
Equilibria and Convergence in Fire Sale Games
Nils Bertschinger

Frankfurt Inst. for Advanced Studies

Frankfurt, Germany

bertschinger@fias.uni-frankfurt.de

Martin Hoefer

Goethe University

Frankfurt, Germany

mhoefer@em.uni-frankfurt.de

Simon Krogmann

Hasso Plattner Institute

Potsdam, Germany

simon.krogmann@hpi.de

Pascal Lenzner

Hasso Plattner Institute

Potsdam, Germany

pascal.lenzner@hpi.de

Steffen Schuldenzucker

Goethe University

Frankfurt, Germany

schuldenzucker@em.uni-

frankfurt.de

Lisa Wilhelmi

Goethe University

Frankfurt, Germany

wilhelmi@em.uni-frankfurt.de

ABSTRACT
The complex interactions between algorithmic trading agents can

have a severe influence on the functioning of our economy, as

witnessed by recent banking crises and trading anomalies. A com-

mon phenomenon in these situations are fire sales, a contagious
process of asset sales that trigger further sales. We study the ex-

istence and structure of equilibria in a game-theoretic model of

fire sales. We prove that for a wide parameter range (e.g., convex

price impact functions), equilibria exist and form a complete lat-

tice. This is contrasted with a non-existence result for concave

price impact functions. Moreover, we study the convergence of

best-response dynamics towards equilibria when they exist. In gen-

eral, best-response dynamics may cycle. However, in many settings

they are guaranteed to converge to the socially optimal equilibrium

when starting from a natural initial state. Moreover, we discuss

a simplified variant of the dynamics that is less informationally

demanding and converges to the same equilibria. We compare the

dynamics in terms of convergence speed.
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1 INTRODUCTION
On May 6, 2010, 2:45pm, one trillion dollars in stock market valua-

tion disappeared. In an event known as a flash crash, the Dow Jones

and many other stock indices collapsed by as much as 9%. The flash

crash is generally seen as the product of a system of interacting

agents, many of them computerized, that jointly exacerbated an ini-

tial shock.
1
While prices recovered after approximately 30 minutes

1
The Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues [24] stated

that the flash crashwas triggered by a single market participant employing an (arguably

simplistic) trading algorithm. Other trading agents at first absorbed the resulting price
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(after trading was briefly halted), it is by no means guaranteed that

this will always be the case in a flash crash. Recent price crashes in

cryptocurrency markets, such as the Bitcoin crash on April 17, 2021

[33], may have resulted in permanently altered market conditions.

As prices deteriorate very quickly, it is important to understand

the amplification of stock price declines through the interaction

between different (electronic or human) trading agents. We study

this aspect through the lens of algorithmic game theory.

Agents may amplify price decreases through many different

processes. In this work, we focus on price-mediated contagion due to
leverage caps. We study a collection of rational agents that interact

with each other through overlapping portfolios. Each agent holds

a share of the supply of one of several assets, where usually two

or more agents hold a share in the same asset. Sales in any given

asset depress its price, i.e., sales have price impact, which in turn

may reduce the value of the asset holdings of another agent. We

assume that agents are constrained by an upper bound on their

leverage, i.e., the ratio between their (risky) asset holdings and their

equity. The equity of an agent is the difference between the total

value of her assets and her liabilities, and it includes cash proceeds

from the liquidation of risky assets. Leverage caps can represent the

agents’ own desire to limit their risk, or they might be regulatory

constraints.
2
Because of leverage caps, a price depression in some

of the assets may cause agents to perform further sales to satisfy

their leverage constraints. This can give rise to a contagious fire
sale process, where a small initial price drop quickly leads to a large

number of asset sales and corresponding price drop.

1.1 Related Work
Fire sales are a well-known phenomenon and have been studied

both academically and by regulators (e.g., central banks). A leverage
cycle, in which banks’ reduction of leverage leads to price decline

and further reduction of leverage, was first studied by Geanakop-

los [19]. Aymanns and Farmer [2] and Aymanns et al. [1] studied

a dynamic model of leveraged and unleveraged investors. Cont

and Schaanning [11] studied a model of overlapping portfolios and

leverage constraints. Agents react to an initial shock following a

specific iterative liquidation process, where they proportionally sell

pressure, but then amplified and spread it. Other examples for flash crashes are extreme

movements in currency markets in recent years [5, 10]. Anecdotal evidence suggests

that smaller-scale flash crashes happen very frequently [10, 18].

2
The Basel III regulatory framework stipulates leverage caps for banks [6].
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off a fraction of their portfolio. Our paper re-interprets a generaliza-

tion of their model in a game-theoretic setting. Importantly, Cont

and Schaanning [11] did not study game-theoretic equilibria. In a

later work [12], the same authors discuss risk indicators that help

quantify the exposure of a given institution to price-mediated con-

tagion. Baes and Schaanning [3] studied worst-case scenarios when

agents respond to price depreciations in an individually optimal

way. Banerjee and Feinstein [4] studied a fire sale process where liq-

uidations occur at volume-weighted average prices. Price-mediated

contagion has also received interest from regulators, e.g., in the

European Central Bank’s STAMPe macro stress testing framework

[13, Section 12.2.1].

Another related model for studying contagion effects in financial

networks was introduced by Elliott et al. [16]. This model considers

banks and assets and allows for banks owning shares of other banks.

Banks in the network are connected by linear dependencies, i.e.,

cross-holdings. If any banks’s value drops below a critical threshold,

its value suffers an additional failure cost, potentially impacting

the value of other banks. Hemenway and Khanna [21] study the

sensitivity and computational complexity of this model.

Recently, there has been considerable interest in analyzing fi-

nancial networks from an algorithmic and game-theoretic point of

view. A number of works are based on a classical model for sys-

temic risk in financial networks by Eisenberg and Noe [15] which

studies the clearing problem, i.e., to determine which banks are

in default and their exposure to systemic risk. A recent work by

Bertschinger et al. [9] proposes a strategic version, in which firms

are rational agents in a given directed graph of debt contracts. To

clear its debt, every agent strategically decides on a ranking-based

payment strategy. The authors study the existence and computa-

tional complexity of pure Nash and strong equilibria, and provide

bounds on the (strong) prices of anarchy and stability. Kanellopou-

los et al. [25] consider the same model but they focus on more

general priority-proportional payments. Recently, Hoefer and Wil-

helmi [22] analyzed minimal clearing and the impact of seniorities

(i.e., priorities over debt contracts) on the existence of equilibria.

Moreover, [26] study complexity questions regarding centralized

bailouts and the forgiving of debts for banks in default, along with

game-theoretic incentives that emerge in such scenarios.

The network model by Eisenberg and Noe [15] has also been aug-

mented by considering credit-default swaps (CDS) [34]. The hard-

ness of finding clearing paymentswith CDS is analyzed by Schulden-

zucker et al. [35] and the approximation perspective was considered

recently by Ioannidis et al. [23]. The impact of banks deleting or

adding liabilities, donating to other banks, or changing external

assets has been studied by [29]. These operations can be benefi-

cial for the individual banks since the changes may enforce more

favorable solutions. Still, after clearing some banks may end up

in default. Papp and Wattenhofer [32] study the influence of the

sequence of banks’ defaults. In [31] several possible strategies for

resolving default ambiguity, i.e., which banks end up in default and

how much of their liabilities can these defaulting banks pay, are

studied. In a different direction, in [30] risk mitigation via local

network changes (“debt swapping”) is investigated.

Frequent call markets represent another financial game which

has sparked research recently [27, 28]. Here, the focus lies on pre-

venting fraud while maintaining efficiency.

