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ABSTRACT
Consider a graph 𝐺 with 𝑛 nodes and𝑚 edges, which represents

a social network, and assume that initially each node is blue or

white (indicating its opinion on a certain topic). In each round, all

nodes simultaneously update their color to the most frequent color

in their neighborhood. This is called the Majority Model (MM) if a

node keeps its color in case of a tie and the RandomMajority Model

(RMM) if it chooses blue with probability 1/2 and white otherwise.

We prove that there are graphs for which RMM needs exponen-

tially many rounds to reach a stable configuration in expectation,

and such a configuration can have exponentially many states (i.e.,

colorings). This is in contrast to MM, which is known to always

reach a stable configuration with one or two states in O(𝑚) rounds.
For the special case of a cycle graph 𝐶𝑛 , we prove the stronger and

tight bounds of ⌈𝑛/2⌉ − 1 and O(𝑛2) in MM and RMM, respectively.

Furthermore, we show that the number of stable colorings in MM

on 𝐶𝑛 is equal to Θ (Φ𝑛), where Φ = (1 +
√
5)/2 is the golden ra-

tio, while it is equal to 2 for RMM. Our results demonstrate how

minor local alterations, such as tie-breaking rule, can significantly

influence the global behavior of the process.

We also study the minimum size of a winning set, which is a set

of nodes whose agreement on a color in the initial coloring enforces

the process to end in a coloring where all nodes share that color.

We present tight bounds on the minimum size of a winning set for

both MM and RMM.

Furthermore, we analyze our models for a random initial col-

oring, where each node is colored blue independently with some

probability 𝑝 and white otherwise. Using some martingale analysis

and counting arguments, we prove that the expected final number

of blue nodes is respectively equal to (2𝑝2 − 𝑝3)𝑛/(1 − 𝑝 + 𝑝2) and
𝑝𝑛 in MM and RMM on a cycle graph 𝐶𝑛 .

Finally, we conduct some experiments which complement our

theoretical findings and also lead to the proposal of some intriguing

open problems and conjectures to be tackled in the future work.
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1 INTRODUCTION
When facing a decision or forming an opinion about a subject

such as the quality of a technological innovation or the success

of a political party, we are usually influenced by the opinion of

our friends, family, colleagues, and the figures whose opinions we

value. Hence, our opinions are constantly influenced and shaped

through interactions with our connections. Furthermore, due to

the extensive rise in the usage of online social platforms such as

Facebook, Instagram, WeChat, TikTok, and Twitter, opinions are

exchanged and formed at a higher pace.

Companies, political parties, and even governments attempt to

leverage the power of opinion formation and influence propagation

through online social platforms to reach their commercial and

political goals. For example, marketing campaigns routinely use

online social networks to sway people’s opinions in their favor, by

targeting subsets of members with free samples of their products

or misleading information. Therefore, opinion diffusion and (mis)-

information spreading can affect different aspects of our lives from

economics and politics to fashion and music.

There has been a fast-growing demand for a better and deeper

understanding of opinion formation and information spreading

processes in social networks. A more profound knowledge of the

collective decision-making and opinion diffusion processes would

let us control and regulate the effect of marketing and political

campaigns and stop the spread of misinformation.

The evolution of social dynamics has been a topic of intense

study by researchers from a wide range of backgrounds such as

economics [15], epidemiology [34], social psychology [41], and sta-

tistical physics [22]. It particularly has gained significant popularity

in theoretical computer science, especially in the rapidly growing

literature focusing on the interface between social choice and social

networks, cf. [6, 16, 26].

Numerous models have been proposed to simulate the opinion

formation processes. It is inherently difficult to develop models

which reflect reality perfectly since these processes are way too

complex to be expressed in purely mathematical terms. Therefore,

a suitable model strives to capture the fundamental properties of

opinion spreading processes, but at the same time be simple enough

to permit accurate and profound mathematical analysis. Therefore,

the objective is to establish models which justifiably approximate

the real opinion diffusion processes by disregarding less essential,

but distracting, parameters. The analysis of such approximate mod-

els would allow researchers to shed some light on the fundamental

principles and recurring patterns in the opinion diffusion processes,

which are otherwise concealed by the intricacy of the full process.
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Each opinion diffusion model has three essential components.

Firstly, one needs to define how the interactions between the indi-

viduals take place. A well-received choice is to use a graph structure,

where a node represents an individual and an edge between two

nodes corresponds to a relation between the respective individuals,

e.g. friendship or common interests. Secondly, there exist differ-

ent options for modeling the opinion of the individuals. A popular

choice is to assign a binary value, say blue or white, to each node,

which indicates whether the node is positive or negative about a

certain topic. Last but not the least, a crucial component of any

model is its updating rule which defines how and in what order

the nodes update their opinion. In the plethora of various updating

rules, the majority rule, where a node chooses the most frequent

opinion (i.e., color) in its neighborhood, has attracted a substantial

amount of attention.

Different aspects of opinion diffusion models have been inves-

tigated, both theoretically (by exploiting the rich tool kit from

graph and probability theory) and experimentally (by conducting a

vast spectrum of experiments on graph data from real-world social

networks). An enormous part of the research performed in this

area falls under the umbrella of the following three fundamental

questions:

(1) How long does it take for the process to reach a stable con-

figuration, and how does such a stable configuration look?

(2) What is theminimumnumber of nodes which need to be blue

to ensure that the whole graph eventually becomes blue?

(3) What is the expected final number of blue nodes starting

from a random initial coloring?

In the present paper, we contribute to the study of the aforemen-

tioned questions for two of the most basic majority based models

on general graphs and special classes of graphs, in particular cycles.

Roadmap. In the rest of this section, we first provide some basic

definitions which create the ground to describe our contributions

in more depth; then, we give a brief overview of the relevant prior

work. Our theoretical findings to address questions (1), (2), (3) are

presented in Sections 2, 3, 4, respectively. Finally, our experimental

results are provided in Section 5.

Remark. The complete proofs are provided in [44].

1.1 Preliminaries
Graph Definitions. Let 𝐺 = (𝑉 , 𝐸) be a simple connected undi-

rected graph and define 𝑛 := |𝑉 | and𝑚 := |𝐸 |. For a node 𝑣 ∈ 𝑉 ,

𝑁 (𝑣) := {𝑢 ∈ 𝑉 : {𝑢, 𝑣} ∈ 𝐸} is the neighborhood of 𝑣 . For a set

𝑆 ⊂ 𝑉 , we define 𝑁𝑆 (𝑣) := 𝑁 (𝑣) ∩ 𝑆 . Moreover, 𝑑 (𝑣) := |𝑁 (𝑣) | is
the degree of 𝑣 and 𝑑𝑆 (𝑣) := |𝑁𝑆 (𝑣) |. Note that whenever graph𝐺
is not clear from the context, we add a superscript, e.g. 𝑑𝐺 (𝑣).

