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ABSTRACT
We study online influence maximization (OIM) under a new model

of decreasing cascade (DC). This model is a generalization of the

independent cascade (IC) model by considering the common phe-

nomenon of market saturation. In DC, the chance of an influence

attempt being successful reduces with previous failures. The effect

is neglected by previous OIM works under IC and linear threshold

models. We propose the DC-UCB algorithm to solve this problem,

which achieves a regret bound of the same order as the state-of-the-

art works on the IC model. Extensive experiments on both synthetic

and real datasets show the effectiveness of our algorithm.

KEYWORDS
Multi-armed bandits; Social network; Influence maximization; De-

creasing cascade model

ACM Reference Format:
Fang Kong, Jize Xie, Baoxiang Wang, Tao Yao

★
, and Shuai Li

‡
. 2023. Online

Influence Maximization under Decreasing Cascade Model. In Proc. of the
22nd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023, IFAAMAS,

8 pages.

1 INTRODUCTION
The study of information diffusion on social networks has received

increasing attention from the community of machine learning, data

mining, and graph algorithms. A term to be diffused has many

forms, including the spread of news and opinions, adoption of prod-

ucts, and broadcast of alarms. To characterize this process, many

influence propagation models have been proposed. Among them,

the independent cascade (IC) model and the linear threshold (LT)

model are widely adopted [2, 5, 8, 12, 28]. The common ground

of all these models is to use a weighted graph to represent a so-

cial network, where the weights denote influence abilities between

nodes. For example, the IC model assumes that the term transmits

through each edge independently with a probability equal to the

weight; under LT, the transmission happens when the cumulative

★
Work done at Alibaba Group, and now affiliated with the Chinese University of

Hong Kong, Shenzhen.

‡
Corresponding author.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

weight of in-neighbors exceeds a certain threshold. Despite the pop-

ularity, both IC and LT neglect the decay characterization, which

is common in many real applications [13, 20, 28, 32]. This decay

property reflects the phenomenon ofmarket saturation where more

failed influence attempts would turn the market to be more satu-

rated, making subsequent influence trials less likely to succeed. The

decreasing cascade (DC) model [13] is a generalization of IC that

depicts these observations for better feasibility.

When the term is the alarm of an emergency or a broadcast of an

important notification, the relevant party has a crucial responsibility

to spread it to the possible extent under limited resources. Similarly,

the marketing team of a company advertises products on social

networks, aiming to attract as many users as possible [12, 28].

These real tasks motivate the problem of influence maximization

(IM) [5, 12, 21, 24]. Given a graph and its underlying influence

propagation model together with the model parameters (the graph

weights), it desires to find an initial set of adopted users (the seed

set) to maximize the influence spread. The IM problem has been

widely studied under IC [11, 24], LT [5, 7] and the DC model [13].

A major concern of IM is that in real applications, the param-

eters of the influence propagation models are usually unknown.

For example in advertisement placing, a company might not know

the actual influence probabilities before they place the advertise-

ment. A heuristic to address this issue is to estimate the unknown

parameters from the collected past observations [6, 19]. However,

there might not exist sufficient logs, and even if they exist, the logs

have biases. Also, such estimates cannot adapt to any change in

the social network. Online influence maximization (OIM), instead,

learns the unknown parameters through the iterative interactions

with the social network and progressively finds the optimal seed set

[4, 15, 17, 22, 25, 27, 30]. Previous theoretical OIM studies mainly

focus on the IC and LT models [3, 4, 17, 23, 25, 27, 30]. Despite

their importance, these model assumptions fail to characterize the

common damping phenomenon of market saturation in influence

spreading [13, 20, 28, 32]. Thus, how to design efficient algorithms

on the more general DC setting remains an open problem.

We are the first to formulate the OIM problem under the DC

model. In this paper, we propose an upper confidence bound (UCB)-

based algorithm, DC-UCB, to solve this problem. The algorithm

meticulously readjusts the UCB indices of activation probabilities to

maintain the decreasing property of DC. Through careful analysis
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of the information diffusion process under DC, we prove a DC-

based triggering probability modulated (TPM) bounded smoothness

condition, as an analogy to that under IC [25, 27]. We can then

provide rigorous theoretical guarantees on the regret of DC-UCB.

The regret upper bound of DC-UCB achieves the same order as

the state-of-the-art results under IC. Extensive experiments on

both synthetic and real-world networks show the effectiveness and

efficiency of our algorithm.

