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ABSTRACT
Achieving and maintaining cooperation between agents to accom-
plish a common objective is one of the central goals of Multi-Agent
Reinforcement Learning (MARL). Nevertheless in many real-world
scenarios, separately trained and specialized agents are deployed
into a shared environment, or the environment requires multiple
objectives to be achieved by di�erent coexisting parties. These vari-
ations among specialties and objectives are likely to cause mixed
motives that eventually result in a social dilemma where all the
parties are at a loss. In order to resolve this issue, we propose the
Incentive Q-Flow (IQ-Flow) algorithm, which modi�es the system’s
reward setup with an incentive regulator agent such that the co-
operative policy also corresponds to the self-interested policy for
the agents. Unlike the existing methods that learn to incentivize
self-interested agents, IQ-Flow does not make any assumptions
about agents’ policies or learning algorithms, which enables the
generalization of the developed framework to a wider array of ap-
plications. IQ-Flow performs an o�ine evaluation of the optimality
of the learned policies using the data provided by other agents to de-
termine cooperative and self-interested policies. Next, IQ-Flow uses
meta-gradient learning to estimate how policy evaluation changes
according to given incentives and modi�es the incentive such that
the greedy policy for cooperative objective and self-interested ob-
jective yield the same actions. We present the operational char-
acteristics of IQ-Flow in Iterated Matrix Games. We demonstrate
that IQ-Flow outperforms the state-of-the-art incentive design al-
gorithm in Escape Room and 2-Player Cleanup environments. We
further demonstrate that the pretrained IQ-Flow mechanism signif-
icantly outperforms the performance of the shared reward setup in
the 2-Player Cleanup environment.
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1 INTRODUCTION
Social Dilemmas [16] emerge when self-interested parties have
con�icting objectives. Greed or fear of being exploited drives the
agents towards defecting, which results in worse outcomes for
the whole group in comparison to outcomes that would come out
of cooperation [11, 12]. This problem has many applications in
computer science, economics and social sciences; hence, it is well-
studied under Game Theory using Matrix Game Social Dilemmas
(MGSD) and their iterated extension Repeated Matrix Games [12].
Although MGSDs are useful for modelling social dilemmas in real
world scenarios, they omit signi�cant characteristics of real world
social dilemmas, which are addressed by Sequential Social Dilem-
mas (SSD) due to their temporally extended structure [12]. Since
cooperation and defection are de�ned for policies in SSD rather
than elementary actions [12], how to induce cooperative behavior
to agents in an SSD while the agents are concurrently learning is
an open research question.

Centralized training methods [5, 17, 18] are popular approaches
in Multi Agent Reinforcement Learning (MARL) when coopera-
tion is necessary. However, the centralized approaches involve a
shared objective to optimize agents’ policies and assume full con-
trol over agents’ internal parameters and learning. Nevertheless,
as the use of arti�cial intelligence becomes common and agents
that are separately trained for di�erent objectives are deployed in a
shared environment [22], it will not be realistic to either expect no
con�icting objectives or assume full control over agents’ internal
parameters and learning. Since it is not possible to guarantee the
type, tasks and number of the deployed agents in an unrestricted
environment, agents need to be able to continually learn and adapt
to the environment while cooperating with each other. Therefore,
in this work, we focus on independently learning self-interested
agents in an SSD where the agents receive adaptive incentives in
order to promote cooperation.

There are di�erent con�gurations for how agents can be in-
centivized during learning. Agents can give each other adaptive
incentives to shape each other’s behavior for their own bene�t
[4, 13], or there can be a central institution to provide the incen-
tives to shape the agents’ behavior for the welfare of the whole
community [1, 22]. In this work, we adopt the latter approach and
provide a mechanism that provides incentives to all of the agents
in the system in order to prevent any undesirable outcome, such
as tragedy of the commons due to defecting. While it might seem
like a trivial problem to learn incentives for the mechanism, since
providing the average reward to all agents would certainly remove
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the existing dilemma, it is shown to yield suboptimal results [15, 22].
Therefore, it is important to design a mechanism that promotes
cooperation without incurring performance losses. Furthermore,
promoting cooperation to arti�cial self-interested agents is not
the only direction for mechanism design research. Mechanism de-
sign can also be used to model human incentives and solve human
dilemmas such as determining tax rate for a higher social welfare
[22].