1.2 Our Contribution
In this paper, we innovate upon prior work by studying fire sales

as a static fire sale game played by fully rational agents. Each agent

decides on the fraction of her portfolio she sells and keeps, re-

spectively.
3
The agent derives a utility equal to her equity, i.e., the

shareholder value of her firm, as long as she satisfies the leverage

constraint.
4
The equity depends on her own action (through sales

choices and price impact) and the actions of others (through price

impact). We study the Nash equilibria of this game under different

restrictions on the strategy space, assumptions on the price im-

pact function, and assumptions on how the price impact manifests

while selling any given asset. We capture this latter dimension in a

parameter 𝛼 ∈ [0, 1].
In this paper, we discuss the case 𝛼 = 1, where price impact

affects prices of assets sold as much as those of assets kept (i.e.,

post-sale prices). This yields the strongest price impact on the utility

of the agents, so the scenario captures best the effects we intend to

study. Conveniently, 𝛼 = 1 also simplifies some of our calculations.

We study the existence and the structure of equilibria. When

𝛼 = 1, we show that an equilibrium always exists and the set of

equilibria further has a desirable lattice structure. In this case, a

process of iterative best responses converges from above to the

point-wise maximal equilibrium, which sets each agent up to be

best off among all equilibria (Section 3).

Also, we study processes by which agents may actually converge

to an equilibrium, where we focus on the case of 𝛼 = 1 and linear

price impact. We consider two kinds of best-response dynamics:

the regular best-response dynamics and a simplified best-response

dynamics, where agents do not take the fact into account that their

own response to changing market prices in turn generates price

impact. One may argue that the simplified dynamics serves as a

more realistic model of agent behavior since it is less complex to

execute and requires less information about the precise shape of

the price impact function. We show that, under the assumptions

of our lattice structure result, both of these dynamics converge to

the maximal equilibrium. However, we show via computational

experiments that they can do so at vastly different speeds. Our

experiments further suggest that the convergence speed depends

on the overall diversification of agents across assets, with the worst

case depending on the specific parameters (Section 4).

We provide further results in the full version [7]. For intermediate

prices 𝛼 ∈ (0, 1) equilibrium existence can be guaranteed only if the

price impact function is convex. Then the equilibria have a lattice

structure and best-response dynamics converges from above to the

point-wise maximal equilibrium. In contrast, if 𝛼 < 1 and price

impact is concave, an equilibrium need not even exist. Furthermore,

we show that for 𝛼 = 1, the Pareto optima of the game form strong

equilibria. This is not true for 𝛼 < 1 and convex price impact. In

the latter case “bank-run” effects can manifest, where an agent

is incentivized to sell more than strictly necessary to satisfy her

3
The relative composition of each agent’s portfolio is kept constant in all of this paper

(we study a generalization in [7]). This is a standard assumption in the literature on

price-mediated contagion [see, e.g., 11, 14] and supported by empirical evidence [e.g.,

20]. Our main reason to discuss this case is that it helps to simplify the presentation.

Most of the results in this paper can be extended in a straightforward way to general

monotone sales, see our discussion in Section 5.

4
We assume that agents that cannot satisfy the leverage constraint need to fully

liquidate their position.



leverage constraint. Moreover, even under severe restrictions, there

are games where a Nash equilibrium yields devastating utility for

every agent in comparison to the social optimum.

2 PRELIMINARIES
2.1 The Model
Our market model is based on Cont and Schaanning [11]. We have

sets of agents 𝑁 = {1, . . . , 𝑛} and assets𝑀 = {1, . . . ,𝑚}. Each agent
𝑖 holds an amount 𝑎𝐼

𝑖
> 0 of illiquid assets, which cannot be sold

and are not subject to price impact. Agent 𝑖 holds an amount of

𝑥𝑖 𝑗 in the (liquid) asset 𝑗 . We assume w.l.o.g. the amounts to be

normalized, so that 𝑥𝑖 𝑗 ∈ [0, 1] for all 𝑖, 𝑗 , if no agent sells any

holdings in 𝑗 .

Each agent 𝑖’s strategic action consists of a number 𝑦𝑖 ∈ [0, 1],
which is the share of agent 𝑖’s holdings in each asset 𝑗 that agent 𝑖

keeps. Agent 𝑖 thus sells an amount of 1 − 𝑦𝑖 of her total portfolio

holdings on the market. The amount of asset 𝑗 held by agent 𝑖 after

selling is 𝑦𝑖𝑥𝑖 𝑗 . Let 𝑥 𝑗 (𝑦) :=
∑
𝑖∈𝑁 𝑦𝑖𝑥𝑖 𝑗 be the amount of asset 𝑗

that has not been sold if agents act according to 𝑦. We assume that

the price of each asset 𝑗 decays when assets are sold according

to a function 𝑝 𝑗 (𝑦) = 𝑝 𝑗 (𝑥 𝑗 (𝑦)) such that 𝑝 𝑗 (0) = 0, 𝑝 𝑗 (1) = 𝑝0
𝑗
,

and 𝑝 𝑗 (𝑥 𝑗 ) is continuous and increasing in 𝑥 𝑗 . We say that price

impact is linear if for each 𝑗 ∈ 𝑀 , the function 𝑝 𝑗 simply linearly

interpolates between the two given points, i.e., 𝑝 𝑗 (𝑥 𝑗 ) = 𝑥 𝑗𝑝
0

𝑗
. We

say that price impact is convex if 𝑝 𝑗 is convex for each 𝑗 and concave
if 𝑝 𝑗 is concave for each 𝑗 . If all agents sell according to 𝑦, the value

of agent 𝑖’s remaining asset holdings is therefore

𝑎𝑖 (𝑦) = 𝑎𝐼𝑖 + 𝑦𝑖
∑︁
𝑗∈𝑀

𝑥𝑖 𝑗𝑝 𝑗 (𝑦) .

Selling assets redeems a certain amount ofmoney for each agent 𝑖 .

As the agents sell their assets, the corresponding price impact would

usually manifest over time: amounts of assets that are sold at the

very beginning would typically not be subject to price impact, while

sales that happen late would bear significant price impact. Since we

consider a static game, we do not model this effect directly. Instead,

we follow Cont and Schaanning [11] by capturing the effect using

an implementation shortfall parameter 𝛼 ∈ [0, 1]. Agents redeem a

share of 𝛼 of their sales according to the post-price-impact price

and a share of 1 − 𝛼 according to the pre-price-impact price of an

asset. If 𝛼 = 0, the market reacts very slowly to asset sales, so that

price impact does not manifest in the effective price that agents

receive when they sell their assets (but it does manifest for the

post-sale values of the remaining assets). If 𝛼 = 1, then the full

price impact manifests immediately; such a situation may arise

when asset sales are conducted using an auction mechanism.
5
If

all agents sell according to 𝑦, the total revenue that agent 𝑖 derives

from her asset sales is now

Δ𝑖 (𝑦) = (1 − 𝑦𝑖 )
∑︁
𝑗∈𝑀

𝑥𝑖 𝑗 ((1 − 𝛼)𝑝0𝑗 + 𝛼𝑝 𝑗 (𝑦)) .

5
An alternative approach is to compute the integral of of the price impact function

with respect to a path of infinitesimal trades. This route was chosen by Banerjee and

Feinstein [4]. For the purpose of this paper, where we are interested in the strategic

implications of fire sales, our approach using the 𝛼 parameter provides a simple way

of capturing the extent to which price impact affects agents.

We assume that each agent 𝑖 has liabilities of 𝑙𝑖 to external credi-

tors. Agent 𝑖’s equity is the difference between her total assets and

liabilities, where her total assets consist of her (illiquid and liquid)

assets and the risk-free money she has redeemed from asset sales:

𝑒𝑖 (𝑦) = 𝑎𝑖 (𝑦) + Δ𝑖 (𝑦) − 𝑙𝑖 .