2 RELATEDWORK
The (offline) IM problem was formulated by the work [12]. It con-

ducts discrete optimization on the seed set to maximize the influ-

ence spread on graphs when given parameters of the underlying

diffusion model. Since then, this problem has attracted a lot of at-

tention [5, 13, 21, 24, 32] focusing on different underlying diffusion

models and different solving techniques. The adaptive influence

maximizationn (AIM) problem is a variant of IM where the agent

can adaptively select seed nodes after it observes the propagation

results of previously selected seeds [? ? ]. Both problems assume

that the diffusion parameters are known beforehand.

When the parameters of the diffusion model are unknown, the

problem can be solved through online IM (OIM), aiming to learn the

parameters through the interactions with the social network. The

framework of OIM can be formulated as a problem of combinatorial

multi-armed bandits (CMAB) [3, 4, 25] - a 𝑇 -round game between

the learning agent and the environment to maximize the cumulative

reward. In each round, the learning agent executes a combination

of base arms, defined as a super arm, and observes the feedback (i.e.

the influence propagation in OIM). Based on the collected feedback,

it then updates its knowledge for the unknown environmental

parameters and improves the subsequent choices.

Chen et al. are the first to use the CMAB framework with proba-

bilistically triggered arms to study the OIM problem under the IC

model with edge-level feedback [3, 4, 25]. In this formulation, each

edge is regarded as a base arm and all outgoing edges from the seed

set are regarded as a super arm. The line of studies proposes a CUCB

algorithm based on the canonical upper confidence bound (UCB)

algorithm [1] and derives rigorous guarantees of it [25]. To general-

ize it to large-scale real applications, Wen et al. [27] present a linear
variant for the activation probabilities and propose the IMLinUCB

algorithm. Wu et al. [30] consider the network assortativity and

assume the activation probability of each edge can be decomposed

by the influence factor of the source node and the susceptibility

factor of the destination node to reduce the sample complexity.

Node-level feedback, which needs less information and is more

realistic than the edge-level feedback, has also been considered

under the IC model [23]. It assumes that the identities of influenced

nodes (instead of transmitted edges) can be observed, and provides

a bound on estimation gap of the activation probabilities between

node-level feedback and edge-level feedback. Recently, Zhang et

al., [31] give a regret upper bound for this challenging feedback.

A few OIM works consider different diffusion models. Until

recently, the OIM problem under the LT model was solved by the

work [17]. This work assumes the full node-level feedback, the

influence status of each node in each diffusion step, can be observed

and gives the first regret upper bound under this model. Another

work [22] considers a pairwise feedback scheme, where the agent

can directly observe the influence status between each node and

each seed node. Though the setting can be applied to many diffusion

models like IC, LT, and DC, there are no optimality guarantees for

their heuristically proposed objective function. Our work is the first

one to study the OIM problem under the DC model with rigorous

theoretical guarantees.

3 SETTING
In this section, we formulate the OIM problem under the DC model.

The social network is the basic structure of this problem, which is

usually represented by a directed graph 𝐺 = (𝑉 , 𝐸) with the node

set 𝑉 and the edge set 𝐸 denoting the set of users and the set of

relationships between users, respectively. An edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸,
for example in Twitter, can correspond to the relationship of user 𝑣

following user 𝑢 and the information transmitting from 𝑢 to 𝑣 . Let

𝑛 = |𝑉 | and𝑚 = |𝐸 | be the number of nodes and edges, respectively.

For each node 𝑣 ∈ 𝑉 , denote 𝑁 (𝑣) := 𝑁 in (𝑣) as the set of all

incoming neighbors of 𝑣 , abbreviated as in-neighbors.

The IC and LT models [12] are two of the most common and

widely used influence propagation models in characterizing the

information diffusion on social networks [5, 17, 24]. Under the IC

model, each node will try to activate all its inactive out-neighbors

independently right after it is activated. The success probability

of activation attempt between every such pair is equivalent to the

weight of this edge. Under LT, a node is activated if the sum of edge

weights from its active in-neighbors exceeds a certain threshold.

However, the information diffusion can be very complicated in

real applications. One of the main considerations is the famous

effect of market saturation in real life [13, 14, 16, 20, 28, 32]. As the

information spreads more around the neighborhood, users usually

become more saturated with the marketing and their in-neighbors

will have diminishing influence effects on them. For example in the

diffusion of a news story, the story would become more redundant

and unattractive every time the user sees it from the broadcasts

of the neighbors but expresses no interest, making the adoption

probability decrease with the time of exposures [10, 18, 29]. Such

characterization of influence diffusion is known as the decay prop-

erty [20, 28, 32], which is not fully covered in the common IC and

LT models but can be captured in the DC model [13].

