ′𝑘 − 𝑥𝑘 }.

If 𝑥𝑘 ≤ 𝑥 ′
𝑘
− 𝑥𝑘 , then

𝑐𝑜𝑠𝑡 (𝑓 (x′), 𝑥𝑘 ) − 𝑐𝑜𝑠𝑡 (𝑓 (x), 𝑥𝑘 )

≥ 𝑥𝑘 (
𝐷

𝐷 + 𝑥 ′
𝑘

− 𝐷

𝐷 + 𝑥𝑘
+

𝑥 ′
𝑘

𝐷 + 𝑥 ′
𝑘

)

≥ 𝑥𝑘 (
𝐷

𝐷 + 𝑥 ′
𝑘

− 𝐷

𝐷 + 𝑥𝑘
+

𝑥 ′
𝑘

𝐷 + 𝑥 ′
𝑘

− 𝑥𝑘

𝐷 + 𝑥𝑘
)

= 0.
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If 𝑥𝑘 > 𝑥 ′
𝑘
− 𝑥𝑘 , then

𝑐𝑜𝑠𝑡 (𝑓 (x′), 𝑥𝑘 ) − 𝑐𝑜𝑠𝑡 (𝑓 (x), 𝑥𝑘 )

≥ 𝑥𝑘 (
𝐷

𝐷 + 𝑥 ′
𝑘

− 𝐷

𝐷 + 𝑥𝑘
) +

𝑥 ′
𝑘

𝐷 + 𝑥 ′
𝑘

(𝑥 ′
𝑘
− 𝑥𝑘 )

=
𝐷𝑥2

𝑘
− 𝐷𝑥𝑘𝑥

′
𝑘
+ (𝑥 ′2

𝑘
− 𝑥𝑘𝑥

′
𝑘
) (𝐷 + 𝑥𝑘 )

(𝐷 + 𝑥𝑘 ) (𝐷 + 𝑥 ′
𝑘
)

≥
𝐷 · (𝑥2

𝑘
+ 𝑥 ′2

𝑘
− 2𝑥𝑘𝑥

′
𝑘
)

(𝐷 + 𝑥𝑘 ) (𝐷 + 𝑥 ′
𝑘
)

≥ 0.

Case 3. 𝑥 ′
𝑘
< 0.When |𝑥 ′

𝑘
| ≤ 𝑥𝑘 , it is easy to see that the cost of

agent 𝑘 is at least that in Case 1. When |𝑥 ′
𝑘
| > 𝑥𝑘 , the cost of agent

𝑘 is at least that in Case 2. So agent 𝑘 has no incentive to lie.

Therefore, combining the above three cases, agent 𝑘 cannot

decrease the cost by misreporting, which establishes the proof. □

Next, we analyze the performance guarantee.

Theorem 4.4. Mechanism 3 is randomized, strategy-proof, and
6-approximation for the social cost objective.

Proof sketch. Recall from Proposition 2.2 that there must be an

optimal solution (0, 𝑦) for some 𝑦 ∈ R. Assume w.l.o.g. that 𝑦 > 0.

For any point 𝑣 ∈ R, let 𝐶 (𝑣) = 𝑠𝑐 ((0, 𝑣), x) be the social cost with
respect to location profile x and solution (0, 𝑣). Let 𝐷 =

∑
𝑘∈𝑁 |𝑥𝑘 |

be the total distance of all agents to facility. The approximation

ratio of Mechanism 3 is ∑︁
𝑘∈𝑁

|𝑥𝑘 |
𝐷

· 𝐶 (𝑥𝑘 )
𝐶 (𝑦) .

Define 𝑁1 = {𝑘 ∈ 𝑁 : 𝑥𝑘 ≤ 𝑦
2
}, 𝑁2 = {𝑘 ∈ 𝑁 : 𝑥𝑘 ∈ ( 𝑦

2
, 𝑦]},

𝑁3 = {𝑘 ∈ 𝑁 : 𝑥𝑘 ∈ (𝑦, 2𝑦]}, and 𝑁4 = {𝑘 ∈ 𝑁 : 𝑥𝑘 > 2𝑦}. Then
the approximation ratio can be written as

4∑︁
𝑖=1

∑︁
𝑘∈𝑁𝑖

|𝑥𝑘 |
𝐷

· 𝐶 (𝑥𝑘 )
𝐶 (𝑦) .