Note that the equity of an agent is what would remain if the agent’s

(risky and risk-free) assets were used to pay off her liabilities. It

therefore equals the agent’s shareholder value.

If 𝑒𝑖 (𝑦) > 0, then agent 𝑖’s leverage at 𝑦 is the ratio between her

risky assets and her equity:

lev𝑖 (𝑦) =
𝑎𝑖 (𝑦)
𝑒𝑖 (𝑦)

=
𝑎𝑖 (𝑦)

𝑎𝑖 (𝑦) + Δ𝑖 (𝑦) − 𝑙𝑖
.

Note how an agent that holds no risky assets (i.e., 𝑎𝑖 (𝑦) = 0) has a

leverage of 0 (unless its equity is also 0) while an agent that holds

high risky assets, only little risk-free assets and has high liabilities

(i.e., 𝑎𝑖 (𝑦) and 𝑙𝑖 are large and Δ𝑖 (𝑦) is small) has a high leverage.

This is why leverage is used as an instrument to gauge the riskiness

of an agent. If 𝑒𝑖 (𝑦) ≤ 0, then lev𝑖 (𝑦) is not defined.
We assume that regulatory constraints limit the admissible lever-

age of an agent to a constant _ > 1, i.e., agent 𝑖 needs to choose its

action 𝑦𝑖 such that

lev𝑖 (𝑦) ≤ _.

If no such 𝑦𝑖 exists, we say that agent 𝑖 is illiquid given the actions

𝑦−𝑖 of the other agents. If no 𝑦𝑖 exists for which 𝑒𝑖 (𝑦) > 0, we say

that agent 𝑖 is insolvent at 𝑦−𝑖 . Insolvent or illiquid agents need

to sell their whole asset holdings (otherwise, we assume that they

receive utility −∞); the other agents (which we call liquid agents)

derive a utility equal to their equity. More in detail, we consider

the following utility function. Define special strategies 𝑦0
𝑖
:= 0 and

𝑦1
𝑖
:= 1 and define the utility of agent 𝑖 as

𝑢𝑖 (𝑦) :=


−∞ if 𝑦𝑖 ≠ 𝑦0

𝑖
and

(𝑒𝑖 (𝑦) ≤ 0 or lev𝑖 (𝑦) > _)
𝑒𝑖 (𝑦) otherwise.

Note that agents always have the option to sell everything (i.e.,

play 𝑦𝑖 = 𝑦0
𝑖
) and then receive a utility equal to their equity. This is

motivated by the fact that it should always be possible to liquidate

a firm; regulation must not prevent agents from exiting the market.

Observe that, in any Nash equilibrium, insolvent or illiquid agents

sell everything and liquid agents either play a𝑦𝑖 for which 𝑒𝑖 (𝑦) > 0

and lev𝑖 (𝑦) ≤ _ or sell everything (i.e., play 𝑦𝑖 = 𝑦0
𝑖
). We call a

collection (𝑁,𝑀, 𝑎𝐼 , 𝑥, 𝛼, _) a fire sale game. See Figure 1 for an

example instance.

2.2 Basic Properties
Our first proposition shows that sales of one agent destabilize other

agents with overlapping portfolios, in the sense that their lever-

age increases. This effect introduces fire sales into our model. For

technical reasons, we need to consider a lower bound of 1 on the

leverage; note that this is irrelevant for our discussion since the

leverage cap is always _ > 1.

Proposition 2.1. Let lev𝑖 (𝑦) = max(1, lev𝑖 (𝑦)). Then lev𝑖 (𝑦𝑖 , 𝑦−𝑖 )
is monotonically decreasing in 𝑦−𝑖 . More in detail, if 𝑦𝑖 ∈ [0, 1] and
𝑦−𝑖 ≤ 𝑦′−𝑖 point-wise, then lev𝑖 (𝑦𝑖 , 𝑦−𝑖 ) ≥ lev𝑖 (𝑦𝑖 , 𝑦′−𝑖 ).



agent 1

agent 2

agent 3

asset 1

asset 2

aI1 = 100
l1 = 78

aI1 = 100
l1 = 67

aI1 = 100
l1 = 79

p01 = 100

p02 = 50

0.2

0.8

0.4

0.4 0.2

y1 y2 y3 lev1(y) u1(y) lev2(y) u2(y) lev3(y) u3(y)

1.0 1.0 1.0 1.95 82.0 1.92 73.0 2.11 −∞
1.0 1.0 0.7 2.01 −∞ 1.98 68.18 2.0 65.58
0.95 1.0 0.7 2.0 75.51 1.99 67.81 2.01 −∞
0.95 1.0 0.65 2.01 −∞ 1.99 67.02 2.0 63.94
0.89 1.0 0.65 2.0 72.36 2.01 −∞ 2.02 −∞
0.89 0.97 0.65 2.01 −∞ 2.0 66.02 2.03 −∞
0.89 0.97 0.51 2.04 −∞ 2.04 −∞ 2.0 59.88
0.0 0.97 0.51 2.64 e1(y) 2.17 −∞ 2.46 −∞
0.0 0.0 0.51 3.32 e1(y) 2.43 e2(y) 3.47 −∞
0.0 0.0 0.0 4.54 e1(y) 3.03 e2(y) 4.76 e3(y)

Figure 1: A fire sale game with three agents and two assets, 𝛼 = 1, _ = 2.0, and linear price impact, i.e., 𝑝 𝑗 (𝑦) = 𝑝0
𝑗
·∑𝑖∈𝑁 𝑥𝑖 𝑗𝑦𝑖 .

Left: Asset holdings and initial prices. Right: Sequence of game states obtained by playing best responses starting from the
state (1, 1, 1). Newly chosen strategies are red, all values are rounded to two digits. When agent 3 starts selling to fulfill her
leverage constraint, a fire sale starts that eventually forces all agents to sell everything.

Proof. By assumption and monotonicity of the functions 𝑝 𝑗 ,

we have 𝑝 𝑗 (𝑦𝑖 , 𝑦−𝑖 ) ≤ 𝑝 𝑗 (𝑦𝑖 , 𝑦′−𝑖 ) for all 𝑗 .
It immediately follows from the definition that lev𝑖 (𝑦𝑖 , 𝑦−𝑖 ) < 1 if

and only ifΔ𝑖 (𝑦𝑖 , 𝑦−𝑖 ) > 𝑙𝑖 . If this is the case, then alsoΔ𝑖 (𝑦𝑖 , 𝑦′−𝑖 ) ≥
Δ𝑖 (𝑦𝑖 , 𝑦−𝑖 ) > 𝑙𝑖 , where the first inequality immediately follows from

the above statement about the prices 𝑝 𝑗 . Now also lev𝑖 (𝑦𝑖 , 𝑦′−𝑖 ) < 1

and thus lev𝑖 (𝑦𝑖 , 𝑦−𝑖 ) = 1 = lev𝑖 (𝑦𝑖 , 𝑦′−𝑖 ).
Assume now that lev𝑖 (𝑦𝑖 , 𝑦−𝑖 ), lev𝑖 (𝑦𝑖 , 𝑦′−𝑖 ) ≥ 1 and write short

𝑎 := 𝑎𝑖 (𝑦𝑖 , 𝑦−𝑖 ), 𝑎′ := 𝑎𝑖 (𝑦𝑖 , 𝑦′−𝑖 ), and likewise for Δ. Then

lev𝑖 (𝑦𝑖 , 𝑦−𝑖 ) = lev𝑖 (𝑦𝑖 , 𝑦−𝑖 ) =
𝑎

𝑎 + Δ − 𝑙𝑖
≥ 𝑎′

𝑎′ + Δ − 𝑙𝑖

≥ 𝑎′

𝑎′ + Δ′ − 𝑙𝑖
= lev𝑖 (𝑦𝑖 , 𝑦′−𝑖 ) = lev𝑖 (𝑦𝑖 , 𝑦′−𝑖 ),

where the first inequality holds since, by assumption, Δ − 𝑙𝑖 ≤ 0

and 𝑎 ≤ 𝑎′, and the second inequality holds since Δ ≤ Δ′
, both of

which immediately follow from monotonicity of the prices 𝑝 𝑗 . □

Note that lev𝑖 is not necessarily monotonically increasing in

𝑦𝑖 , i.e., selling more does not always reduce leverage. Whether or

not this is the case depends on the price impact functions, the 𝛼

parameter, and 𝑦−𝑖 .
The leverage function lev𝑖 is also continuous in 𝑦, which follows

directly from the definitions.