The information diffusion process of the DC model starting from

the seed set 𝑆 is described as follows. Define 𝑆𝜏 as the set of influ-

enced nodes until the end of time step 𝜏 . In the beginning when

𝜏 = 0, only nodes in 𝑆 are influenced, that is, 𝑆0 = 𝑆 . Then after

time step 𝜏 ≥ 0 for each inactive node 𝑣 ∈ 𝑉 \ 𝑆𝜏 , all of its active
in-neighbors who are influenced at the last time step, i.e. elements

in 𝑁 (𝑣) ∩ (𝑆𝜏 \ 𝑆𝜏−1), will make an attempt to activate 𝑣 in an ar-

bitrary order (denote 𝑆−1 = ∅ for consistency). Specifically, each

node 𝑢 ∈ 𝑁 (𝑣) ∩ (𝑆𝜏 \ 𝑆𝜏−1) tries to activate 𝑣 with probability

𝑝𝑣 (𝑢, 𝑆 ′), where 𝑆 ′ is the set of nodes that have already tried but

failed to activate 𝑣 in all previous steps (< 𝜏) and the current step

(= 𝜏 ). If there exists an 𝑢 who successfully activates 𝑣 at 𝜏 + 1, then

𝑣 becomes active, or equivalently 𝑣 ∈ 𝑆𝜏+1 \ 𝑆𝜏 ; otherwise if all

the nodes in 𝑁 (𝑣) ∩ (𝑆𝜏 \ 𝑆𝜏−1) fail to activate 𝑣 , then 𝑣 is still

inactive at 𝜏 + 1, or equivalently 𝑣 ∉ 𝑆𝜏+1. Such an information

diffusion process ends when no node is activated at a new step. The
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influence spread 𝑟 (𝑆, 𝑝) is defined as the expected number of total

influenced nodes under the seed set 𝑆 and the activation probabil-

ities 𝑝 = (𝑝𝑣 (𝑢, 𝑆 ′))𝑣∈𝑉 ,𝑢∈𝑁 (𝑣),𝑆′⊆𝑁 (𝑣)\{𝑢 } . Here the expectation
is taken over the randomness in the diffusion process, specifically

the success or failure events of all activation attempts.

The activation probabilities 𝑝 under the DC model satisfy the

following two mild but important properties.

Decreasing. The activation probability of 𝑢 ∈ 𝑁 (𝑣) on 𝑣 de-
creases with more previous failed attempts. Specifically, if 𝑆 ′ ⊆
𝑆 ′′ ⊆ 𝑁 (𝑣) \ {𝑢}, then 𝑝𝑣 (𝑢, 𝑆 ′) ≥ 𝑝𝑣 (𝑢, 𝑆 ′′).

Order-independence. The probability that 𝑣 is eventually in-

fluenced by the set 𝑆 ′ = {𝑢1, 𝑢2, . . . , 𝑢ℓ } ⊂ 𝑁 (𝑣) does not depend
on the order of these nodes’ activation attempts. That is, the proba-

bilities that 𝑆 ′ successfully activate 𝑣 in order of 𝑢1, 𝑢2, . . . , 𝑢ℓ and

𝑢ℓ , 𝑢ℓ−1, . . . , 𝑢1 are the same.

With seed set cardinality𝐾 , denote S = {𝑆 ⊂ 𝑉 : |𝑆 | ≤ 𝐾} as the
action set which consists of all feasible seed sets with size smaller

than 𝐾 . When the activation probability vector 𝑝 is known, the

(offline) IM problem aims to find an 𝑆 ∈ S with the maximum influ-

ence spread argmax𝑆 ∈S𝑟 (𝑆, 𝑝). This problem under the DCmodel is

NP-hard but can be approximately solved with a greedy algorithm,

since the influence spread function is monotone and submodular

[13]. We use opt𝑝 = max𝑆 ∈S 𝑟 (𝑆, 𝑝) and 𝑆
opt

𝑝 ∈ argmax𝑆 ∈S𝑟 (𝑆, 𝑝)
to denote the maximum influence spread and an optimal seed set,

respectively. Let Oracle be an offline IM algorithm that outputs a

seed set given the activation probabilities 𝑝 . For 𝛼, 𝛽 ∈ [0, 1], we
say Oracle is an (𝛼, 𝛽)-approximation if its output 𝑆∗ = Oracle(𝑝)
satisfies P

(
𝑟 (𝑆∗, 𝑝) ≥ 𝛼 · opt𝑝

)
≥ 𝛽 for any input 𝑝 .