In this work, we propose Incentive Q-Flow (IQ-Flow) algorithm
to design incentive mechanisms for increasing social welfare and
promoting cooperation. IQ-Flow aims to make the cooperative
policy correspond to the self-interested policy of the agents by
changing system’s reward setup. IQ-Flow collects the experience
obtained from agents into a replay bu�er and trains critic networks
to learn state-action values (Q-Values) for agents’ self-interests and
the group’s collective interest. IQ-Flow parameterizes incentive
function using meta-parameters and performs meta-gradient learn-
ing as in [3, 20–22] to update the incentive network. In order to
learn incentive meta-parameters, IQ-Flow trains the critic using
O�ine Implicit Q-Learning [10] with the train set for multiple steps
and obtains updated parameters, performs policy evaluation with
the validation set, and updates the meta-parameters in the direction
that makes the actions of the collaborative policy the greedy choice
for self-interested agents’ Q-Values.

Our algorithm is distinguished from the existing incentive design
methods by grounding itself on reward system shaping rather than
opponent shaping. Using O�ine Reinforcement Learning (O�ine
RL) with Implicit Q-Learning makes it possible to get a proximate
estimate of Q-Values for as greedy as possible policies with self-
interested and collective interest objectives only using experience
collected by external agents. This approach enables IQ-Flow to mod-
ify the reward system with the incentive function by getting a close
enough estimate of how changing the incentive a�ects the expected
future return brought about by the reward system. Using an of-
�ine method such as Implicit Q-Learning instead of standard Deep
Q-Learning is justi�ed by the fact that incentivizer critic has an indi-
rect e�ect on recipient agents’ policies and can only a�ect collecting
experience indirectly. Furthermore, using Implicit Q-Learning also
makes extending IQ-Flow to fully o�ine training simpler for future
work. As opposed to opponent shaping based algorithms, IQ-Flow
does not possess or make assumptions on any of the agents’ in-
ternal parameters, learning algorithms, or hyperparameters which
makes it independent from the agents in the environment except
for the collected experience. Another key di�erence of IQ-Flow
from existing work is that it does not require cost regularization
to train an incentive mechanism in SSDs. Nevertheless, we�nd
that including cost regularization improves IQ-Flow’s performance
as well. Finally, it should be noted that IQ-Flow does not learn
a multi-agent policy or perform value factorization to determine
the actions of a cooperative policy. This is due to the fact that the
algorithm only needs to know the cooperative or sel�sh action of a
speci�c agent when the actions of other agents are provided. Our
contributions can be summarized as below:

• Proposing reward system shaping instead of opponent shap-
ing for incentive design; thus, instead of pushing agents to-
wards a Nash-Equilibrium with cooperative outcomes, mod-
ifying the reward system such that rational agents are stuck
in Nash-Equilibrium with cooperative outcomes

• Extending incentive design framework to learn mechanisms
o�-policy using o�ine RL and replay bu�er; thus, applying
o�ine RL and replay bu�er with meta-gradient learning for
MARL for the� rst time to the best of our knowledge

• Removing the requirement of accessing or making assump-
tions on agents’ internal learning state for incentive design

• Removing the requirement of cost regularization for incen-
tive design in SSDs

We illustrate how IQ-Flow operates for Iterated Matrix Games in It-
erated Prisoner’s Dilemma, Iterated ChickenGame and Iterated Stag
Hunt. We further evaluate the performance of our algorithm in the
common benchmarks Escape Room [21] and SSD-Cleanup [7, 8, 19]
with 2 Players. We demonstrate that it outperforms the state-of-the-
art incentive design algorithm ID and perform ablation studies for
IQ-Flow. We further demonstrate that the pretrained mechanism,
learned by IQ-Flow, leads to signi�cantly better learning perfor-
mance than using a shared reward setup. We provide the code for
our implementation and experiments at https://github.com/data-
and-decision-lab/IQ-Flow.git.