Models. For a graph 𝐺 , a coloring is a function C : 𝑉 → {𝑏,𝑤},
where 𝑏 and 𝑤 represent blue and white. For a node 𝑣 ∈ 𝑉 , the

set 𝑁 C
𝑎 (𝑣) := {𝑢 ∈ 𝑁 (𝑣) : C (𝑢) = 𝑎} includes the neighbors of 𝑣

which have color 𝑎 ∈ {𝑏,𝑤} in the coloring C. Furthermore, we

write C|𝑆 = 𝑎 for a set 𝑆 ⊆ 𝑉 if C(𝑣) = 𝑎 for every 𝑣 ∈ 𝑆 .

Assume that we are given an initial coloring C0 on a graph𝐺 . In

a model 𝑀 , C𝑡 (𝑣), which is the color of node 𝑣 in round 𝑡 ∈ N, is
determined based on a predefined updating rule. We are interested

in the Majority Model (MM) where the updating rule is as follows:

C𝑡 (𝑣) =
{
C𝑡−1 (𝑣) 𝑖 𝑓 |𝑁 C𝑡−1

𝑏
(𝑣) | = |𝑁 C𝑡−1

𝑤 (𝑣) |
𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈{𝑏,𝑤 } |𝑁 C𝑡−1

𝑎 (𝑣) | 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.

In other words, each node chooses the most frequent color in

its neighborhood and keeps its color in case of a tie. The Random
Majority Model (RMM) is the same as MM except that in case of a tie,

a node chooses one of the two colors independently and uniformly

at random.

In these models, we define 𝑏𝑡 and𝑤𝑡 for 𝑡 ∈ N0 to be the number

of blue andwhite nodes inC𝑡 . These correspond to randomvariables

in RMM and also in MM when the initial coloring is random.

We say the process reaches the blue (white) coloring if it reaches

the coloring where all nodes are blue (white). For a cycle graph 𝐶𝑛
with even𝑛, there are two coloringswhere every two adjacent nodes

have different colors. We call these two colorings the alternating
colorings. If MM or RMM process reaches one of the two alternating

colorings, it keeps switching between them. We say the process has

reached the blinking configuration.
For a graph𝐺 , we say that a coloring C is stable if one application

of MM (similarly RMM) on C deterministically outputs C. (For
RMM, this implies that there are no ties.) Note that a stable coloring

need not be monochromatic. Furthermore, a 𝑝-random coloring,
for 0 ≤ 𝑝 ≤ 1, is a coloring where each node is colored blue

independently with probability (w.p.) 𝑝 and white otherwise.

Stabilization Time and Periodicity. Since the updating rule
in MM is deterministic and there are 2

𝑛
possible colorings, for any

initial coloring the process reaches a cycle of colorings and remains

there forever. The number of rounds the process needs to reach

the cycle is the stabilization time and the length of the cycle is the

periodicity of the process.

RMM on an 𝑛-node graph 𝐺 corresponds to a Markov chain.

This Markov chain has 2
𝑛
states (i.e., 2

𝑛
possible colorings) and

there is an edge from state 𝑠 to 𝑠 ′ if there is a non-zero probabil-

ity to go from 𝑠 to 𝑠 ′ in RMM. Since this is a directed graph, its

state set can be partitioned into maximal strongly connected com-

ponents. (A state set is a strongly connected component if every

state is reachable from every other state, and it is maximal if the

property does not hold when we add any other state to the set.)

Furthermore, we say a maximal strongly connected component is

an absorbing component if it has no outgoing edge. If each maxi-

mal strongly connected component is contracted to a single state,

the resulting graph is a directed acyclic graph. This implies that

in RMM, regardless of the initial coloring, the process eventually

reaches an absorbing component and remains there forever. The

expected number of rounds the process needs to reach an absorbing

component is the stabilization time and the size of the absorbing

component is the periodicity of the process. In simple words, the

process eventually reaches a subset of states (colorings) and keeps

transitioning between them. The stabilization time is the expected

number of rounds to get there, and the periodicity is their number.

Winning and Resilient Sets. For MM or RMM on a graph

𝐺 = (𝑉 , 𝐸), we say a node set 𝑆 ⊆ 𝑉 is a winning set whenever the
following holds: If all nodes in 𝑆 are blue (white), then the process

eventually reaches the blue (white) coloring regardless of the color

of nodes in𝑉 \𝑆 and all the random choices (in RMM). Furthermore,

we say a node set 𝑆 ⊆ 𝑉 is a resilient set whenever the following
holds: If 𝑆 is fully blue (white) then all nodes in 𝑆 remain blue
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(white) forever, regardless of the color of the other nodes and the

random choices. We observe that a set 𝑆 is resilient in MM (resp.

RMM) if and only if for every node 𝑣 ∈ 𝑆 , |𝑁𝑆 (𝑣) | ≥ 𝑑 (𝑣)/2 (resp.
|𝑁𝑆 (𝑣) | > 𝑑 (𝑣)/2).

Path Partition. Consider a cycle 𝐶𝑛 and a coloring C. We say

a path is blue (white) if all its nodes are blue (white). A path is

monochromatic if it is blue or white. Furthermore, a path is alternat-
ing if every two adjacent nodes have opposite colors. The length of

a path is its number of nodes and an even (odd) path is a path whose

length is even (odd). Except when 𝑛 is even and C is one of the two

alternating colorings, there must exist at least one monochromatic

path of length two or larger. Let 𝐵 (resp.𝑊 ) be the set of nodes on

the maximal blue (resp. white) paths of length at least two in C.
Then, all the nodes which are not in 𝐵 ∪𝑊 can be partitioned into

maximal alternating paths, which are surrounded by the aforemen-

tioned monochromatic paths. We call the union of these maximal

monochromatic and alternating paths, the path partition in C.
McDiarmid’s Inequality. We use an extension of McDiarmid’s

inequality which gives a bound on the input sensitivity of random

variables when differences in the output satisfy some bound.

Definition 1.1. Let 𝑋 : Ω → R be a random variable over the

probability space Ω = {0, 1}𝑛 . We say 𝑋 is difference-bounded by

(𝛽, 𝑐, 𝛿) if the following holds: (i) there is a “bad” subset 𝐵 ⊂ Ω,
where |𝐵 |/|Ω | = 𝛿 (ii) if 𝜔,𝜔 ′ ∈ Ω differ only in the 𝑖-th coordinate,

and 𝜔 ∉ 𝐵, then |𝑋 (𝜔) −𝑋 (𝜔 ′) | ≤ 𝑐 (iii) for any 𝜔 and 𝜔 ′
differing

only in the 𝑖-th coordinate, |𝑋 (𝜔) − 𝑋 (𝜔 ′) | ≤ 𝛽 .

Theorem 1.2 (An Extension of McDiarmid’s Ineqality [30]).

Let random variable 𝑋 : {0, 1}𝑛 → R be difference-bounded by
(𝛽, 𝑐, 𝛿), then for any 𝜖 > 0, the probability P[(1 − 𝜖)E[𝑋 ] ≤ 𝑋 ≤
(1 + 𝜖)E[𝑋 ]] is at least 1 − 2 exp

(
−𝜖2E[𝑋 ]2

8𝑛𝑐2

)
− 2𝛿𝑛𝛽

𝑐 .