It is worth pointing out that the IC model is a special case of

the DC model since it satisfies that 𝑝𝑣 (𝑢, 𝑆 ′) = 𝑝𝑢,𝑣 for any edge

(𝑢, 𝑣) ∈ 𝐸 and the two properties of the DC model can be veri-

fied easily. In this paper, we consider another special case of DC

where 𝑝𝑣 (𝑢, 𝑆 ′) only depends on the size of 𝑆 ′ and node 𝑣 , not on

𝑢 and the elements in 𝑆 ′. It characterizes that the probability of a

node being influenced depends on the susceptibility of the node

itself [26] and the previous failed attempts. This setting keeps the

most important decay property to describe the real-world phenom-

ena of market saturation. Specifically, each node 𝑣 is associated

with a decreasing probability sequence of size |𝑁 (𝑣) |, denoted as

𝑝𝑣 := [𝑝𝑣 (1), 𝑝𝑣 (2), . . . , 𝑝𝑣 ( |𝑁 (𝑣) |)]. Then the probability that 𝑢

successfully activates 𝑣 after the attempts of the nodes in 𝑆 ′ is
𝑝𝑣 (𝑢, 𝑆 ′) = 𝑝𝑣 ( |𝑆 ′ | + 1). The activation probability vector can thus

be written as 𝑝 := (𝑝𝑣 (𝑖))𝑣∈𝑉 ,𝑖∈[ |𝑁 (𝑣) | ] and it is immediate to verify

that two properties of the DC model hold. Note that if for each node

𝑣 , its related activation probabilities are the same, or 𝑝𝑣 (𝑖) ≡ 𝑝 ′𝑣 for
all 𝑖 ∈ [|𝑁 (𝑣) |], the diffusion process under this specific DC model

is the same with that under IC.

In the online version where the activation probability vector 𝑝 is

unknown, the problem aims to learn those unknown probabilities

from the interactions with the social network and to gradually iden-

tify the optimal seed set. In each round 𝑡 , the learning agent selects

a seed set 𝑆𝑡 ∈ S. Then the diffusion process originating from 𝑆𝑡
could reveal some influence propagation, based on which the agent

could get some information about the unknown parameters. Similar

to most OIM works, we consider the (partial) edge-level feedback

where an edge is observed only when its start node is active and the

end node is inactive. Recall that the (full) edge-level feedback as-

sumes an edge to be observed if its start node is active [4, 25, 27, 30].

Our (partial) edge-level feedback requires less information since

each node is activated at most once. It is more reasonable that the

following activation attempts on a node after it is activated are not

supposed to be observed.

With an (𝛼, 𝛽)-approximation oracle, the objective of the learn-

ing agent is to maximize the 𝑇 -round cumulative influence spread,

or equivalently to minimize the cumulative 𝛼𝛽-scaled regret [4, 25,

27, 30] over 𝑇 rounds

𝑅(𝑇 ) = E
[ 𝑇∑︁
𝑡=1

𝑟 (𝑡)
]
= E

[ 𝑇∑︁
𝑡=1

(
𝛼𝛽 · opt𝑝 − 𝑟 (𝑆𝑡 , 𝑝)

) ]
, (1)

where 𝑟 (𝑡) is the regret at 𝑡 and the expectation is taken over the

randomness in diffusion processes and the adopted oracle.

4 THE DC-UCB ALGORITHM
In this section, we introduce DC-UCB (Algorithm 1), a UCB-type

algorithm, to solve the OIM problem under the DC model with

(partial) edge-level feedback.

The DC-UCB algorithm takes the graph 𝐺 = (𝑉 , 𝐸), the seed set

cardinality 𝐾 as well as an offline Oracle as input. For each 𝑝𝑣 (𝑖)
that represents the success probability of the 𝑖-th activation attempt

on node 𝑣 , the algorithm maintains its empirical mean 𝑝𝑣 (𝑖) and
the number of observations 𝑇𝑣 (𝑖).

Algorithm 1 DC-UCB

1: Input: Graph 𝐺 = (𝑉 , 𝐸); seed set size 𝐾 ; Oracle

2: Initialize: 𝑝𝑣 (𝑖) = 0,𝑇𝑣 (𝑖) = 0, for 𝑣 ∈ 𝑉 , 𝑖 ∈ [|𝑁 (𝑣) |]
3: for 𝑡 = 1, 2, . . . do
4: for each node 𝑣 ∈ 𝑉 , 𝑖 = 1, 2, 3, . . . , |𝑁 (𝑣) | do

5: 𝑝𝑣 (𝑖) = Proj[0,1]

(
𝑝𝑣 (𝑖) +

√︃
3 log 𝑡

2𝑇𝑣 (𝑖)