2 RELATEDWORK
Centralized training methods in MARL such as COMA [5], VDN
[18], and QMIX [17] are successful at optimizing all agents’ poli-
cies or factorize value functions to achieve a common objective.
However, SSD problems can not be approached as fully cooperative
problems due to the nature of the problem emerging from coex-
isting mixed motives and diverse objectives. Hence, decentralized
training methods have been developed along with opponent shap-
ing and incentivization practices [4, 8, 13, 21] in order to model and
resolve social dilemma problems.

Opponent shaping was proposed by [4] to provide independent
learners with the ability to shape each other’s behavior in the face of
a mixed motive. LOLA [4] agents can access the policy parameters
of their opponents and actively learn in the direction that improves
their own returns by considering how their opponent’s future policy
is expected to change. The disadvantage of the LOLA is that it can
adopt arrogant behavior, as claimed by [13] and� xed with a new
algorithm named SOS. SOS [13] algorithm is similar to LOLA in
adopting opponent shaping, but o�ers a more robust algorithm
by removing the arrogant behavior and inheriting the guarantees
of LookAhead [23] on avoiding strict saddles in all di�erentiable
games.

Incentivization practices can be exempli�ed by Social In�uence
[8], AMD [1], LIO [21] and ID [22]. Social In�uence [8] rewards
the agent action that has the most impact on others’ behavior as
an intrinsic reward. In LIO [21] an agent learns to use incentive
reward that a�ects the learning update of opponents’ policies and
changes the objectives of the recipient agents in the direction that
improves incentivizer agents’ objectives by using meta-gradient
learning. AMD [1] uses a central planner agent that learns how
to set an incentive reward according to agents expected policy
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update in the next step. [24] presents a two-dimensional grid world
dynamic economic environment Gather-Trade-Build game, where
agents collect resources, earn coins by building houses with these
materials, and trade resources; moreover, there is a central tax-
planner agent who learns to improve the trade-o� between income
equality and productivity by setting taxes that correspond to a
payo� from the agent’s income. [22] use same environment and
propose meta-gradient approach to train Incentive Designer (ID),
the central planning analogue of LIO, as an incentive mechanism.
Mechanism design can also be used to model human incentives and
solve human dilemmas such as determining tax rate for a higher
social welfare [22] using the simulation environment AI Economist,
proposed in [24]. This is a good illustration of how it can be used
as a recommendation system for solving social problems in the
future. Because we adopt the approach of directly incentivizing the
agents using an extra additive reward and the economic simulation
environment from Zheng et al. [24] requires an indirect approach
such as determining the tax policy, we do not address the taxation
problem in AI Economist in this work and leave it to future work.

Incentivization practices that usemeta-gradient learning to shape
opponent behavior, such as LIO and ID are the approaches closest
to our learning algorithm. However, while in LIO and ID, the meta-
gradient based incentive mechanism performs on-policy learning
[21, 22], IQ-Flow’s incentive mechanism learns in an o�-policy man-
ner with a replay bu�er. A prior work that uses o�-policy learning
with a replay bu�er for the� rst time in meta-gradient learning is
MetaL [3]. Unlike the opponent shaping based methods, IQ-Flow
does not need access or modelling of other agents’ parameters. In-
stead of focusing on how the behavior of agents change, IQ-Flow
focuses on rendering cooperative actions in the Nash-Equilibrium
for the possible states. Since non-cooperation would incur a loss for
all agents, IQ-Flow tasks the agents’ to optimize their returns and
choose cooperation; IQ-Flow does not keep track of how agents’
behavior policies change. This is due to training the incentivizer
critic by o�ine Implicit Q-Learning, which is the key di�erence
from LIO and ID that use online incentivizer training.