Proposition 2.2. The leverage function lev𝑖 is continuous in the
strategy profile 𝑦 in the region where agent 𝑖 is solvent.

Agents become illiquid before they become insolvent. This tech-

nical property will be useful in our proofs. It follows immedi-

ately from the definition lev𝑖 (𝑦) = 𝑎𝑖 (𝑦)/𝑒𝑖 (𝑦), the assumption

𝑒𝑖 (𝑦𝑡 ) → 0, and the fact that 𝑎𝑖 (𝑦𝑡 ) ≥ 𝑎𝐼
𝑖
> 0 for all 𝑡 .

Proposition 2.3. Let 𝑖 be an agent and let (𝑦𝑡 )𝑡 be a sequence of
strategy profiles such that 𝑒𝑖 (𝑦𝑡 ) > 0 for all 𝑡 and 𝑒𝑖 (𝑦𝑡 ) → 0. Then
lev𝑖 (𝑦𝑡 ) → ∞. In particular, there exists a 𝑡 such that lev𝑖 (𝑦𝑡 ) > _.

2.3 Post-Sale Prices
For the results in the main body of the paper, we focus on the im-

portant special case when 𝛼 = 1. Here, agents liquidate their assets

at an average price that is equal to the price after all assets have

been sold. We also say that in this case the agents receive post-sale
prices. Agents are highly affected by price devaluations in this case.

Intuitively, agents will therefore avoid sales and only execute them

to satisfy the leverage constraint. The following Proposition 2.4

formalizes this intuition. We will show that this further implies

monotonicity of the best response of each agent, which will be an

important building block towards our later results.

The best-response function Φ : [0, 1]𝑁 → [0, 1]𝑁 is

Φ𝑖 (𝑦) := arg max𝑦𝑖 ∈[0,1] 𝑢𝑖 (𝑦𝑖 , 𝑦−𝑖 ).
Ties in the arg max are w.l.o.g. broken in favor of largest 𝑦𝑖 .

It is easy to see that for 𝛼 = 1, the equity 𝑒𝑖 simplifies to

𝑒𝑖 (𝑦) = 𝑎𝐼𝑖 − 𝑙𝑖 +
∑︁
𝑗

𝑥𝑖 𝑗𝑝 𝑗 (𝑦) . (1)

The equity is equal to the assets, net of liabilities, assuming that the

agent has not actually sold anything, but is still exposed to price

impact on her asset holdings. This drives the following result.

Proposition 2.4. Let 𝛼 = 1. Then (1) each liquid agent 𝑖 maxi-
mizes her utility by maximizing 𝑦𝑖 subject to the leverage constraint
and (2) Φ is monotonic.

Proof. First, observe that the equity is monotonic in𝑦𝑖 since the

functions 𝑝 𝑗 are monotonic and by (1). The best response of agent 𝑖

thus minimizes sales (i.e., maximizes 𝑦𝑖 ) subject to the leverage

constraint.

Now consider the best response 𝑦∗
𝑖
of 𝑖 to a fixed 𝑦−𝑖 . First,

assume the special case where 𝑦∗
𝑖
= 0. Then, by monotonicity of the

equity, agent 𝑖 either exactly satisfies the leverage constraint or is

illiquid or insolvent. In the latter scenario, the leverage is undefined,

while the other cases imply lev𝑖 (𝑦∗𝑖 , 𝑦−𝑖 ) ≥ _ > 1. By monotonicity

of the equity and the leverage (Proposition 2.1) in 𝑦−𝑖 , the agent
must maintain this strategy when the others increase their sales.

Now assume that 𝑦∗
𝑖
> 0. To maximize utility, the agent chooses

the highest value 𝑦𝑖 as her strategy so that the leverage constraint

is still satisfied. Whenever the agent fulfills the leverage constraint

without liquidating any assets (i.e.,𝑦∗
𝑖
= 1), her leverage is at least 1,

since lev𝑖 (𝑦∗𝑖 , 𝑦𝑖
) = 𝑎𝑖 (𝑦∗𝑖 , 𝑦−𝑖 )/(𝑎𝑖 (𝑦

∗
𝑖
, 𝑦−𝑖 ) − 𝑙𝑖 ) ≥ 1. Now assume

the agent to sell a share of her assets, i.e., 𝑦∗
𝑖
∈ (0, 1). In particular,

this means that lev𝑖 (𝑦∗𝑖 , 𝑦−𝑖 ) = _ > 1 and lev𝑖 (𝑦𝑖 , 𝑦−𝑖 ) > _ for all



𝑦𝑖 > 𝑦∗
𝑖
. If the other agents now increase their sales, all 𝑦𝑖 remain

invalid (i.e., 𝑦′−𝑖 ≤ 𝑦−𝑖 ⇒ lev𝑖 (𝑦𝑖 , 𝑦′−𝑖 ) > _ for all 𝑦𝑖 > 𝑦∗
𝑖
, due to

Proposition 2.1). Therefore, if 𝑦∗
𝑖
no longer satisfies the constraint,

𝑖 must also liquidate more assets. □

3 EQUILIBRIUM EXISTENCE AND
CONVERGENCE OF DYNAMICS

In this section, we discuss the existence of equilibria in a given

fire sale game and the convergence of best-response dynamics to

equilibrium. Our first main result is that, in the above-discussed

cases where the best-response function is monotonic, the set of

equilibria has a particularly desirable lattice structure. This in par-

ticular implies that (1) an equilibrium always exists and (2) there

is always an equilibrium that minimizes the sales of each asset by

each agent simultaneously and maximizes the equity of each indi-

vidual agent among all equilibria. This equilibrium is in particular a

Pareto optimum and maximizes social welfare among all equilibria.

We first state this result in abstract terms in Lemma 3.1. The lemma

together with Proposition 2.4 yields the main structural result.

Lemma 3.1. Assume that the best-response functionΦ is monotonic.
Let 𝐸 be the set of Nash equilibria. Then 𝐸 is non-empty, and the pair
(𝐸, ≥) forms a complete lattice.

Proof. The set of all strategy profiles is 𝐷 = [0, 1]𝑛×𝑚 , and

(𝐷, ≥) is a complete lattice. The map Φ : 𝐷 → 𝐷 computes, for a

given strategy profile 𝑦, the best response 𝑦∗
𝑖
for every agent 𝑖 with

respect to 𝑦−𝑖 . Thus, Φ(𝑦) = (𝑦∗
1
, 𝑦∗

2
, . . . , 𝑦∗𝑛) is the profile after a

simultaneous best response of all agents. The fixed points are the

Nash equilibria of the fire sale game. Using that Φ is monotonic, we

apply the Knaster-Tarski Theorem, and the statement follows. □

Theorem 3.2. Let 𝐸 be the set of Nash equilibria. If 𝛼 = 1, then 𝐸

is non-empty, and the pair (𝐸, ≥) forms a complete lattice.