With High Probability. We assume that 𝑛 (i.e., |𝑉 |) tends to
infinity. We say an event happens with high probability (w.h.p.)

when it occurs w.p. 1 − 𝑜 (1).

1.2 Our Contribution
Contribution 1: Stabilization Time and Periodicity. It is known
[35] that the stabilization time inMM on a graph𝐺 is inO(𝑚). How-
ever, it was left open whether a similar bound holds for RMM or not.

We show that the answer is negative by providing an explicit graph

construction and coloring for which the stabilization time of RMM

is exponential, in 𝑛. Furthermore, we investigate the stabilization

time when the underlying graph is a cycle 𝐶𝑛 . We prove the upper

bound of ⌈𝑛/2⌉ − 1 for MM and O(𝑛2) for RMM. For the former we

exploit some combinatorial arguments and for the latter we analyze

the “convergence” time of a corresponding Markov chain. We show

that both of these bounds are tight.

A trivial bound on the periodicity of MM is 2
𝑛
. However, Goles

and Olivos [24] proved that its periodicity is one or two, i.e., the

process always reaches a fixed coloring or switches between two

colorings. While a similar behavior was observed for RMM on some

special classes of graphs, cf. [1], we prove that this does not apply

to the general case. More precisely, we give graph structures and

initial colorings for which the periodicity of RMM is exponential.

We also initiate the study of the number of stable colorings. We

prove that the number of stable colorings of a cycle 𝐶𝑛 is in Θ(1)

for RMM and in Θ(Φ𝑛) for MM, where Φ = (1+
√
5)/2 is the golden

ratio. This is another indication how small alterations in the local

behavior of a process, such as the tie-breaking rule, can have a

substantial impact on the global behavior of the process.

Contribution 2:MinimumSize of aWinning Set.Weprovide

some bounds on minimum-size winning sets. In particular, in RMM

on a cycle 𝐶𝑛 , the only winning set is the set of all nodes. In MM

on 𝐶𝑛 , the minimum size of a winning set is equal to ⌊𝑛/2⌋ + 1.

Contribution 3: Random Initial Coloring. The problem of

finding the expected “final” number of blue nodes starting from a

𝑝-random coloring has been attacked by previous work (see Sec-

tion 1.3). However, only some loose bounds for special classes of

graphs have been provided, which seems to be due the inherent

difficulty of the problem. We make some advancements on this

front, by answering the question for cycle graphs. (As we explain

later, we believe that our techniques can be used to prove similar

results for a larger class of graphs, namely the 𝑑-dimensional torus

or more broadly vertex-transitive graphs.) We show that in RMM

on 𝐶𝑛 , the expected final number of blue nodes is equal to 𝑝𝑛. On

the other hand, this is equal to (2𝑝2 − 𝑝3)𝑛/(1 − 𝑝 + 𝑝2) for MM

(it was brought to our attention that a similar result was proven

in [32]. However, we believe our proof is more intuitive and more

importantly we prove a w.h.p. statement).

Contribution 4: Proof Techniques. One of the main contribu-

tions of the present paper is introducing several proof techniques

built on Markov chain analysis, counting arguments, potential func-

tions, greedy approaches, martingale processes, and recursive func-

tions, which we believe can be very beneficial for the future work to

make advancements on majority based (more generally, threshold

based) opinion diffusion models. A fair amount of effort has been

put into ensuring that the proofs are accessible by avoiding unnec-

essary complexities imposed by adding less essential components

to the model or the underlying graph structure. This has been our

main motive for focusing on two of the most basic models and

presenting a big fraction of our results on cycle graphs. We explain

how some of our techniques can potentially be utilized to prove

similar results in a more general framework.

Contribution 5: Experimental Results.We present the out-

comes of several experiments that we have conducted. A subset

of these experiments has been designed to merely support and

complement our theoretical findings. However, some of the exe-

cuted experiments let us uncover other interesting characteristics

of our models. In particular, we investigate the effect of adding

some random edges to the underlying graph structure. This leads to

some open problems and conjectures about the connection between

graph parameters such as conductance and vertex-transitivity and

the process properties such as the stabilization time, which could

serve as potential future research directions.

1.3 Related Work
Numerous opinion diffusion models have been introduced to study

how the members of a community form their opinions through

social interactions, cf. [11, 27]. Among all these models, a consid-

erable amount of attention has been devoted to the study of the

majority based models, cf. [3–5, 17, 43].
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Stabilization Time and Periodicity. It was proven [24] that the
periodicity of MM is always one or two. Chistikov et al. [20] showed

that it is PSPACE-complete to decide whether the periodicity is

one or not for a given coloring of a directed graph. Furthermore, it

was proven [35] that the stabilization time of MM is bounded by

O(𝑚). Stronger bounds are known for special classes of graphs. For

instance, for a 𝑑-regular graph with strong conductance the stabi-

lization time is in O(log𝑑 𝑛), cf. [42]. The stabilization properties

have also been studied for other majority based models, cf. [1, 13].

Minimum Size of a Winning Set.Motivated from viral mar-

keting where a company aims to trigger a large cascade of further

adoptions of its product by convincing a subset of individuals to

adopt a positive opinion about its product (e.g., by giving them free

samples), the problem of finding the minimum size of a winning set

has been studied extensively, cf. [7, 29]. Gärtner and Zehmakan [23]

proved that the minimum size of a winning set in MM on a random

𝑑-regular graph is almost as large as 𝑛/2 w.h.p. if 𝑑 is sufficiently

large. Using the expander mixing lemma, it was proven [42] that

this is actually true for all graphs with a certain level of conduc-

tance, including random regular graphs and Erdős-Rényi random

graph. For general graphs, it was proven in [6] that every graph has

a winning set of size at most 𝑛/2 under the asynchronous variant
of MM. In [8, 33], the minimum size of a winning set on graph data

from real-world social networks was investigated for a variant of

MM where the nodes with the highest degrees (called the elites)

have a larger “influence factor” than others.

Furthermore, the problem of finding the minimum size of a win-

ning set for a given graph 𝐺 is known to be NP-hard for different

majority based models, cf. [29, 37], and approximation algorithms

based on various techniques, such as integer programming formula-

tions [38, 40] and reinforcement learning [28], have been proposed.

For MM and RMM, it was proven [31] that this problem cannot be

approximated within a factor of (logΔ log logΔ), unless P=NP, but
there is a polynomial-time (logΔ)-approximation algorithm, where

Δ is the maximum degree. Chen [19] proved that the problem is

traceable for special classes of graphs such as trees.

Random Initial Coloring. The problem of finding the expected

final number of blue nodes in MM and RMMwith a 𝑝-random initial

coloring has been studied for different graphs, e.g., random regular

graphs [23], hypercubes [10] and preferential attachment graphs [2].