3 BACKGROUND
In this work, we assume a Partially Observable MDP (POMDP)
where # agents learn independently. S denotes the global state
of the environment, 08 2 0 denote action of i’th agent in joint
action 0, and 8� denotes all agent indices except 8 with index set
denoted as I = {0, 1, ...,# � 1} . Observation space of agent 8
is O8 = {>8 |B 2 S,>8 = $ (B,8 )} with the observation function $ :
S⇥I! R3 that maps the observations to the d-dimensional space.
State, observation, action and reward at time step : are denoted as
B: , >: , 0: , A: respectively along with time horizon ) and discount
factor W . We have the transition function of the environment T :
S⇥A

#
! P(() with P denoting the probability distribution over

S and batch length ;⌫ . Joint reward provided by the environment is
'4=E : S ⇥A#

! R# where each agent receives a speci�c reward
'84=E : S ⇥ A

#
! R. The incentive reward that can be given to an

agent is constrained according to the environment asU ⇢ R. Thus,
the joint incentives provided by the mechanism and parametrized
by [ is '8=2,[ : S ⇥A#

! U
#
⇢ R# where each agent receives a

speci�c incentive '88=2,[ : S ⇥ A
#
! U ⇢ R. We de�ne the total

reward an agent receives which directs that agent’s behavior policy
as '88=3 = '84=E + '

8
8=2,[. We further de�ne the sum of the rewards

that environment provides to all agents as '82>>? =
Õ#�1
83=0 '

83
4=E . It

should be noted that '82>>? is de�ned for all agents with the same
value.

We de�ne three di�erent policies that are necessary for our
problem case and solution method.

• 08
1 2 01 : i’th agent’s behavior policy which is optimized to

maximise
+ 8
01 ,8=3

(B) := E01

hÕ)�1
C=: W

C�:'88=3,C |B: = B
i

• 08
2>>? 2 02>>? : i’th agent’s cooperative policy which is

optimized to maximise
+ 8
02>>?

(B) := E02>>?

hÕ)�1
C=: W

C�:'82>>?,C |B: = B
i

• 08
4=E 2 04=E : i’th agent’s environment policy which is opti-

mized to maximise
+ 8
04=E ,4=E (B) := E04=E

hÕ)�1
C=: W

C�:'84=E,C |B: = B
i

We further denote the di�erent objectives that are necessary for
our problem case and solution method as follows:

• Action-values of 8’th agent under 01 accounting for the
individual total reward '88=3
&8
01 ,8=3

(B,0 ) = E01

hÕ)�1
C=: W

C�:'88=3,C |B: = B,0: = 0
i

• Action-values of 8’th agent under 02>>? accounting for the
cooperative reward '82>>?
&8
02>>?

(B,0 ) = E02>>?

hÕ)�1
C=: W

C�:'82>>?,C |B: = B,0: = 0
i

• Action-values of 8’th agent under 04=E accounting for the
individual environment reward '84=E
&8
04=E ,4=E (B,0 ) = E04=E

hÕ)�1
C=: W

C�:'84=E,C |B: = B,0: = 0
i

• Values of 8’th agent under 01 accounting for the individual
environment reward '84=E
+ 8
01 ,4=E (B) = E01

hÕ)�1
C=: W

C�:'84=E,C |B: = B
i

• Action-values of 8’th agent under 01 accounting for the
individual environment reward '84=E
&8
01 ,4=E (B,0 ) = E01

hÕ)�1
C=: W

C�:'84=E,C |B: = B,0: = 0
i

• Values of 8’th agent under 01 accounting for the individual
incentive reward '88=2
+ 8
01 ,8=2

(B) = E01

hÕ)�1
C=: W

C�:'88=2,C |B: = B
i

• Action-values of 8’th agent under 01 accounting for the
individual incentive reward '88=2
&8
01 ,8=2

(B,0 ) = E01

hÕ)�1
C=: W

C�:'88=2,C |B: = B,0: = 0
i

Table 1: Matrix Game payo�table

C D
C R, R S, T
D T, S P, P

Social Dilemma conditions. According to preliminary work in
social dilemmas [12, 14], a Matrix Game such as Table 1 is a Social
Dilemma if it satis�es the following conditions:

(1) ' > %
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(2) ' > (
(3) 2' > ) + (
(4) ) > ' or % > (

In this canonical Matrix Game in Table 1 actions C and D repre-
sent cooperate and defect actions as convention dictates [14]. We
adopt the de�nitions proposed by [14] and we denote R, P, T and S
respectively as reward from mutual cooperation, punishment from
mutual defection, temptation reward from defecting while the other
player cooperates and sucker reward from cooperating while the
other player defects.