Under the assumptions of the theorem, iterating the best-response

function further converges to the point-wise maximal equilibrium.

Theorem 3.3. Let (𝑦𝑡 ) be the iteration sequence defined as 𝑦1 =
(1, 1, . . . , 1) and 𝑦𝑡+1 = Φ(𝑦𝑡 ). If 𝛼 = 1, then (𝑦𝑡 ) converges to the
point-wise maximal equilibrium.

Proof. The statement follows from the fact that Φ is monotonic

and continuous from above. This is a standard technique and can

be seen as special case of the Kleene fixed point theorem (see,

e.g., [36, Lemma 3] for a direct proof). Monotonicity follows from

Proposition 2.4. We show continuity from above.

Given𝑦−𝑖 , let𝐷𝑖 (𝑦−𝑖 ) = {𝑦𝑖 | 𝑒𝑖 (𝑦𝑖 , 𝑦−𝑖 ) > 0∧lev𝑖 (𝑦𝑖 , 𝑦−𝑖 ) ≤ _}.
Let 𝐸_

𝑖
= {𝑦−𝑖 | 𝐷𝑖 (𝑦−𝑖 ) ≠ ∅}. Proposition 2.3 implies that the set

{𝑦 | 𝑒𝑖 (𝑦) > 0∧ lev𝑖 (𝑦) ≤ _} is closed. This shows that 𝐷𝑖 (𝑦−𝑖 ) for
any𝑦−𝑖 and 𝐸_𝑖 are closed because they are projections of this set (all

involved sets are bounded, so being closed and being compact are

equivalent).𝐷𝑖 ( · ) is monotonic in the sense that if𝑦−𝑖 ≤ 𝑦′−𝑖 point-
wise, then 𝐷𝑖 (𝑦−𝑖 ) ⊆ 𝐷𝑖 (𝑦′−𝑖 ). This follows from monotonicity of

𝑒𝑖 and inverse monotonicity of lev𝑖 in 𝑦−𝑖 (where lev𝑖 (𝑦) > 1, cf.

Proposition 2.1). By the same argument, 𝐸𝑖 is monotonic in the

sense that if 𝑦−𝑖 ≤ 𝑦′−𝑖 and 𝑦−𝑖 ∈ 𝐸𝑖 , then 𝑦
′
−𝑖 ∈ 𝐸𝑖 .

Proposition 2.4 yields Φ𝑖 (𝑦) = 𝜑𝑖 (𝑦−𝑖 ) := max𝐷𝑖 (𝑦−𝑖 ) if 𝑦−𝑖 ∈
𝐸_
𝑖
and 0 otherwise.

Let now (𝑦𝑡−𝑖 )𝑡 be any point-wise decreasing sequence in [0, 1]𝑛−1
and let 𝑦+−𝑖 = lim𝑡 𝑦

𝑡
−𝑖 . By monotonicity and closedness of 𝐸𝑖 , we

know that, if 𝑦+−𝑖 ∉ 𝐸𝑖 , then 𝑦
𝑡
−𝑖 ∉ 𝐸𝑖 for almost all 𝑡 , so Φ𝑖 (𝑦𝑡−𝑖 ) = 0

for almost all 𝑡 , and we have lim𝑡 Φ𝑖 (𝑦𝑡−𝑖 ) = Φ𝑖 (𝑦+−𝑖 ). So assume

𝑦+−𝑖 ∈ 𝐸𝑖 and, thus, 𝑦
𝑡
−𝑖 ∈ 𝐸𝑖 for all 𝑡 , since 𝑦

𝑡
−𝑖 ≥ 𝑦+−𝑖 . It remains to

prove that 𝜑𝑖 (𝑦+−𝑖 ) = lim𝑡 𝜑𝑖 (𝑦𝑡−𝑖 ).
We have lev𝑖 (lim𝑡 𝜑𝑖 (𝑦𝑡−𝑖 ), 𝑦

+
−𝑖 ) = lim𝑡 lev𝑖 (𝜑𝑖 (𝑦𝑡−𝑖 ), 𝑦

𝑡
−𝑖 ) ≤ _ by

continuity of lev𝑖 , and the inequality by definition of 𝜑𝑖 . Thus,

lim𝑡 𝜑𝑖 (𝑦𝑡−𝑖 ) ∈ 𝐷𝑖 (𝑦+−𝑖 ) and thus, by choice of 𝜑𝑖 (𝑦+−𝑖 ), we have

lim𝑡 𝜑𝑖 (𝑦𝑡−𝑖 ) ≤ 𝜑𝑖 (𝑦+−𝑖 ). On the other hand, by monotonicity of lev𝑖

in𝑦−𝑖 ,𝐷𝑖 (𝑦+−𝑖 ) ⊆ 𝐷𝑖 (𝑦𝑡−𝑖 ) for all 𝑡 . Thus, by choice of the 𝜑𝑖 ( · ), we
have 𝜑𝑖 (𝑦+−𝑖 ) ≤ lim𝑡 𝜑𝑖 (𝑦𝑡−𝑖 ) and obtain equality as required. □

In Theorem 3.3, agents concurrently deviate to best responses, i.e.,
Φ(𝑦𝑡 ) applies best responses simultaneously to each component

of the vector 𝑦. It is straightforward to observe that the result in

the previous theorem can be shown also for any sequential best-
response dynamics starting from 𝑦1 = (1, . . . , 1), in which agents

deviate one-by-one. We omit a formal adjustment of the proof.

In many game-theoretic scenarios, concurrent deviation gives

rise to oscillation. The next example shows that fire sale games are

no exception to this rule. We work out the example below for linear

prices 𝑝 𝑗 and 𝛼 = 1. It is easy to see that similar examples exist for

𝛼 = 1 with monotonic prices 𝑝 𝑗 , or 𝛼 ∈ (0, 1) with convex prices.

Example 3.4. Consider a game with two agents, one asset, linear

price impact, where 𝑝0
1
= 1, and 𝛼 = 1. The external assets and

liabilities are such that 𝑎𝐼
1
= 𝑎𝐼

2
= 1 and 𝑙1 = 𝑙2 = 5/4. Moreover,

both players hold half of the security, i.e., 𝑥11 = 𝑥21 = 1/2. We

assume _ = 6. If both agents play 𝑦1 = 𝑦2 = 1, then the leverage is

1.5/(1/4) = 6 = _. If agent 1 plays 𝑦1 = 0, then agent 2 is illiquid

and, thus, her best response is𝑦2 = 0. Now suppose we start in state

𝑦1 = (1, 0) and let the agents deviate simultaneously. The process

oscillates between 𝑦2𝑖 = (0, 1) and 𝑦2𝑖+1 = (1, 0).

If in the example the two agents deviate sequentially, then af-

ter one step an equilibrium is reached. More generally, we show

below that for all fire sale games with two agents and monotonic

best responses, there can be no cycle in sequential best-response

dynamics, no matter from which initial state the dynamics starts.

Proposition 3.5. Consider a fire sale game with two agents and
assume that the best-response function is monotonic. Then every
sequential best-response dynamics is acyclic.