)
6: 𝑝 ′𝑣 (𝑖) = min

{
𝑝 ′𝑣 (𝑖 − 1), 𝑝𝑣 (𝑖)

}
(𝑝 ′𝑣 (0) = 1)

7: end for
8: Choose 𝑆𝑡 = Oracle(𝐺,𝐾, 𝑝 ′) and observe feedback

9: for each status 𝑌𝑣 (𝑖) of all attempts do
10: 𝑝𝑣 (𝑖) = 𝑇𝑣 (𝑖) ·𝑝𝑣 (𝑖)+𝑌𝑣 (𝑖)

𝑇𝑣 (𝑖)+1
; 𝑇𝑣 (𝑖) = 𝑇𝑣 (𝑖) + 1

11: end for
12: end for

In each round 𝑡 , the learning agent first computes the UCB 𝑝𝑣 (𝑖)
for each activation probability 𝑝𝑣 (𝑖) based on collected observations
(line 5). The computation of the UCBs are based on the Chernorff-

Hoeffding inequality [9] to guarantee the value is an upper bound

of the true value with high probability, which is applicable here

since observations on the same term 𝑝𝑣 (𝑖) in different rounds are

independent. The operating Proj[0,1] (·) projects a real number into

interval [0, 1] to ensure the UCBs of probabilities still fall into this

interval. Specially, if𝑇𝑣 (𝑖) = 0 for 𝑖-th activation probability of node

𝑣 , we simply set 𝑝𝑣 (𝑖) = 1. Since the decreasing property of the DC

model guarantees that the 𝑖-th real probability always larger than

the 𝑖 + 1-th real probability for any node 𝑣 , these UCB indices are

then capped to maintain the decreasing property (line 6).

With the capped UCBs 𝑝 ′, graph 𝐺 and seed set size 𝐾 as input,

the offline Oracle computes a seed set 𝑆𝑡 (line 8). The returned
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solution automatically balance the exploitation and exploration: If

all activation probabilities are observed enough, then their UCBs are

roughly the empirical means and the Oracle will return a solution

that is approximately optimal under the estimated weights, whose

value is close to the one under true probabilities since the influence

spread is continuous in vector 𝑝 ; if some activation probabilities are

not observed enough, their confidence interval would be wide and

their UCBs would be high, making the graph lean towards these

less-explored parts and thus forcing the exploration.

Then the influence spreads from the selected seed set 𝑆𝑡 . And

the agent can observe a binary variable 𝑌𝑣 (𝑖) if there is the 𝑖-th
attempt to activate 𝑣 , where 1 represents the successful activation

and 0 represents failure. With the 𝑌𝑣 (𝑖), the corresponding 𝑝𝑣 (𝑖) is
updated (line 10).

4.1 Regret Bounds
The following theorem shows the problem-independent regret

bound for our algorithm DC-UCB.

Theorem 1. The (𝛼, 𝛽)-scaled regret of DC-UCB satisfies

𝑅(𝑇 ) ≤ 𝑂
(
𝑛𝑚

√︁
𝑇 log𝑇

)
. (2)

This is the first theoretical result of the OIM problem under DC,

which does not require the strong independence assumption in

the IC model and considers the common market-saturation phe-

nomenon in real life. Compared with the regret bound of the IC

model, our regret achieves the same order in the graph parameters

𝑛,𝑚 and time horizon 𝑇 [25], though strictly speaking the regret

bounds under two different models are not directly comparable.

Recall that if the activation probabilities satisfy 𝑝𝑣 (𝑖) ≡ 𝑝 ′𝑣 , the
diffusion process would be the same under the IC model and the

regret bounds under this case can be directly comparable.

Besides problem-independent bound (Theorem 1), we also pro-

vide the problem-dependent bound for DC-UCB.

To get this, define the gap between the influence spread of a seed

set 𝑆 and the 𝛼-scaled optimal influence spread as

Δ𝑆 = max

{
0, 𝛼 · opt𝑝 − 𝑟 (𝑆, 𝑝)

}
,

where 𝛼 is the approximation factor of the offline Oracle. And for

each entry (𝑣, 𝑖) with 𝑣 ∈ 𝑉 , 𝑖 ∈ [|𝑁 (𝑣) |], define 𝑃𝑆
𝑣,𝑖

as the proba-

bility that node 𝑣 ’s 𝑖-th attempt can be observed in the diffusion

process starting from 𝑆 under activation probability vector 𝑝 (here

we omit the dependence on 𝑝 for simplicity). Then we can define

the arm gap with the aid of such observation probability

Δ𝑣,𝑖
min

= inf

𝑆 ∈S: Δ𝑆>0, 𝑃𝑆
𝑣,𝑖
>0

Δ𝑆

and take the minimum over all entries

Δmin = min

𝑣∈𝑉 , 𝑖∈[ |𝑁 (𝑣) | ]
Δ𝑣,𝑖

min
.