Motivated from applications in certain interacting particle systems

such as fluid flow in rocks and dynamics of glasses, this also has been

studied extensively when the underlying graph is a 𝑑-dimensional

torus, cf.[9]. Gray [25] studied the problem for cycle graphs where

some noise is added to the process. Roughly speaking, the main

finding of the aforementioned work is that there are thresholds 𝑝1
and 𝑝2 so that if 𝑝 is sufficiently smaller than 𝑝1 (similarly larger

than 𝑝2) then the process reaches the white (resp. blue) coloring

and a non-monochromatic configuration if 𝑝 is in between w.h.p.

The main difficulty in this set-up is to determine the values of 𝑝1
and 𝑝2.

In the last few years, a lot of attention has been given to the study

of MM on Erdős-Rényi random graph starting from a 𝑝-random

initial coloring. In [42], it was proven that when 𝑝 is “slightly”

larger than 1/2, then the process reaches the blue coloring w.h.p.

Following up on a conjecture from [12], the case of 𝑝 = 1/2 also
has been studied extensively, cf. [18, 36, 39].

…

…

𝑣! 𝑣"

…
Figure 1: (left) The construction given in Theorem 2.1 for
exponential stabilization time in RMM. (right) The set of
“extended” maximal alternating paths A+ are enclosed with
green curves, see proof of Theorem 2.5.

2 STABILIZATION TIME AND PERIODICITY
2.1 Stabilization Time in General Graphs
As mentioned, it was proven [35] that the stabilization time of MM

is in O(𝑚). It is easy to argue this bound holds even when the nodes
are updated asynchronously or when we have a biased tie-breaking

rule (i.e., always blue is chosen in case of a tie). However, it was

left open whether a similar bound can be proven for random tie-

breaking. We settle this, in Theorem 2.1, by providing an explicit

graph construction and coloring for which RMM needs exponen-

tially many rounds to stabilize in expectation. (Our proof actually

works for any random tie-breaking rule, where a node chooses blue

(white) independently w.p. 0 < 𝑞 < 1 (resp. 1 − 𝑞) in case of a tie.)

Theorem 2.1. There is a graph 𝐺 = (𝑉 , 𝐸) and a coloring C0 for
which the stabilization time of RMM is exponential in 𝑛.

Proof. To provide the construction of graph 𝐺 , we first define

three smaller graphs and then explain how to connect these graphs

to create 𝐺 . We define 𝜅 := ⌊𝑛/3⌋ − 1. Let 𝑆𝑏 be a star graph with

an internal node 𝑣𝑏 and 𝜅 − 1 leaves and 𝑆𝑤 be a star graph with

an internal node 𝑣𝑤 and 𝑛 − 2𝜅 − 1 leaves. Furthermore, let 𝐼 be the

graph built of 𝜅 isolated nodes. Now to build graph𝐺 , for each node

in 𝐼 we add an edge to 𝑣𝑏 and an edge to 𝑣𝑤 . (Note that the total

number of nodes is equal to |𝑉𝑆𝑏 |+ |𝑉𝑆𝑤 |+ |𝑉𝐼 | = 𝜅+(𝑛−2𝜅)+𝜅 = 𝑛.)

Please see Figure 1 (left) for an example.

Claim 1. The nodes in 𝑆𝑤 form a resilient set. Each node in 𝑆𝑤
has more than half of its neighbors in 𝑆𝑤 . This is trivial for all the

leaf nodes. The internal node 𝑣𝑤 is adjacent to 𝑛 − 2𝜅 − 1 leaves in

𝑆𝑤 and 𝜅 nodes in 𝐼 and we have 𝑛 − 2𝜅 − 1 > 𝜅.

Claim 2. Let U be the set of colorings where 𝑆𝑤 is white, 𝑆𝑏 is
blue, and at least one node in 𝐼 is blue. For a coloring C ∈ U, in the
next round, all nodes in 𝑆𝑏 and 𝑆𝑤 keep their color and each node in 𝐼
chooses a color uniformly at random. All nodes in 𝑆𝑤 remain white

according to Claim 1. All leaves in 𝑆𝑏 have exactly one neighbor

which is blue; thus, they remain blue. Node 𝑣𝑏 is of degree 2𝜅 − 1

and has at least 𝜅 blue neighbors, thus it remains blue too. Each

node in 𝐼 has exactly one blue neighbor (𝑣𝑏 ) and one white neighbor

(𝑣𝑤 ), thus it chooses among blue and white uniformly at random.

Assume that in C0, all nodes in 𝑆𝑤 are white and the rest of

the nodes are blue. C0 is clearly in U. We show that the process

eventually reaches the white coloring. Hence, the stabilization time

is upper-bounded by the expected number of rounds we need to
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reach a coloring not in U (because the white coloring obviously

is not in U). Note that from a coloring in U, if at least one node

in 𝐼 selects blue, we are still inU in the next round, according to

Claim 2. The only way to leaveU is that all nodes in 𝐼 select white.

Since this happens only w.p. 1/2𝜅 , it takes 2𝜅 = 2
⌊𝑛/3⌋−1

rounds in

expectation for it to happen.

It remains to prove that the process eventually reaches the white

coloring. Note that according to Claim 1, 𝑆𝑤 remains white forever.

Thus, it suffices to prove that from any coloring where 𝑆𝑤 is fully

white, there is a non-zero probability to reach the white coloring.

Let C be such a coloring. There is a non-zero probability that all

nodes in 𝐼 become white in the next round (since they all have

at least one white neighbor, namely 𝑣𝑤 ). It is possible that in the

round after all nodes in 𝐼 remain white and 𝑣𝑏 becomes white (recall

𝑑 (𝑣𝑏 ) = 2𝜅 − 1). One round after that, all nodes will be white.

□

2.2 Stabilization Time in Cycles
We prove that on a cycle𝐶𝑛 the stabilization time is at most ⌈𝑛/2⌉−1
for MM (Theorems 2.3) and in O(𝑛2) for RMM (Theorem 2.5). It is

straightforward to infer Theorem 2.3 from Lemma 2.2, given below.

Furthermore, to prove Theorem 2.5, we rely on the Markov chain

analysis given in Lemma 2.4.

Lemma 2.2. In MM on a cycle 𝐶𝑛 with a coloring C, if there exist
two adjacent nodes with the same color, the process reaches a stable
coloring after exactly ⌈𝑙/2⌉ rounds, where 𝑙 is the length of the longest
alternating path in the path partition of C.