O�ine Implicit Q-Learning. O�ine Implicit Q-Learning is per-
formed to learn critics as proposed by [10] for dataset D, value
parametersk , critic parameters \ , target critic parameters \̄ , state
B , action 0, next state B

0

, discount W , expectile g4G? 2 (0, 1) with the
following loss equations:

!
g4G?
2 (D) =

��g4G? � 1(D < 0)
��D2

!+ (k ) = E(B,0)⇠D
h
!
g4G?
2 (&\̄ (B,0 ) �+k (B))

i

!& (\ ) = E
(B,0,B0 )⇠D

h
(A (B,0 ) + W+k (B

0

) �&\ (B,0 ))
2
i
[10]

(1)

We extend o�ine Implicit Q-Learning to our multi-agent case
in order to approximate &8

01 ,8=3
, &8

02>>?
, and &8

04=E ,4=E . We give
the corresponding losses in Appendix A.1. We denote the training
batch with B) and validation batch B+ .

4 INCENTIVE Q-FLOW
IQ-Flow bases itself on reversing the fourth social dilemma con-
dition and make ) < ' and % < ( in Table 1. When ' > ) and
( > % , choosing⇠ over ⇡ becomes the greedy policy automatically
without regard to the opponents’ policy. Thus, IQ-Flow aims to
make the action of the cooperative policy the greedy choice for the
incentivized behavior policy using meta-gradients as we de�ned in
background in section 3.

The necessity of using meta-gradients for estimating how Q-
Values change according to [ comes from the fact that it is not
possible to directly estimate the long term value change as a result
of a change of incentives. Let the optimal actions of the cooperative
policy and incentivized behavior policy be de�ned respectively as:

082>>? = argmax
08

&8
02>>?

(B,0 8
�

, .)

081 = argmax
08

&8
01 ,8=3

(B,0 8
�

, .)
(2)

Let the optimal actions for the self-interested policy of agents
under standard environment conditions with no extra incentives
be de�ned as:

084=E = argmax
08

&8
04=E ,4=E (B,0

8� , .) (3)

In order to determine 082>>? , 081 , and 0
8
4=E , IQ-Flow needs to

estimate &8
02>>?

, &8
01 ,8=3

, and &8
04=E ,4=E . IQ-Flow approximates

&8
02>>?

, &8
01 ,8=3

, and &8
04=E ,4=E respectively by &8

02>>?

�
\2>>?

�
,

&8
01 ,8=3

(\8=3 ), and &8
04=E ,4=E (\4=E). An important point is that

since incentive function is dynamic, &8
01 ,8=3

(\8=3 ) and
+ 8
01 ,8=3

(k8=3 ) need to be updated with the A 88=2 inferred from the
last [. IQ-Flow updates the critic parameters k8=3 and \8=3 , re-
spectively for+ 8

01 ,8=3
(B,k8=3 ) and&8

01 ,8=3
(B,0,\ 8=3 ), with Implicit

Q-Learning extended to MARL with the equations in Appendix A.1.
In order to update [, we� rst update our prede�ned critics with

learning rate V8=3 for steps. This update can be given as following
for the Stochastic Gradient Descent (SGD) optimizer:

\̂8=3  \8=3 + V8=3r\8=3
1
;⌫#

;⌫�1’
:=0

#�1’
8=0⇣

A 84=E (B: ,0: ) + A
8
8=2 (B: ,0: ,[) + W+

8
k8=3

(B
0

: ) �&
8
\8=3

(B: ,0: )
⌘2

(4)

Since we want to update [ in the direction that� ows Q-Values
from actions of defective policies to actions of cooperative policies,
we regard the 02>>? as target labels in a classi�cation problem and
use a modi�ed version of cross-entropy loss. The necessity of the
modi�cation in the cross-entropy loss is because we only want the
gradient� ow as long as there is a dilemma in the system so that
there is no unnecessary and excessive incentivization. We identify
an action that causes a dilemma as 081 < 082>>? . Therefore we further
mask our meta-loss for the case when there is no estimated dilemma.
In order to get a probabilistic view of Q-Values and use them in the
cross-entropy loss, we pass them through a softmax layer.