Similarly to the IC model, let

𝑉 = max

𝑢∈𝑉

∑︁
𝑣∈𝑉

1{there is a path from 𝑢 to 𝑣} (3)

be the maximum number of nodes that a node can reach in𝐺 . With

these notations, the problem-dependent regret bound is provided

in the next theorem.

Theorem 2. The (𝛼, 𝛽)-scaled regret of the DC-UCB algorithm
can be bounded as

𝑅(𝑇 ) ≤
∑︁

𝑣∈𝑉 , 𝑖∈[ |𝑁 (𝑣) | ]

576𝑉 2𝑚 ln𝑇

Δ𝑣,𝑖
min

+ 𝜋
2Δmax

6

∑︁
𝑣∈𝑉 , 𝑖∈[ |𝑁 (𝑣) | ]

(
2 + log

4𝑚𝑉

Δ𝑣,𝑖
min

)
+ 4𝑚𝑉 (4)

=𝑂

(
𝑚2𝑛2

Δmin

ln𝑇

)
. (5)

Due to the space limit, the detailed proof of Theorem 1 and 2

are provided in Appendix. By carefully analyzing the information

diffusion process under DC, we prove our DC-based TPM condi-

tion, similar to that under IC [25, 27]. Such TPM condition bounds

the difference between influence spread under different activation

probabilities, which is crucial to acquire the above theoretical guar-

antees.

4.2 The TPM Condition under the DC model
To bound the influence spread difference 𝑟 (𝑆𝑡 , 𝑝𝑡 ) − 𝑟 (𝑆𝑡 , 𝑝) under
two activation probabilities, we need the following key theorem

of the triggering probability modulated (TPM) condition. Such a

condition is crucial in deriving the final regret bound, similarly to

that under the IC model [25, 27]. Denote 𝑉𝑆,𝑣 as the set of vertices

who are on any path from 𝑆 to 𝑣 for any seed set 𝑆 .

Theorem 3. For any two activation probability vectors 𝑝 and 𝑝
satisfying 𝑝𝑣 (𝑖) ≤ 𝑝𝑣 (𝑖) for any 𝑣 ∈ 𝑉 , 𝑖 ∈ [|𝑁 (𝑣) |], the differ-
ence between the influence spread of any seed set 𝑆 under these two
activation probability vectors is at most

𝑟 (𝑆, 𝑝) − 𝑟 (𝑆, 𝑝)

≤ E
[ ∑︁
𝑣∈𝑉 \𝑆

∑︁
𝑢∈𝑉𝑆,𝑣

∑︁
𝑖∈[ |𝑁 (𝑢) | ]

1{𝑂𝑢 (𝑖)} · [𝑝𝑢 (𝑖) − 𝑝𝑢 (𝑖)]
]

(6)

=
∑︁

𝑣∈𝑉 \𝑆

∑︁
𝑢∈𝑉𝑆,𝑣

∑︁
𝑖∈[ |𝑁 (𝑢) | ]

𝑃𝑆𝑢,𝑖 · [𝑝𝑢 (𝑖) − 𝑝𝑢 (𝑖)] , (7)

where 𝑂𝑢 (𝑖) denotes the event that the 𝑖-th attempt to activate 𝑢
under 𝑝 can be observed.

Proof of Theorem 3. Recall that 𝑟 (𝑆, 𝑝, 𝑣) is the probability that
𝑣 is finally influenced in the diffusion process starting from 𝑆 under

𝑝 . We can decompose the influence spread difference under two

activation probability vectors as

𝑟 (𝑆, 𝑝) − 𝑟 (𝑆, 𝑝) =
∑︁

𝑣∈𝑉 \𝑆
𝑟 (𝑆, 𝑝, 𝑣) − 𝑟 (𝑆, 𝑝, 𝑣)

=E


∑︁

𝑣∈𝑉 \𝑆
1{𝑣 is influenced under 𝑝}

−1{𝑣 is influenced under 𝑝}] .

According to the monotonicity of the influence spread,

1{𝑣 is influenced under 𝑝} − 1{𝑣 is influenced under 𝑝} ∈ {0, 1} .
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When 1{𝑣 is influenced under 𝑝} −1{𝑣 is influenced under 𝑝} =

1, which means

1{𝑣 is influenced under 𝑝} = 1 ,

1{𝑣 is influenced under 𝑝} = 0 ,

𝑣 is influenced under 𝑝 but not influenced under 𝑝 .