Proof. Let 𝐵 (resp.𝑊 ) be the set of nodes on the (maximal) blue

(resp. white) paths in the path partition in C. All nodes in 𝐵 and

𝑊 keep their color forever. Furthermore, all alternating paths in

the path partition keep shrinking until they disappear. Consider an

alternating path 𝑣1, · · · , 𝑣𝑘 . After one round, 𝑣1 and 𝑣𝑘 “join” the

adjacent monochromatic paths and thus it shrinks to the alternating

path 𝑣2, · · · , 𝑣𝑘−1, which is of length 𝑘 − 2. If 𝑘 is even, the path

disappears after 𝑘/2 = ⌈𝑘/2⌉ rounds. If 𝑘 is odd, its length decreases

by two in each round until it is of length 1. Then, it needs one more

round to disappear. This is equal to ⌈𝑘/2⌉ rounds overall. Therefore,
after ⌈𝑙/2⌉ rounds all nodes are on a monochromatic path of length

at least two and will never change their color. □

Theorem 2.3. The stabilization time of MM on a cycle 𝐶𝑛 is at
most ⌈𝑛/2⌉ − 1 and this bound is tight.

Lemma 2.4. Consider the time-homogenous Markov chain which is
defined over the state set 𝑆 := {𝑠0, · · · , 𝑠𝑘 } with the transition matrix
𝑃 := (𝑝𝑠𝑖 ,𝑠 𝑗 )𝑠𝑖 ,𝑠 𝑗 ∈𝑆 , where for 1 ≤ 𝑖 ≤ 𝑘 − 1 we have 𝑝𝑠𝑖 ,𝑠𝑖 =

1

2
and

𝑝𝑠𝑖 ,𝑠𝑖+1 = 𝑝𝑠𝑖 ,𝑠𝑖−1 =
1

4
and for 𝑖 = 0, 𝑘 we have 𝑝𝑠𝑖 ,𝑠𝑖 = 1. The expected

number of rounds it needs to reach from a state 𝑠𝑖 to 𝑠0 or 𝑠𝑘 is equal
to 2𝑖 (𝑘 − 𝑖).

Proof Sketch. Let 𝑇𝑖 be the expected number of rounds the

Markov chain needs to reach from state 𝑠𝑖 to state 𝑠0 or 𝑠𝑘 . Obviously,

we have𝑇0 = 𝑇𝑘 = 0. Furthermore, from state 𝑠𝑖 , for 1 ≤ 𝑖 ≤ 𝑘 −1, if

we move to state 𝑠𝑖+1 w.p. 1/4, then in addition to this step we need

in expectation𝑇𝑖+1 steps to finish. A similar argument applies to the

transition to 𝑠𝑖−1 and remaining in state 𝑠𝑖 , which happen w.p. 1/4
and 1/2 respectively. Thus, conditioning on these three possibilities

we conclude that 𝑇𝑖 =
1

4
𝑇𝑖−1 + 1

4
𝑇𝑖+1 + 1

2
𝑇𝑖 + 1 for 1 ≤ 𝑖 ≤ 𝑘 − 1.

Solving this linear recursion gives us 𝑇𝑖 = 2𝑖 (𝑘 − 𝑖). □

Theorem 2.5. The stabilization time of RMM on 𝐶𝑛 is in O(𝑛2).

Proof. Let us first introduce lazy RMM on𝐶𝑛 which is basically

a slower version of RMM. For a coloring C, consider all the maximal

monochromatic paths of length at least 2 on 𝐶𝑛 , and let A denote

the set of maximal alternating paths which sit between two such

monochromatic paths. This includes alternating paths of length 0,

when two monochromatic paths with opposite colors are adjacent.

(This is essentially the set of alternating paths in the path partition

in C plus the mentioned path of length 0.) Define A+
to be the set

of paths obtained by taking each path from A and attaching its

two adjacent nodes to it. (See Figure 1 (right) for an example.) In

the lazy RMM instead of updating all nodes at once, we pick up the

paths in A+
one by one (in an arbitrary order) and then update the

color of all nodes on the picked path at once following the RMM

rule. Once we have exhausted A+
, we regenerate A+

for the new

coloring and continue. However, note that we do not actually bring

the updated colors to effect until we have gone through all paths in

A+
. You can imagine that we keep the updated color for each node

in a buffer and then it comes to effect once A+
is empty.

Note that every two paths inA+
are disjoint (because we consid-

ered the monochromatic paths of length at least two). Furthermore,

each node not on any path in A+
will not change its color in RMM

since it has the same color as both its neighbors. Thus, the coloring

which is generated after processing all elements of A+
is the same

as the coloring which would have been outputted had we applied

RMM instead (of course, assuming the same source of randomness,

i.e., a node makes the same random choice in both processes in case

of a tie). Moreover, the lazy RMM stops when the process reaches a

coloring where A+
is empty. This means the process has reached

a monochromatic/blinking configuration, which is equivalent to

stabilization in RMM, as we prove formally in Theorem 2.7. In short,

the lazy RMM is just a slower version of RMM, where we break a

round into smaller sub-rounds. Thus, it suffices to prove our desired

upper-bound of O(𝑛2) for the lazy RMM.

Let 𝑃 := 𝑣1, · · · , 𝑣𝑘 be a path inA+
. We claim that after updating

the nodes on 𝑃 , the number of blue nodes increases (decreases) by

1 w.p. 1/4 and remains the same w.p. 1/2. First consider the case of
even 𝑘 . Since the original alternating path 𝑣2, · · · , 𝑣𝑘−1 is of even
length, the adjacent monochromatic paths containing 𝑣1 and 𝑣𝑘
must be of opposite colors. Without loss of generality, assume that

𝑣1 is blue and 𝑣𝑘 is white. Thus for 2 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣𝑖 is white for

even 𝑖 and blue for odd 𝑖 . Overall, there are 𝑘/2 blue nodes before
the update. After the update: (i) each node 𝑣𝑖 , for 2 ≤ 𝑖 ≤ 𝑘 − 1,

deterministically switches its color, which gives (𝑘 − 2)/2 blue

nodes (ii) 𝑣1 and 𝑣𝑘 choose a color uniformly and independently

at random. They both choose blue (white) w.p. 1/4, which gives

(𝑘 − 2)/2 + 2 = 𝑘/2 + 1 (resp. (𝑘 − 2)/2 = 𝑘/2 − 1) blue nodes, i.e.,

an increase (resp. decrease) by one in the number of blue nodes.

Furthermore, one of them chooses blue and the other one chooses

white w.p. 1/2 which gives (𝑘 − 2)/2 + 1 = 𝑘/2 blue nodes, i.e., no
change. We can prove the same statement for the case of odd 𝑘 by

applying a very similar argument.

Consider the Markov chain described in Lemma 2.4 for 𝑘 = 𝑛,

where state 𝑠𝑖 represents having 𝑖 blue nodes. We claim that the
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maximum number of rounds this Markov chain needs to reach 𝑠0
or 𝑠𝑛 , in expectation, is an upper bound on the stabilization time of

the lazy RMM process. As we discussed in each round of the lazy

RMM, the number of blue nodes decreases/increases by 1 w.p. 1/4
and remains the same w.p. 1/2. For odd 𝑛, if the process has not

reached the white or blue coloring (corresponding to state 𝑠0 and 𝑠𝑛
in the Markov chain), the set A+

is non-empty. Thus the Markov

chain actually models the lazy RMM precisely. When 𝑛 is even, it is

possible that we reach a coloring whereA+
is empty but we are not

in the blue or white coloring (this happens if the process reaches

the blinking configuration, where the corresponding Markov chain

is in the state 𝑠𝑛/2). However, as we are looking for an upper bound,

this is not an issue. Hence, starting from a coloring with 𝑖 blue

nodes, the stabilization time is bounded by 2𝑖 (𝑛 − 𝑖) rounds. Since
2𝑖 (𝑛 − 𝑖) is maximized for 𝑖 = 𝑛/2, this is at most 𝑛2/2 = O(𝑛2).