Finally our meta-loss can be de�ned as follows:

!<[ (\̂8=3 ) := �
1
;⌫#

;⌫�1’
:=0

#�1’
8=0

|� |�1’
0̃=0

1
⇣
0̃ = 082>>?,:

⌘

⇥

⇣
1 � 1(081,: = 082>>?,:)

⌘
log

⇣
f
⇣
&8
01 ,8=3

⇣
B: ,0

8 ,08
�

: , \̂8=3
⌘⌘⌘ ���

08=0̃

f (I8 ) =
4I8Õ
9 4

I 9

(5)

Since we do not want to give an unnecessary incentive if there
is no dilemma in the original case without extra incentives, we use
another mask which determines if 084=E = 082>>? . Therefore we add
a cost regularization term to the meta loss with cost coe�cient 21.

!2>BC1[ (\̂8=3 ) :=
1
;⌫#

;⌫�1’
:=0

#�1’
8=0

|� |�1’
02C=0

1(082>>?,: = 084=E,:)

⇥

���&8
01 ,8=3

(B: ,0
8 ,08

�

: \̂8=3 )))
��� ���
08=02C

(6)

If the incentives become too high prematurely, they can have
a destructive e�ect, especially if they are the wrong incentives.
Therefore we add another cost regularization term to the meta
loss with cost coe�cient 22. Although our experiments show that
these cost regularization terms are not required to get a successful
performance, especially in simple problems, we� nd that including
them leads to higher performance.
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!2>BC2[ (\̂8=3 ) :=
1
;⌫#

;⌫�1’
:=0

#�1’
8=0

|� |�1’
02C=0

⇣
1 � 1(082>>?,: = 084=E,:)

⌘

⇥

���&8
01 ,8=3

(B: ,0
8 ,08

�

: \̂8=3 )))
��� ���
08=02C

(7)

Our� nal incentive loss for [ is given below as !'8=2[ (\̂8=3 ):

!'8=2[ (\̂8=3 ) = !
<
[ (\̂8=3 ) + 21!

2>BC1
[ (\̂8=3 ) + 22!

2>BC2
[ (\̂8=3 ) (8)

If we use U as learning rate for [, set number of critic update
steps  as 1, and assume SGD for optimizer, the update becomes:

[̂  [ + Ur[!
'8=2
[ (\̂8=3 )

r[!
'8=2
[ (\̂8=3 ) =

m!<[ (\̂8=3 ) + 21!
2>BC1
[ (\̂8=3 ) + 22!

2>BC2
[ (\̂8=3 )

m\̂8=3

m\̂8=3
m[
(9)

The diagram for how [ meta-parameter is updated is given below
in Figure 1:

Figure 1: Meta-update diagram for incentive parameter [

The pseudocode of the algorithm is given below in Algorithm 1.

Algorithm 1 Incentive Q-Flow

procedure T����IQ�F ���M�������� (q0, q1,...,q#�1, args) ù
Input: policy of all agents, hyperparameters

Initialize [, \2>>? , \4=E , \8=3 ,k2>>? ,k4=E ,k8=3
=D<_4?8B>34  0
for number of episodes to train do

Run agents with policies q0, q1,...,q#�1 for an episode
with incentives given by [

=D<_4?8B>34  =D<_4?8B>34 + 1
Add the transitions from episode to replay bu�er of IQ-

Flow
Update agent policies q0, q1,...,q#�1 according to their

private learning rules
Update \2>>? , \4=E , \8=3 , k2>>? , k4=E , k8=2 using equa-

tions in 10
sample B) and B+ for meta-update
simulate mechanism critic update for  times using B) ,

\8=3
Update [ using B+ (with equations 5 or 9)