Proof. First consider the case that in some round 𝑡 we have

Φ(𝑦 (𝑡 ) ) ≥ 𝑦 (𝑡 ) , i.e., the best response is at least the current strategy
for both agents. By monotonicity of the best-response function,

the agents will only keep increasing their strategies, which makes

a cycle impossible. A similar argument shows the result when in

some round 𝑡 we have Φ(𝑦 (𝑡 ) ) ≤ 𝑦 (𝑡 ) .
Now suppose that in some round 𝑡 , the best response for agent

1 is at most 𝑦
(𝑡 )
1

and for agent 2 it is at least 𝑦
(𝑡 )
2

. Suppose agent

1 moves in round 𝑡 + 1. By monotonicity, this decreases the best

response for agent 2. After round 𝑡 + 1, the best response of agent

2 is either at most or at least 𝑦
(𝑡+1)
2

= 𝑦
(𝑡 )
2

. Agent 1 is playing her

exact best response (i.e., at most and at least the best response).



Hence, one of the previously considered cases applies. A symmetric

argument applies if agent 2 moves first. □

We conjecture that there are fire sale games with two agents,

for 𝛼 = 1 and monotonic prices or 𝛼 ∈ (0, 1) and convex prices,

in which the best-response function is not continuous from below.

Then given a state where all agents want to increase their strategies,

sequential best-response dynamics might not reach an equilibrium

in the limit. In contrast, suppose that the agents are in a state

where they all want to decrease their strategies. Then the proof of

Theorem 3.3 can be applied to show that, for 𝛼 = 1 and monotonic

prices or 𝛼 ∈ (0, 1) and convex prices, the limit of the best-response

dynamics is indeed an equilibrium, for any number of agents.

For three or more agents, if in the initial state there are agents

above and below their best response, sequential best-response dy-

namics can again exhibit cyclical behavior. Below we discuss an

example with three agents, 𝛼 = 1 and convex price impact. It is

minimal in the sense that for two agents, sequential best-response

dynamics are always acyclic in this case.

Example 3.6. Consider a fire sale game with three agents and

three assets where 𝛼 = 1 and _ = 6.2. Furthermore, let 𝑎𝐼
𝑖
= 100 and

𝑙𝑖 = 90 for all 𝑖 ∈ {1, 2, 3} and let the asset holdings be as follows:

𝑥11 = 0.8 𝑥12 = 0.2

𝑥22 = 0.8 𝑥23 = 0.2

𝑥31 = 0.2 𝑥33 = 0.8

Let 𝑝 𝑗 (𝑦) = 10 ·
(∑

𝑖 𝑥𝑖 𝑗𝑦𝑖
)
2

be the price function for all assets

𝑗 ∈ {1, 2, 3}. Note that price impact is convex. A best-response cycle

is given by the following table:

𝑦1 𝑦2 𝑦3 𝑢1 (𝑦) 𝑢2 (𝑦) 𝑢3 (𝑦)
1 1 0 −∞ 18.08 11.6

0 1 0 11.28 −∞ 10.32

0 1 1 11.6 −∞ 18.08

0 0 1 10.32 11.28 −∞
1 0 1 18.08 11.6 −∞
1 0 0 −∞ 10.32 11.28

1 1 0 −∞ 18.08 11.6

.

.

.
.
.
.

Every agent maximizes her utility by selling as little as possible.

Due to convex price impact, each agent is particularly affected by

price devaluation of an asset of which she holds a large share. These

properties lead to the cyclic behavior shown in the table.

The pointwise maximal equilibrium is obtained when no as-

sets are sold, i.e., 𝑦1. Thus, all strategy profiles played in the best-

response cycle are point-wise below the maximal equilibrium.

Also, note that the best-response cycle in this example is robust

to different choices of 𝛼 (e.g., using 𝛼 = 0.5).

4 CONVERGENCE SPEED OF DYNAMICS
In this section, we study two dynamics by which agents may reach

an equilibrium: the standard best-response dynamics and a simpli-

fied dynamics where agents neglect their own price impact. We

examine the convergence of these dynamics towards an equilibrium.

We focus on 𝛼 = 1 and linear price impact.

4.1 Best-Response Dynamics
Theorem 3.3 shows that (in particular) for the case 𝛼 = 1, best-

response dynamics starting at𝑦1 always converge to the point-wise

maximal equilibrium (where asset sales are collectively minimized).

If the sequence proceeds for a finite number of steps, we show

that it reaches an approximate equilibrium quickly, assuming the

numeric values of the game are reasonably large.

The traditional concept of an approximate Nash equilibrium is

not appropriate for fire sale games because even a small violation

of the leverage constraints leads to an infinite decrease in utility.

We therefore define an approximate equilibrium as a strategy profile

where agents can only improve their equity by a small amount and

where the leverage constraints are approximately satisfied.

Definition 4.1. Let 𝑦 be a strategy profile in a fire sale game and

let Y > 0. Then 𝑦 is an Y-approximate equilibrium iff the following

hold for every agent 𝑖:

(1) If 𝑖 is liquid, then for any 𝑦′
𝑖
such that 𝑖 is liquid for (𝑦′

𝑖
, 𝑦−𝑖 )

we have 𝑒𝑖 (𝑦) ≥ 𝑒𝑖 (𝑦′𝑖 , 𝑦−𝑖 ) − Y.

(2) If 𝑖 is liquid, then lev𝑖 (𝑦) ≤ _ + Y.

(3) If 𝑖 is insolvent or illiquid, then 𝑦𝑖 ≤ Y.

An approximate equilibrium might not be close to any exact

equilibrium in terms of norm distance in strategy space, a common

property of approximate equilibrium concepts (see, e.g., Etessami

and Yannakakis [17] for a discussion of this phenomenon in the

context of approximate Nash equilibria).

We show that best-response dynamics reach an Y-approximate

equilibrium in pseudo-polynomial time.

Theorem 4.2. Consider a fire sale gamewith𝛼 = 1 and linear price
impact. Let𝑥max be themaximum over all values𝑥 and𝑥−1, where𝑥 is
a numeric value contained in the input. Let Y > 0. Then best-response
dynamics, after 𝑛/Y steps, reaches a point 𝑦∗ such that ∥Φ(𝑦∗) −
𝑦∗∥∞ ≤ Y and 𝑦∗ is a (poly(𝑥max) · Y)-approximate equilibrium.

Proof. As long as ∥Φ(𝑦∗) −𝑦∗∥ > Y, trivially, some 𝑦∗
𝑖
decreases

by at least Y in every step. As 𝑦∗ is bounded below by (0, . . . , 0),
there can be at most 𝑛/Y such steps.

We now show that 𝑦∗ is an Y-approximate equilibrium. First

consider an insolvent or illiquid agent 𝑖 . Then Φ𝑖 (𝑦∗) = 0 and thus,

since ∥Φ𝑖 (𝑦∗) − 𝑦∗
𝑖
∥ ≤ Y, we have 𝑦∗

𝑖
≤ Y as required.

Let now 𝑖 be liquid. Let 𝑦′ = Φ(𝑦∗) and assume that 𝑦′
𝑖
< 1 (oth-

erwise, 𝑦∗ even satisfies the requirements for an exact equilibrium
at 𝑖). Then by choice of 𝑦′

𝑖
we have lev𝑖 (𝑦′𝑖 , 𝑦

∗
−𝑖 ) = _. We bound the

difference lev𝑖 (𝑦∗𝑖 , 𝑦
∗
−𝑖 ) − lev𝑖 (𝑦′𝑖 , 𝑦

∗
−𝑖 ). To do this note that, as the

sequence is descending, 𝑦′
𝑖
≤ 𝑦∗

𝑖
≤ 𝑦′

𝑖
+ Y. Consider the derivative

d lev𝑖 (𝑦)
d𝑦𝑖

=
©«
d𝑎𝑖
d𝑦𝑖

𝑒𝑖 − d𝑒𝑖
d𝑦𝑖

𝑎𝑖

𝑒2
𝑖

ª®¬ (𝑦) =: 𝑁 (𝑦)
𝑒2
𝑖
(𝑦)

.