□

The quadratic bound given in Theorem 2.5 is tight. One can

prove that if we start from a coloring which partitions the node set

into a blue path and an alternating path (both of size almost 𝑛/2)
then the process needs Ω(𝑛2) rounds in expectation to stabilize.

2.3 Periodicity in General Graphs and Cycles
A trivial upper bound on the periodicity of MM and RMM is 2

𝑛
.

It was proven [24] that the periodicity of MM is always 1 or 2.

Theorem 2.6 states that for RMM the trivial bound of 2
𝑛
is actually

the best possible, up to some constant factor. On the other hand,

if we limit ourselves to the cycle graphs, then the periodicity for

both RMM and MM is always one or two, see Theorems 2.7.

Theorem 2.6. For any integer 𝑛, there is an 𝑛-node graph 𝐺 for
which the periodicity of RMM is in Ω(2𝑛).

Proof Sketch. Define 𝜅 to be the largest integer smaller than

𝑛 − 6 which is divisible by 4. Consider a path 𝑃 := 𝑣0, · · · , 𝑣𝜅−1, a
clique𝐶𝑤 of size 3, and a clique𝐶𝑏 of size 𝑛 − 3−𝜅 . To build graph

𝐺 , add an edge between 𝑣0 and a node in 𝐶𝑤 and an edge between

𝑣𝜅−1 and a node in 𝐶𝑏 . LetU be the set of all colorings where 𝐶𝑤

is fully white and 𝐶𝑏 is fully blue. Note that |U| = 2
𝜅 = Ω(2𝑛). We

can prove that for every two colorings C, C′ ∈ U, there is a non-

zero probability to reach from C to C′
and there is no transition

possible from a coloring in U to a coloring outside U. Thus, the

colorings in U form an absorbing strongly connected component,

which yields the bound of Ω(2𝑛) on the periodicity. □

Theorem 2.7. In MM on a cycle 𝐶𝑛 :
• If 𝑛 is odd, the process always reaches a stable coloring.
• If 𝑛 is even, the process reaches a stable coloring or the blinking
configuration.

In RMM on a cycle 𝐶𝑛 :
• If 𝑛 is odd, the process always reaches the white (blue) coloring.
• If 𝑛 is even, the process reaches the white (blue) coloring or the
blinking configuration.

Proof Sketch. For MM, if there are two adjacent nodes with

the same color, then according to Lemma 2.2, the process reaches

a stable coloring. If not (which is only possible for even 𝑛), then

the process is in the blinking configuration. For RMM, we need a

similar, but probabilistic, argument. □

Number of Stable Colorings. According to Theorem 2.7, there

are two stable colorings, namely the white and blue coloring, in

RMM on cycle 𝐶𝑛 . What about the number of stable colorings in

MM? We answer this question in Theorem 2.8.

Theorem 2.8. In MM on a cycle 𝐶𝑛 = (𝑣0, · · · , 𝑣𝑛−1), there are
Θ(Φ𝑛) stable colorings, where Φ =

1+
√
5

2
is the golden ratio.

3 WINNING SETS
How small could a winning set be? Berger [14], surprisingly, proved

that there exist arbitrarily large graphs which have winning sets

of constant-size in MM. Actually, a proof was sketched that this

statement holds regardless of the tie-breaking rule. This is stated

more formally in Theorem 3.1 and for the sake of completeness a

full proof is given in the complete version of the paper.

We say a model follows the majority rule if in each round, every

node updates its color to the most frequent color in its neighbor-

hood, and a tie is broken in any arbitrary manner. This in particular

includes MM and RMM.

Theorem 3.1. For every positive integer 𝑘 and a model which
follows the majority rule, there is an 𝑛-node graph with 𝑛 ≥ 𝑘 , which
has a winning set of size 36.

Theorem 3.2. In RMM on a cycle 𝐶𝑛 = (𝑣0, · · · , 𝑣𝑛−1), the only
winning set is the set of all nodes. In MM on 𝐶𝑛 , the minimum size of
a winning set is equal to ⌊𝑛/2⌋ + 1.

Proof Sketch. For RMM, we can prove that if there is a white

node in the initial coloring, it is possible that the process does not

reach the blue coloring. This implies that the only winning set is

the set of all nodes.

Let B be a winning set in MM. For every two adjacent nodes, at

least one must be in B. By a case distinction between odd and even

𝑛, we can conclude that |B| ≥ ⌊𝑛/2⌋ + 1. Furthermore, this bound

is tight since the set {𝑣𝑖 : (𝑖 mod 2) = 1} ∪ {𝑣0} is a winning set

of size ⌊𝑛/2⌋ + 1. □

4 RANDOM INITIAL COLORING
We determine the expected final number of blue nodes starting with

a random coloring on a cycle graph for MM and RMM respectively

in Theorems 4.1 and 4.2.

Theorem 4.1. In MM on a cycle 𝐶𝑛 with a 𝑝-random initial col-
oring for some 𝑝 ≥ 1/2, the process reaches a stable coloring with

(1 ± 𝜖) 2𝑝
2−𝑝3

1−𝑝+𝑝2
𝑛 blue nodes, for an arbitrarily small constant 𝜖 > 0,

in O (log𝑛) rounds w.h.p.

Proof. Let E be the event that there is no alternating path of

size larger than 𝑛−4 in the initial coloring. The probability of E not

happening can be upper-bounded by 2𝑛(𝑝 (1 − 𝑝)) ⌊ (𝑛−4)/2⌋ which
is exponentially small in 𝑛. Since our statement needs to hold w.h.p.

(i.e., w.p. 1−𝑜 (1)), in the rest of the proof, we assume that E happens.

(To be fully accurate, we need to condition on E happening in our

calculations, but we skip that for the sake of simplicity.) Thus, in the

initial coloring the nodes can be partitioned into maximal blue and

white paths of length at least two and maximal alternating paths of

size at most 𝑛−4. From such an initial coloring, the monochromatic
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paths keep growing and the alternating paths shrink until the pro-

cess reaches a stable coloring with only monochromatic paths. (See

proof of Lemma 2.2 for more details.)