The proof consists of three steps. In step 1, we prove

∑
𝑘∈𝑁1∪𝑁4

|𝑥𝑘 |
𝐷

·
𝐶 (𝑥𝑘 )
𝐶 (𝑦) ≤ 2. In step 2, we prove

∑
𝑘∈𝑁2

|𝑥𝑘 |
𝐷

· 𝐶 (𝑥𝑘 )
𝐶 (𝑦) ≤ 2. In step 3, we

prove

∑
𝑘∈𝑁3

|𝑥𝑘 |
𝐷

· 𝐶 (𝑥𝑘 )
𝐶 (𝑦) ≤ 2. Combining these three steps gives

the proof. □
We end this section by providing a lower bound for randomized

strategy-proof mechanisms. We notice that the strategy-proofness

is equivalent to the partial group strategy-proofness for the facility
location problems in which agents report private locations [16] ,

which means that for any group of agents at the same location,

each individual cannot benefit if they misreport simultaneously.

Theorem 4.5. No randomized strategy-proof mechanism has ap-
proximation ratio less than 1.02 for social cost objective.

Proof. Consider the location profile x of 9 agents, where 5

agents are located at 0.8, and 4 agents are located at 2. The optimal

solution is (0, 2), and thus the optimal social cost is 𝑂𝑃𝑇 (x) =

5 ∗ 0.8 = 4. Suppose for contradiction that 𝑓 is a randomized

strategy-proof mechanism with an approximation ratio 𝑟 < 1.02.

Let 𝑓 (x) = (𝑎, 𝑏) be the random solution with 𝑎 ≤ 𝑏, and let 𝑝 be

the probability that 𝑏 ≥ 1.6. If 𝑝 < 0.9, then the social cost is at

least 𝑝 ·𝑂𝑃𝑇 (x) + (1 − 𝑝) · 4.8 = 4.8 − 0.8𝑝 ≥ 4𝑟 (where 4.8 is the

best possible social cost when 𝑏 < 1.6, attained by solution (0, 0.8)),
a contradiction to the approximation ratio. So it must be 𝑝 ≥ 0.9,

and thus the cost of the agents located at 0.8 is at least 𝑝 · 0.8 ≥ 0.72.

Nowwe consider a deviation of the agents located at 0.8 to 𝑥 ′ = 1,

and the location profile becomes x′, where 5 agents are located at 1,
and 4 agents are located at 2. Let 𝑓 (x′) = (𝑎′, 𝑏′) with 𝑎′ ≤ 𝑏′. The
optimal solution (0, 1) has a social cost of 4. By the approximation

ratio, the social cost of 𝑓 (x′) is at most 4𝑟 < 4.08. Let 𝑞 be the

probability that |𝑏 − 0.8| + |𝑎 | < 0.3. If 𝑞 < 0.2, then the social cost

is at least 𝑞 ·𝑂𝑃𝑇 (x′) + (1 − 𝑞) · 4.1 = 4.1 − 0.1𝑞 > 4.08 (where 4.1

is the best possible social cost when |𝑏 − 0.8| + |𝑎 | ≥ 0.3, attained

by solution (0, 1.1)), a contradiction to the approximation ratio. So

it must be 𝑞 ≥ 0.2, and thus the cost of the agents located at 0.8 is

at most 𝑞 · 0.3 + (1 − 𝑞) · 0.8 = 0.8 − 0.5𝑞 ≤ 0.7 < 0.72. Hence, the

agents located at 0.8 have incentive to misreport their locations as

𝑥 ′
2
= 1 simultaneously, which contradicts the partial group strategy-

proofness, and thus contradicts the strategy-proofness. □

We remark that the lower bound can be improved slightly if we

design the parameters of the instances constructed in the above

proof more carefully.

5 CONCLUSION
We have investigated the approximate mechanism design for fa-

cility location problems (FLPs) from the structural modification

perspective. We focus on a variant of FLPs where the facility is

fixed on a real line and the planner aims to add a single costless

short-cut edge to reduce the costs/distances of the agents to the

facility. There are many open problems and conjectures that are

related to our variant. A truly intriguing gap is the one between the

deterministic strategy-proof upper bound of 𝑛 and the lower bound

of 1.5 for the social cost. This problem seems quite elusive, and we

conjecture that it is possible to obtain a lower bound of Ω(𝑛). Even
though other bounds are constant, there are gaps between upper

and lower bounds. The most interesting open question is how the

analysis for our problem extends to a setting with multiple facil-

ities or multiple new edges to add. It is also interesting to design

strategy-proof edge-addition mechanisms for other spaces (e.g., R2)
or discrete networks (e.g., path and tree).
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