As 𝑒𝑖 is increasing in 𝑦𝑖 , for any 𝑦𝑖 ∈ [𝑦′
𝑖
, 𝑦∗

𝑖
] we have 𝑒𝑖 (𝑦𝑖 , 𝑦∗−𝑖 ) ≥

𝑒𝑖 (𝑦′𝑖 , 𝑦
∗
−𝑖 ) = 𝑎𝑖 (𝑦′𝑖 , 𝑦

∗
−𝑖 )/_ ≥ 𝑎𝐼

𝑖
/_ ≥ 𝑥−2

max
, where the first equality

is because lev𝑖 (𝑦′𝑖 , 𝑦
∗
−𝑖 ) = _.

𝑁 (𝑦) is a polynomial (of degree 2) in 𝑦 where values of the

coefficients, but not the structure of the function, depend on the

input. Since 𝑦 ∈ [0, 1]𝑛 , we have 𝑁 (𝑦) ≤ poly(𝑥max) and thus

d lev𝑖 (𝑦)
d𝑦𝑖

≤ poly(𝑥max).



By integration, we have lev𝑖 (𝑦∗) ≤ _ + poly(𝑥max) · Y.
Finally, we show that no liquid agent can improve her equity by

more than poly(𝑥max) · Y. This follows using the same technique

as above because we can bound the derivative
d𝑒𝑖 (𝑦)
𝑦𝑖

to receive

𝑒𝑖 (𝑦∗) ≥ 𝑒𝑖 (𝑦′𝑖 , 𝑦
∗
−𝑖 ) − poly(𝑥max) · Y and 𝑦′𝑖 maximizes 𝑒𝑖 ( · , 𝑦∗−𝑖 )

by definition. □

4.2 Simplified Best-Response Dynamics
Computing a best response is relatively complex as the agent needs

to take into account the price impact of the very sales she is about to

decide on. For some agents, this may be unrealistic. Hence, we con-

sider a simplified dynamics, where agents neglect their own price

impact. Similar “best-response” dynamics have been considered by

Cont and Schaanning [11]. Here, liquidations proceed in several

rounds and agents consider prices as fixed during each round.

We first define simplified versions of the different components of

each agent’s wealth where the price impact of the agent’s current

choice of strategy is excluded. These functions take one parameter

more compared to the full versions in Section 2.1 to differentiate

between the current choice and a previous choice by the agent.

Definition 4.3. For 𝑦𝑖 ∈ [0, 1] and 𝑦 ∈ [0, 1]𝑁 , define the simpli-
fied assets, revenue, equity, and leverage as the respective terms

from Section 2.1 where, however, the price impact is calculated

based on 𝑦, but agent 𝑖’s sales are calculated according to 𝑦𝑖 . For-

mally, let

𝑎𝑖 (𝑦𝑖 , 𝑦) := 𝑎𝐼𝑖 + 𝑦𝑖
∑︁
𝑗

𝑥𝑖 𝑗𝑝 𝑗 (𝑦) = 𝑎𝐼𝑖 + 𝑦𝑖𝑉𝑖 (𝑦)

Δ̃𝑖 (𝑦𝑖 , 𝑦) :=
∑︁
𝑗

𝑥𝑖 𝑗 (1 − 𝑦𝑖 )𝑝 𝑗 (𝑦) = (1 − 𝑦𝑖 )𝑉𝑖 (𝑦)

𝑒𝑖 (𝑦𝑖 , 𝑦) := 𝑎𝑖 + Δ̃𝑖 − 𝑙𝑖 = 𝑎𝐼𝑖 − 𝑙𝑖 +𝑉𝑖 (𝑦)

˜
lev(𝑦𝑖 , 𝑦) :=

𝑎𝑖 (𝑦,𝑦)
𝑒𝑖 (𝑦)

where 𝑉𝑖 (𝑦) :=
∑︁
𝑗

𝑥𝑖 𝑗𝑝 𝑗 (𝑦).

Observe that𝑉𝑖 (𝑦) is the value of 𝑖’s liquid asset holdings if 𝑖 sells
nothing and price impact is given by𝑦. Further observe that 𝑒𝑖 (𝑦𝑖 , 𝑦)
is in fact independent of 𝑦𝑖 and (thus) we have 𝑒𝑖 (𝑦𝑖 , 𝑦) = 𝑒𝑖 (𝑦)
for all 𝑦𝑖 . This is because, under the assumption of the simplified

best-response dynamics, sales according to 𝑦𝑖 do not generate any

additional price impact and thus they transform assets (valued

at market price) into risk-free assets at a rate of 1; these terms

cancel out in the calculation of the equity. We extend our model

by making the realistic assumption that agents still aim to sell as

little as possible (i.e., maximize 𝑦𝑖 ) subject to meeting their leverage

constraint. In this case, the best response of 𝑖 according to the

simplified dynamics is easily calculated:

Definition 4.4. For 𝑦 ∈ [0, 1]𝑁 we define

𝑔𝑖 (𝑦) := _ −
_𝑙𝑖 − (_ − 1)𝑎𝐼

𝑖

𝑉𝑖 (𝑦)
,

and a simplified best-response function Ψ : [0, 1]𝑁 → [0, 1]𝑁 with

Ψ𝑖 (𝑦) :=
{
min(1,max(0, 𝑔𝑖 (𝑦))) if 𝑒𝑖 (𝑦) > 0

0 if 𝑒𝑖 (𝑦) ≤ 0.

Lemma 4.5. The value 𝑦𝑖 := Ψ𝑖 (𝑦) is the maximal 𝑦𝑖 such that
𝑒𝑖 (𝑦𝑖 , 𝑦) > 0 and ˜

lev𝑖 (𝑦𝑖 , 𝑦) ≤ _, if such a 𝑦𝑖 exists. Otherwise,
Ψ𝑖 (𝑦) = 0.

Proof. Recall that 𝑒 (𝑦𝑖 , 𝑦) = 𝑒𝑖 (𝑦) ∀𝑦. If 𝑒𝑖 (𝑦) ≤ 0, then the

statement is trivial. So assume 𝑒𝑖 (𝑦) > 0. It is easy to see that 𝑔𝑖 (𝑦)
is such that

0 = 𝑎𝑖 (𝑔𝑖 (𝑦), 𝑦) − _𝑒𝑖 (𝑔𝑖 (𝑦), 𝑦) = 𝑎𝑖 (𝑔𝑖 (𝑦), 𝑦) − _𝑒𝑖 (𝑦). (2)

If 𝑒𝑖 (𝑦) ≤ 0, then we must have 𝑔𝑖 (𝑦) ≤ 0 and thus Ψ𝑖 (𝑦) = 0 by

definition. If 𝑒𝑖 (𝑦) > 0, then Equality (2) implies that (a) 𝑔𝑖 (𝑦) ≥ 0

and (b)
˜
lev𝑖 (𝑔𝑖 (𝑦), 𝑦) = _. Because ˜

lev𝑖 (𝑦𝑖 , 𝑦) is strictly monotonic

in 𝑦𝑖 (because of linear price impact), this implies that Ψ𝑖 (𝑦) =

min(1, 𝑔𝑖 (𝑦)) has the properties of 𝑦𝑖 as needed. □

When agents act according to the simplified best-response func-

tion Ψ, they ignore their own price impact. However, the price

impact resulting from these sales enters in the next round, where it

affects all agents, including the ones who increased their sales in

this round. Thus, no information is lost. As the following theorem

shows, this implies that simplified best-response dynamics also

converge to the maximal equilibrium, just like the best-response

dynamics.