Let 𝑝 𝑓 be the probability that an arbitrary node 𝑣 is blue at the

end. To compute 𝑝 𝑓 , we consider the three cases of 𝑣 being on

a monochromatic path, on an odd alternating path, or an even

alternating path in the path partition of the initial coloring, which

results in Equation (1). (I) If 𝑣 is on a white path, it never becomes

blue. If it is on a blue path, it remains blue forever. The probability

of 𝑣 being on a blue path is equal to 𝑝 (𝑝2 + 2𝑝 (1 − 𝑝)) since 𝑣

and at least one of its neighbors must be blue. (See the first term

in Equation (1).) (II) An odd alternating path is adjacent to two

monochromatic paths of the same color (they potentially could be

the same path) and all nodes on the alternating path eventually

choose the color of the monochromatic path(s). The probability that

𝑣 is on an odd alternating path of length 𝑘 which is adjacent to blue

path(s) is equal to 𝑝4𝑘𝑝 ⌊𝑘/2⌋ (1 − 𝑝) ⌈𝑘/2⌉ . (The term 𝑝4 is for two

adjacent nodes at each side of the path to be blue. Note that since

we assume that there is no alternating path of size larger than 𝑛− 4,

these four nodes are distinct.) Summing over all choices of 𝑘 , we

get the second term in Equation (1). (III) An even alternating path 𝑃

is adjacent to a blue path and a white path. The nodes on 𝑃 which

are closer to the blue (white) path become blue (resp. white) after

at most |𝑃 |/2 rounds. The probability that 𝑣 is on an alternating

even path of length 𝑘 and is closer to the blue path is equal to

2𝑝2 (1− 𝑝)2 𝑘
2
𝑝𝑘/2 (1− 𝑝)𝑘/2. Summing over all choices of 𝑘 , we get

the third term in Equation (1).

𝑝 𝑓 =

(
2𝑝2 − 𝑝3

)
+ 𝑝4

∑︁
odd 1≤𝑘≤𝑛−4

𝑘𝑝

⌊
𝑘
2

⌋
(1 − 𝑝)

⌈
𝑘
2

⌉
+

𝑝2 (1 − 𝑝)2
∑︁

even 1≤𝑘≤𝑛−4
𝑘𝑝

𝑘
2 (1 − 𝑝)

𝑘
2

(1)

Let us define 𝑞 := 𝑝 (1 − 𝑝). Then we can write the last sum as

2𝑞2
∑ ⌊ 𝑛−4

2
⌋

𝑖=1
𝑖𝑞𝑖 . This is equal to 2𝑞2

𝑞

(1−𝑞)2 +O(𝑛𝑞
𝑛
2 ), where we used

the fact that this is the derivative of a geometric series. Similarly, we

can show that the first sum in Equation (1) is equal to 𝑝3 ( 2𝑞

(1−𝑞)2 −
𝑞

1−𝑞 ) + O(𝑛𝑞
𝑛
2 ). By plugging these into Equation (1), doing some

basic calculations, and using the fact that 𝑛 tends to infinity, we get

𝑝 𝑓 =
2𝑝2−𝑝3

1−𝑝+𝑝2
. (We are ignoring the additive term O(𝑛𝑞

𝑛
2 ) because

it is converging to 0 and can be hidden behind the estimate (1 ± 𝜖)
that we add later.) This implies that E[𝑏 𝑓 ] =

2𝑝2−𝑝3

1−𝑝+𝑝2
𝑛 where 𝑏 𝑓 is

the final number of blue nodes.

Let 𝑙𝑝 denote the length of the longest alternating path in a

𝑝-random coloring on 𝐶𝑛 . Then, for 𝑙
∗
:= 8 log

2
𝑛 we have

P[𝑙𝑝 ≥ 𝑙∗] ≤ 2𝑛(𝑝 (1 − 𝑝))𝑙
∗/2 ≤ 2𝑛

(
1

2

)𝑙∗/2
=

2

𝑛3
. (2)

Therefore, w.p. at least 1 − 2/𝑛3, the process ends before 𝑙∗ rounds.
We claim that the random variable 𝑏 𝑓 (defined over Ω = {𝑤,𝑏}𝑛)

is difference-bounded by (𝛽 = 𝑛, 𝑐 = 4𝑙∗ + 7, 𝛿 = 2/𝑛3). (I) Let 𝐵 be

the set of colorings where there is an alternating path of length

at least 𝑙∗. If we set 𝑝 = 1/2, then we pick a coloring uniformly

at random among the 2
𝑛
colorings. According to Equation (2), the

probability that such a randomly chosen coloring has an alternat-

ing path of size at least 𝑙∗ is at most 2/𝑛3, i.e., |𝐵 |/|Ω | ≤ 2/𝑛3. (II)
Consider a coloring C ∉ 𝐵. Since the length of the longest alter-

nating path is less than 𝑙∗, the process ends before 𝑙∗ rounds. Now,
assume we flip the color of a node 𝑣 to obtain the coloring C′

. The

longest alternating path in C′
cannot be longer than 2𝑙∗ + 3. Thus,

the process starting from C′
ends in at most 𝑡 ≤ 2𝑙∗ + 3 rounds.

Furthermore, the color of node 𝑣 influences the final color of at most

2𝑡 + 1 nodes, namely the nodes whose distance from 𝑣 is at least 𝑡 .

Therefore, the difference between the final number of blue nodes

when starting from C and C′
is at most 2(2𝑙∗ + 3) + 1 = 4𝑙∗ + 7, i.e.,

|𝑏 𝑓 (C)−𝑏 𝑓 (C′) | ≤ 4𝑙∗+7. (We are actually quite generous with our

calculations here.) (III) For two arbitrary colorings C and C′
, we triv-

ially have |𝑏 𝑓 (C)−𝑏 𝑓 (C′) | ≤ 𝑛. Now, applying Theorem 1.2 implies

that P[(1−𝜖)E[𝑏 𝑓 ] ≤ 𝑏 𝑓 ≤ (1+𝜖)E[𝑏 𝑓 ]], for some 𝜖 > 0, is at least

1−2 exp(−(𝜖2E[𝑏 𝑓 ]2)/(8𝑛(4𝑙∗+7)2))−4/(𝑛(4𝑙∗+7))wherewe used
𝛽 = 𝑛, 𝑐 = 4𝑙∗ + 7, 𝛿 = 2/𝑛3. Using E[𝑏 𝑓 ]2 = (2𝑝2 −𝑝3)2𝑛2/(1−𝑝 +
𝑝2)2 = Θ(𝑛2) for 𝑝 ≥ 1/2 and (4𝑙∗+7)2 = Θ(log2 𝑛), the above prob-
ability is at least 1−exp(−Θ(𝑛/log2 𝑛)) −1/Θ((𝑛 log𝑛)) = 1−𝑜 (1).
Furthermore, we already proved that the process ends w.h.p. before

8 log
2
𝑛 rounds. Therefore, the process reaches a stable coloring

with (1 ± 𝜖) (2𝑝
2−𝑝3)

1−𝑝+𝑝2
𝑛 blue nodes in O(log𝑛) rounds w.h.p. □

Theorem 4.2. Consider RMM on 𝐶𝑛 and assume that 𝑏0 = 𝑝𝑛 for
some 0 ≤ 𝑝 ≤ 1. Then, we have E[𝑏𝑡 ] = 𝑝𝑛 for any 𝑡 ∈ N.