end for
end procedure

5 EXPERIMENTS
5.1 Iterated Matrix Games
We demonstrate how IQ-Flow operates on the iterated extension of
the three canonical Matrix Games, which are Prisoner’s Dilemma,
Chicken Game, and Stag Hunt. The payo�matrices for these games
are given in Table 2, Table 3, and Table 4. We extend the imple-
mentation used by LOLA [4] and use the policy gradient agents
for the independent learners as used by LIO [21] and ID [22]. The
incentive reward is set as '88=2 2 (0, 2) to provide only su�cient
incentivization and number of iterations is set as 20 for all experi-
ments. Since the experimentation purpose here is for illustration
rather than comparison, hyperparameter tuning was not performed
to optimize learning performance and cost regularization was not
added to the meta-objective. We demonstrate how IQ-Flow changes
the payo�matrix of the games in Figure 2 and Appendix C. The�rst
column in Figure 2 represents the original payo�s. The other col-
umn represents the modi�ed total payo�s by IQ-Flow where each
row represents the mechanism state trained for 30, 210, 390, 570,
750 episodes respectively. The� rst rows in the� gures in Appendix
C represent the original payo�s, while the other rows represent the
state (initial state, previous action taken CC, previous action taken
CD, previous action taken DC, and previous action taken DD). The
columns represent the total payo� output of the mechanism state
trained for 30, 210, 390, 570, 750 episodes respectively.

We depict how IQ-Flow changes the estimated Q-Values of the
games in Figure 3 and Appendix D. The� rst columns in Figure 3 and
�gures in Appendix D represent the Q-Values without the mecha-
nism incentives. The other columns represent the Q-Values with the
mechanism incentives where each row represents the mechanism
state trained for 30, 210, 390, 570, 750 episodes respectively. These
outputs are given for the initial state.
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Table 2: Prisoner’s Dilemma

PD ⇠2 ⇡2
⇠1 (3, 3) (0, 4)
⇡1 (4, 0) (1, 1)

Table 3: Chicken Game

Chicken ⇠2 ⇡2
⇠1 (3, 3) (1, 4)
⇡1 (4, 1) (0, 0)
Table 4: Stag Hunt

Stag Hunt ⇠2 ⇡2
⇠1 (4, 4) (0, 3)
⇡1 (3, 0) (1, 1)

Figure 2: IPD player 1 payo�matrices

In addition to the detailed payo� and Q-Value charts, we provide
a plot for Iterated Matrix Games to show how the inequalities turn
from ) > ' and/or % > ( to ) < ' and % < ( in Figure 4 and
Appendix E as training progresses. We highlight that the ', ) , % ,
and ( denotes the corresponding estimated Q-Values for all states
and not the single step payo�s.

Figure 3: IPD player 1 estimated Q-Value matrices (left: with-
out incentives, right: with incentives)

Figure 4: IPD ' �) and ( � % plot for Q-Values
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Consequently, our results demonstrate clearly that IQ-Flow is
capable of removing the social dilemma for Iterated Prisoner’s
Dilemma, Chicken Game and Stag Hunt; since we obtain ) < '
and % < ( in the end for all of the cases in both single step payo�s
and estimated future returns.

5.2 Escape Room
Escape room is a small, N-player Markov game proposed by [21].
The game contains 3 di�erent state: initial, lever and door state
where agents spawn in the initial state and aim to reach the door
which is the terminal state [21]. But M number of agents must
cooperate by pulling the lever at the same time to get others out
of the door so that the agent who goes out of the door gets +10
reward individually while the cost of the pulling lever is -1 [21].
Therefore, in order to increase total return, some of the agents
should give up their own interest and act cooperatively. We extend
the implementation used by LIO [21], bene�t from [9], and use the
policy gradient agents for the independent learners as used by LIO
[21] and ID [22]. We use the same experiment setup used by ID
[22] and evaluate IQ-Flow’s performance along with an ablation
study given in Appendix B.

Figure 5: ER(5,2)

Figure 6: ER(10,5)

We give the results of Escape Room (5, 2) experiment, as in [22],
in Figure 5. The basic case of no incentivization, denoted as PG,

performs poorly as expected. ID reaches the optimal total return
of the environment, which is 28. IQ-Flow performs the best by
reaching 28 faster and with better initial training performance. The
results of the experiment Escape Room (10, 5) is given in Figure 6.
The basic case of no incentivization, denoted as PG, performs poorly
again as expected. Although Yang et al. show [22] that ID reaches
the optimal return of 45, we could not replicate those results with
our implementation and obtained the performance of ID similar to
PG. IQ-Flow reaches the optimal return of 45 faster than ID in both
our implementation and the resuls given in [22]. Since the results
of ablation study, given in Appendix B, does not provide distinctive
results, we focus on the ablation of experiments in the 2-Player
Cleanup environment.