Theorem 4.6. Consider a fire sale game with 𝛼 = 1 and linear
price impact. Then the following hold:

(1) Ψ is monotonic and continuous.
(2) Φ and Ψ have the same fixed points.
(3) Let

(
𝑦𝑡
)
be a sequence of strategy profiles defined by 𝑦0 =

(1, . . . , 1) and 𝑦𝑡+1 = Ψ(𝑦𝑡 ). Then
(
𝑦𝑡
)
is point-wise mono-

tonically decreasing and converges to the point-wise maximal
equilibrium of the fire sale game.

Proof. (1) Monotonicity follows from the definition because

the condition 𝑒𝑖 (𝑦) is increasing in 𝑦 (i.e., it can only switch from

false to true as 𝑦 increases point-wise, but not vice versa) and the

function 𝑔𝑖 is obviously monotonic. Towards continuity, first note

that 𝑔𝑖 is obviously continuous. For continuity between the two

cases of the case distinction, it follows from the proof of Lemma 4.5

that, as 𝑒𝑖 (𝑦) → 0, 𝑔𝑖 (𝑦) converges to a value ≤ 0.

(2) It follows fromLemma 4.5 and 𝑒𝑖 (𝑦𝑖 , 𝑦) = 𝑒 (𝑦) and ˜
lev𝑖 (𝑦𝑖 , 𝑦) =

lev𝑖 (𝑦). More in detail, if 𝑦 is any strategy profile for which some

agent 𝑖 is insolvent or illiquid at 𝑦−𝑖 , then Φ𝑖 (𝑦) = 0 and by

Lemma 4.5 also Ψ𝑖 (𝑦) = 0. Thus, Φ𝑖 (𝑦) = 𝑦𝑖 iff 𝑦𝑖 = 0 iff Ψ𝑖 (𝑦) = 𝑦𝑖 .

If agent 𝑖 is liquid at 𝑦−𝑖 , then 𝑦𝑖 = Φ𝑖 (𝑦) iff 𝑦𝑖 is maximal such

that 𝑒𝑖 (𝑦𝑖 , 𝑦−𝑖 ) > 0 and lev𝑖 (𝑦𝑖 , 𝑦−𝑖 ) ≤ _. Since lev𝑖 (𝑦𝑖 , 𝑦−𝑖 ) =
˜
lev𝑖 (𝑦𝑖 , 𝑦), Lemma 4.5 implies equivalence to 𝑦𝑖 = Ψ𝑖 (𝑦).

(3) By part 1 and the same argument as in Theorem 3.3, the se-

quence converges to the maximal fixed point of Ψ, i.e., the maximal

fixed point ofΦ (by part 2) and point-wise maximal equilibrium. □

Φ and Ψ have the same fixed points (i.e., equilibria of the fire sale

game) and both converge to the maximal equilibrium. The speed of

convergence, however, can be vastly different, as we illustrate next.

4.3 Experiments and Diversification
We now study what properties of the asset holdings matrix 𝑥 affect

the stability of the financial system. Specifically, we are interested in

the effect of diversification, i.e., to which degree each agent spreads
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Figure 2: Comparison of the average step size over time of
the best-response (br) and the simplified dynamics (s) for
various values of diversification 𝜏 for games with 10 agents.

her investments across multiple assets. Higher diversification re-

duces the effect of each asset on each agent (increasing stability),

but also increases the number of channels by which one agent

may affect another (decreasing stability). We are interested in the

convergence speed of both standard and simplified best-response

dynamics. To that end, we perform a computational experiment

with the required code available online [8]:

We consider games with an equal number of agents and assets

𝑛 =𝑚. For each agent 𝑖 , we draw 𝑎𝐼
𝑖
uniformly in [80, 120] and 𝑙𝑖 in

[40, 60]. Price impact is linear and we set 𝑝0
𝑗
= 100 for each asset 𝑗 .

We choose the asset holdings based on a parameter 𝜏 ∈ [0, 1], which
measures diversification. We set 𝑥𝑖 𝑗 = 𝜏 · 1/𝑛 + (1 − 𝜏) · 𝛿𝑖 𝑗 , where
𝛿𝑖 𝑗 is the Kronecker symbol.

6
Let _1 be the highest leverage of any

agent at 𝑦1 = (1, . . . , 1). We draw _ from [0.6_1, 0.99_1] to ensure

that 𝑦1 is not a Nash equilibrium. We reject all instances with _ ≤ 1.

We let both dynamics converge from𝑦1 until all strategy changes in

a step become smaller than 10
−5
. Figure 2 depicts the average size

of strategy changes over time, while Figure 3 displays the number

of steps to convergence. For Figure 3 (right) we uniformly drew

𝑎𝐼
𝑖
from [0, 100], 𝑙𝑖 from [40, 100], 𝑝0

𝑗
from [50, 150], and _ from

[0.9_1, 0.99_1], with all other parameters unchanged. For each data

point, we average over 10
6
runs.

In Figure 2, we see that the step size over time does not decrease

exponentially for both dynamics, which suggests that convergence

requires pseudo-polynomially many steps before reaching an ap-

proximate equilibrium on average. We also see that diversification

has a significant effect on the best-response dynamics, since an

agent is less exposed to other agents for low values and thus needs

to make smaller corrections after the initial steps. The simplified

dynamics, on the other hand, does not exhibit this behavior, as an

agent is not accurately measuring her own price impact. Figure 3

shows that for our examples, the simplified dynamics converge

more slowly, but for many values of diversification not by a large

amount. Interestingly, a “hump” in convergence times appears at a

certain diversification value, reminiscent of similar results on sys-

temic risk [16]. However, a change of parameters may lead to wildly

different effects of diversification on the convergence of the sys-

tem for the simplified dynamics. Thus, to draw further conclusions

about convergence times, there needs to be sufficient information

on the asset holdings.

6
For 𝜏 = 0, each agent only holds a single (different) asset with no agent interactions;

for 𝜏 = 1, all agents hold all assets equally.

5 DISCUSSION AND CONCLUSIONS
We have studied price-mediated contagion from the perspective of

algorithmic game theory. The existence and the shape of equilibria

is heavily dependent on the assumptions regarding price impact.

For 𝛼 = 1 or convex price impact, the set of equilibria forms a lattice

and the Pareto optima form strong equilibria. However, agents face

a twofold equilibrium coordination problem: (1) while the maximal

equilibrium is the social optimum, the minimal equilibrium can

be arbitrarily poor; (2) simplified best-response dynamics can take

a long time to converge. This may lead to a delay in resolution

and exacerbates a financial crisis. To help alleviate this problem,

a regulator may estimate the maximal equilibrium and help guide

agents towards it.

Our key insights can be established more generally beyond the

case of even sales. Suppose for each asset 𝑗 and each agent 𝑖 there

is a monotone and continuous sales function 𝑓𝑖 𝑗 : [0, 1] → [0, 1]. In
such a game, when agent 𝑖 chooses a strategy 𝑦𝑖 ∈ [0, 1], it sells an
amount of 𝑓𝑖 𝑗 (𝑦𝑖 ) · 𝑥𝑖 𝑗 of asset 𝑗 . Even sales represent the special

case with 𝑓𝑖 𝑗 (𝑦𝑖 ) = 𝑦𝑖 for all 𝑖 and 𝑗 . Monotone sales functions

allow to capture further natural behavior of an agent, e.g., selling

the assets individually in a fixed priority order.

It is fairly straightforward to see that the central monotonicity

results (e.g., Proposition 2.4) extend to this case. As such, our main

results on existence, lattice structure, and convergence also hold

for games with monotone sales.

For 𝛼 ∈ (0, 1) and concave price impact, an equilibrium need not

exist. It is an interesting open problem to study the computational

complexity of deciding existence of equilibrium in a given fire

sale game. Another open problem is characterizing existence and

computation of equilibria for non-even-sales.
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