Proof. It suffices to prove that the sequence 𝑏0, 𝑏1, 𝑏2, · · · is a
discrete-time martingale, i.e., E[𝑏𝑡 |𝑏0, 𝑏1, · · · , 𝑏𝑡−1] = 𝑏𝑡−1. Let us
formulate RMM in a slightly different way. Assume that in each

round, a white (blue) node sends a white (blue) pebble to each of its

two neighbors. Then, each node uniformly and independently at

random chooses one of the two pebbles it has received and picks its

color. This is the same as the RMM rule because if the neighbors of

a node agree on a color, it picks that color w.p. 1, and otherwise it

picks a color independently and uniformly at random. Now, assume

that there are 𝑏 blue nodes in the round 𝑡 − 1. Then, each of the

𝑏 blue nodes sends out two blue pebbles and each blue pebble is

selected and results in a blue node w.p. 1/2. Thus, by the linearity

of expectation, the expected number of blue nodes in round 𝑡 is

equal to 2𝑏 ∗ (1/2) = 𝑏. This concludes the proof that the sequence

is a martingale. Therefore, we have E[𝑏𝑡 ] = 𝑝𝑛 for any 𝑡 ∈ N. □

Theorem 4.2 holds for any initial coloring with 𝑝𝑛 blue nodes,

regardless of their position. We can apply this to the case of a 𝑝-

random initial coloring because a simple application of the Chernoff

bound [21] implies that there are 𝑝𝑛 blue nodes initially w.h.p. up

to some “small” error factor.

Corollary 4.3. For RMM on 𝐶𝑛 with 𝑏0 = 𝑝𝑛:

• If 𝑛 is odd, the process reaches the blue coloring w.p. 𝑝 and the
white coloring w.p. 1 − 𝑝 .

• if 𝑛 is even, the process reaches the blue coloring w.p. 𝑝2, the
white coloring w.p. (1 − 𝑝)2 and the blinking configuration
w.p. 2𝑝 (1 − 𝑝).
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Figure 2: (left) The stabilization time in MM as a function of 𝑛, with a white path of length 2 (or 3) and an alternating path of
length 𝑛 − 2 (or 𝑛 − 3) (middle) The number of stable colorings as a function of 𝑛 in MM (right) The final ratio of blue nodes for
different values of 𝑝, starting from a 𝑝-random coloring. We use “expected” for what we expect according to our theoretical
findings and “actual” is the output of the experiments.

5 EXPERIMENTS
We also study MM and RMM from an experimental perspective.

The conducted experiments not only complement our theoretical

findings, but also open doors for future research on the connection

between graph characteristics, such as conductance and vertex-

transitivity, and the behavior of MM and RMM. Our experiments

are executed on cycle, 2-cycle (to build a 2-cycle, take a cycle 𝐶𝑛
and add an edge between every two nodes which are in distance 2),

and some random graph (which is the graph obtained by adding

two randomly selected edges to each node in a cycle 𝐶𝑛).

Figure 2 (left) depicts the stabilization time of MM on a cycle

graph 𝐶𝑛 for an extreme coloring, where there is a white path of

length 2 (or 3) and an alternating path of length 𝑛 − 2 (or 𝑛 − 3).

The stabilization time for the cycle perfectly matches the bound

⌈𝑛/2⌉ − 1 proven in Theorem 2.3. Interestingly, once we add two

random neighbors for each node on the cycle (to obtain the random

graph), then the process ends extremely faster (i.e., in less than 25

rounds even for 𝑛 = 10, 000). To argue that this is not merely the

effect of adding extra edges, but rather how they are added, we

ran the process on a 2-cycle graph (which has the same number of

edges as the random graph). As you can observe, even though the

process speeds up slightly, it is still substantially slower than the

random case. Is it true that the stabilization time on random graphs,

such as Erdős-Rényi random graph and random regular graphs, or

more generally graphs with strong conductance properties is small,

perhaps (sub)-logarithmic in 𝑛? This is left as an open problem.

(We should mention that our experiments for RMM demonstrated

similar behavior change, but they are not included in Figure 2.)

Figure 2 (middle) visualizes the number of stable colorings in

MM for a cycle 𝐶𝑛 obtained from our experiments alongside the

expected estimate Φ𝑛 from Theorem 2.8. Again, adding random

edges results in a considerably different behavior, i.e., the number

of stable colorings decreases drastically. Note that a stable coloring

corresponds to a partition of the nodes into resilient sets. Thus, if

there are many ways to partition a graph’s node set into resilient

sets, there exist many stable colorings. In graphs with strong con-

ductance properties, such as the above random graph, for the sets

which are not too large, the number of edges on the boundary is

more than twice the number of edges inside the set. Thus, such sets

do not form resilient sets. Another parameter which, we believe,

plays a role is vertex-transitivity because it provides a certain level

of “symmetry” which could result in the formation of resilient sets.

Therefore, it would be interesting to characterize the number of

stable colorings in terms of different graph parameters, in particular

conductance and vertex-transitivity, in the future work.

Figure 2 (right) visualizes the final ratio of blue nodes by starting

from a 𝑝-random coloring for different values of 𝑝 and 𝑛 = 2000 in

both MM and RMM. For MM on 𝐶𝑛 , the output of our experiments

acceptably matches what one would expect according to our result

in Theorem 4.1. For RMM, it, unsurprisingly, does not match the

expected final density 𝑝 (see Theorem 4.2) because we know that the

process always reaches a monochromatic coloring or the blinking

configuration (see Corollary 4.3). (If we let 𝑛 be odd, e.g. 𝑛 = 1999,

then it only can get monochromatic.) Once we switch to our random

graph, the process exhibits a behavior called perfect classification,
i.e., if 𝑝 is smaller (larger) than 1/2, then the process reaches the

white (resp. blue) coloring. This is alignedwith the results from prior

work, cf. [42], on the relation between conductance and perfect

classification. On the other hand, both cycle and 2-cycle graphs,

up to some degree, exhibit a property known as fair classification,
i.e., the expected final ratio of blue nodes is “almost” equal to their

initial ratio 𝑝 .

6 CONCLUSION
We studied two very fundamental majority based opinion diffusion

processes. Developing several novel proof techniques, we provided

tight bounds on the stabilization time, periodicity, minimum size

of a winning set, and the expected final density in these processes.

We proved that the stabilization time and periodicity of RMM

can be exponential for some graphs. It would be interesting to

characterize graphs for which a polynomial upper bound exists.

We initiated the study of the number of stable colorings and

provided tight bounds for the cycle graph in both MM and RMM.

A potential future research direction is to determine the graph

parameters which govern the number of stable colorings. Build-

ing on our experimental findings, we nominated conductance and

vertex-transitivity as potential candidates.

It is known by prior work, cf. [42], that for perfect classification, it

suffices that the graph enjoys strong conductance properties. What

are the necessary and sufficient conditions for fair classification?
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