Since the influence status of 𝑣 under two activation probabilities

are different, there must exist a step 𝜏 > 0 in the diffusion process

such that starting from 𝜏 , the influence statuses of the nodes related

to 𝑣 are different. To be specific, there must exist some time step 𝜏

and node 𝑢 ∈ 𝑉𝑆,𝑣 such that the active in-neighbors of 𝑢 under 𝑝

and 𝑝 are the same until the end of 𝜏 , but the influence status of 𝑢

under 𝑝 and 𝑝 are not the same at 𝜏 + 1.

Let ℓ𝑢,𝜏−1, ℓ𝑢,𝜏 be the number of active in-neighbors at step 𝜏 − 1

and 𝜏 , respectively. Then at step 𝜏 , there are totally (ℓ𝑢,𝜏 −ℓ𝑢,𝜏−1−1)
attempts to activate 𝑢 under both 𝑝 and 𝑝 . We denote them as

the (ℓ𝑢,𝜏−1 + 1)-th, (ℓ𝑢,𝜏 + 2)-th, . . ., ℓ𝑢,𝜏 -th attempt. Also for any

ℓ𝑢,𝜏−1 + 1 ≤ 𝑗 ≤ ℓ𝑢,𝜏 , let 𝑌𝑢 ( 𝑗) and 𝑌𝑢 ( 𝑗) be the status of the 𝑗-

th attempt under 𝑝 and 𝑝 , respectively. It holds that E [𝑌𝑢 ( 𝑗)] =

𝑝𝑢 ( 𝑗),E
[
𝑌𝑢 ( 𝑗)

]
= 𝑝𝑢 ( 𝑗).

Then based on the above analysis, there must exists an 𝑖-th

attempt, where ℓ𝑢,𝜏−1 + 1 ≤ 𝑖 ≤ ℓ𝑢,𝜏 and all attempts to activate 𝑢

before 𝑖 fail under both 𝑝 and 𝑝 and the 𝑖-th attempt succeeds under

𝑝 but fails under 𝑝 . That is,

∀𝑗 < 𝑖, 𝑋𝑢 ( 𝑗) = 0, 𝑋𝑢 ( 𝑗) = 0 ,

𝑋𝑢 (𝑖) = 0, 𝑋𝑢 (𝑖) = 1 .

This event happens with probability

∏
𝑗<𝑖 (1 − 𝑝𝑢 ( 𝑗)) · [𝑝𝑢 (𝑖) −

𝑝𝑢 (𝑖)]. By the union bound, we conclude that

𝑟 (𝑆, 𝑝) − 𝑟 (𝑆, 𝑝) (8)

=E


∑︁

𝑣∈𝑉 \𝑆
1{𝑣 is influenced under 𝑝} (9)

−1{𝑣 is influenced under 𝑝}]

≤E


∑︁
𝑣∈𝑉 \𝑆

∑︁
𝑢∈𝑉𝑆,𝑣

∑︁
ℓ𝑢,𝜏−1+1≤𝑖≤ℓ𝑢,𝜏

∏
𝑗<𝑖

(1 − 𝑝𝑢 ( 𝑗)) · [𝑝𝑢 (𝑖) − 𝑝𝑢 (𝑖)]


≤E


∑︁
𝑣∈𝑉 \𝑆

∑︁
𝑢∈𝑉𝑆,𝑣

∑︁
𝑖∈[ |𝑁 (𝑢) | ]

1{𝐴𝑢 (𝑖)}
∏
𝑗<𝑖

(1 − 𝑝𝑢 ( 𝑗)) · [𝑝𝑢 (𝑖) − 𝑝𝑢 (𝑖)]
 ,

(10)

where (10) is derived by the definition of event𝐴𝑢 (𝑖), which denotes
that there are more than 𝑖 active in-neighbors of node 𝑢 under 𝑝 .

Also based on the feedback scheme of the DC-UCB algorithm,

all status of attempts to activate 𝑢 before 𝑢 is finally influenced can

be observed, which means that

E

1{𝐴𝑢 (𝑖)}
∏
𝑗<𝑖

(1 − 𝑝𝑢 ( 𝑗))
 ≤ E

1{𝐴𝑢 (𝑖)}
∏
𝑗<𝑖

(1 − 𝑝𝑢 ( 𝑗))


= E [1{𝑂𝑢 (𝑖)}] = 𝑃𝑆𝑢,𝑖 .