5.3 SSD Environment - 2-Player Cleanup
Cleanup [7] is a grid-world social dilemma environment where the
objective is to collect apples from� eld that give +1 reward. Since the
respawn time of the apples depends on the amount of waste, which
increases over time, if the amount of waste exceeds a threshold no
apples can spawn [7]; therefore, agents need to clean the waste
by using clean beam skills for apples to continue to spawn even
though staying in the apple� eld returns more individual rewards.
We use decentralized independent actor critic learners and the
same environment setup with 2 agents, which we call the 2-Player
Cleanup environment, as used by LIO [21] and ID [22] for the 7 ⇥ 7
map.

Figure 7: 7 ⇥ 7 experiment result

It can be seen from Figure 7 that IQ-Flow performs the best
while reaching the return upper bound, identi�ed by shared reward
agent’s performance as in LIO [21]. Decentralized actor critic agents
perform poor as expected while the decentralized actor critic agents
with the shared centralized reward set the return upper bound. Al-
though ID performs close to the return upper bound in both our
implementation and the results provided by Yang et al. in [22], it
fails to reach it. It should also be noted that while IQ-Flow performs
best and reaches the upper bound for good runs, it has high variance
close to the end of training for naive training. This variance occurs
due to some loss in performance when the actor critic agents’ poli-
cies get too disconnected from the mechanism. Therefore, in order
to obtain a stable training, we reset the actor-critic agents in the
environment each 1000 episodes. Since after each reset operation
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the actor-critic agents start learning from scratch, we sample eval-
uation results each 500 episodes in order to� lter the pseudo-loss
in performance caused by learning from scratch and have a fair
comparison with other algorithms.

Figure 8: Ablation results

The ablation results for 2-Player Cleanup is given in Figure 8.
IQ-Flow denotes the standard algorithm with cost regularization
cost 1 and cost 2. IQ-Flow C denotes the case when cost coe�cient
1 is 0 and IQ-Flow C2 denotes the case where there is no cost
regularization. It is demonstrated that having cost regularization
with both coe�cients greater than 0 indeed increases learning
performance.

The incentive rewards provided by ID and IQ-Flow in 2-Player
Cleanup Environment is given in Figure 9.

Figure 9: Incentive Rewards given by IQ-Flow and ID

The incentive rewards given by IQ-Flow and ID to agent 1 and
agent 2 are presented in Figure 9. Incentive rewards given to agent 1
(A1, cleaner) are in close range with each other for IQ-Flow and ID,
but incentive rewards given to agent 2 (A2, harvester) are dissimilar.
While ID learns to give an unnecessary incentive to the harvester
agent, IQ-Flow learns not to give any unnecessary incentive to this
harvester agent. This is attributed to IQ-Flow’s capacity to infer
when there is a dilemma and when there is no dilemma.

Figure 10: Comparison between pretrained IQ-Flow mecha-
nism and shared reward setup

Finally, we demonstrate in Figure 10 how a reward system sup-
ported by a pretrained incentive mechanism by IQ-Flow performs
in comparison to a shared reward system. Although the shared re-
ward case with actor-critic agents gives the return upper-bound for
2-Player Cleanup environment, incentivized case with pretrained
and frozen IQ-Flow mechanism and actor-critic agents yields much
faster learning with higher performance.

6 CONCLUSION
In conclusion, we presented a new algorithm named IQ-Flow to de-
sign incentivizers to remove a social dilemma from an environment
without any need to perform opponent modelling or access to in-
ternal agent parameters. IQ-Flow is fully decentralized and uses the
o�ine RL method Implicit Q-Learning to evaluate policies which
are not available in the experienced data. We demonstrated how IQ-
Flow modi�es the payo� matrix and estimated Q-Values of Iterated
Matrix Games for both players, and that it outperforms ID in the
existing sequential social dilemma benchmarks. We also demon-
strated how much more e�cient the reward setup that IQ-Flow
produces is than the shared reward case. We consider a promising
direction for future work in this area to learn incentive designers
with IQ-Flow from o�ine data with fully o�ine training so that
we can have a method to remove dilemmas from real world that
we can not simulate.
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