Thus we conclude that

𝑟 (𝑆, 𝑝) − 𝑟 (𝑆, 𝑝)

≤E


∑︁
𝑣∈𝑉 \𝑆

∑︁
𝑢∈𝑉𝑆,𝑣

∑︁
𝑖∈[ |𝑁 (𝑢) | ]

1{𝑂𝑢 (𝑖)} · [𝑝𝑢 (𝑖) − 𝑝𝑢 (𝑖)]


=
∑︁

𝑣∈𝑉 \𝑆

∑︁
𝑢∈𝑉𝑆,𝑣

∑︁
𝑖∈[ |𝑁 (𝑢) | ]

𝑃𝑆𝑢,𝑖 · [𝑝𝑢 (𝑖) − 𝑝𝑢 (𝑖)] . □

5 EXPERIMENTS
In this section, we compare our DC-UCB algorithm with related

baselines in both synthetic and real-world networks
1
. Since this

work is the first to study the OIM problem under the DCmodel with

rigorous theoretical guarantees, few directly comparable baselines

exist. We exhaust those baselines and also adopt baseline methods

that give insight into the performance of our algorithms via indirect

comparisons. The following are descriptions.

UCB. The OIM problem under DC can be regarded as a multi-

armed bandit problem if we treat each seed set as an arm and the

influence spread as its expected reward. Thus, the classical UCB

algorithm [1] can be applied to solve this problem. This algorithm

maintains a UCB index for each arm and selects the arm enjoying

the highest UCB index in each round. It is acceptable when the

graph is small but is not feasible when the graph is large as the

number of arms grows exponentially with the number of nodes.

CMAB-UCB-average and CMAB-UCB-random. The OIM problem

under DC is a CMAB problem, where we can treat each node as a

base arm and a seed set as a super arm. The influence spread of a

seed set is then the expected reward of the super arm. Note that

this reward cannot be written in a linear function form in terms of

the utilities of the included base arms (nodes). Since most CMAB

works study a linear function reward with semi-bandit feedback,

we consider two variant updates here. The first is to divide the

received reward by the size of the chosen super arm and assign the

quotient to each of base arms in this super arm, denoted as average.
The second is to randomly select a base arm from the super arm and

assign the received reward to this base arm only (other base arms

receive a reward 0), denoted as random. These two variants both

use linear function approximation and adopt different assignments

of the received reward.

DILinUCB. This algorithm [22] can also be applied to our DC

model, though its heuristic objective has no guaranteed approxi-

mation ratio. In this setting, the feedback for each pair of the seed

node and a node is 1 if there is an influence path from the seed node

to it under our (partial) edge-level feedback. We adopt the greedy

oracle designed in [22] as an offline oracle. For the tabular case, we

simply use the one-hot representations as features.

CUCB(IC), IMLinUCB(IC), and IMFB(IC). Recall that if the proba-
bilities of each node are the same, the diffusion process under DC

and IC are equivalent. In this special case, we can compare with the

state-of-the-art IC-based algorithms CUCB [25], IMLinUCB [27]

and IMFB [30]. For the offline oracle required by these algorithms,

we adopt the greedy algorithm [12] as is in our DC-UCB.

1
The code is available at https://github.com/fangkongx/OIM-DC.
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Figure 1: Comparison of DC-UCB with UCB, CMAB-UCB-average, CMAB-UCB-random and DILinUCB on synthetic networks
with different activation probabilities. The performance is evaluated in averaged reward (the cumulative reward divides by the
number of iterations). The standard error is represented in gray shades and all results are averaged over 10 independent runs.

NetHEPT

[0.1,0.5]

NetHEPT

[0.3,0.7]

NetHEPT

[0.5,0.9]

Flickr

[0.1,0.5]

Flickr

[0.3,0.7]

Flickr

[0.5,0.9]

DC-UCB(ours) 209.20 228.44 258.01 278.16 295.48 310.44
DILinUCB 179.17 208.27 229.78 263.45 283.36 298.60

CMAB-UCB-average 119.73 146.01 160.35 200.19 220.18 230.93

CMAB-UCB-random 174.47 209.62 227.17 252.03 274.75 284.76

Table 1: Comparison of DC-UCBwith DILinUCB, CMAB-UCB-average and CMAB-UCB-random on NetHEPT and Flickr datasets
with different activation probabilities. The performance is evaluated in averaged reward. All algorithms run for 10𝑘 rounds and
all results are averaged over 10 independent runs. The UCB algorithm is not included due to the exponential number of actions.

5.1 Synthetic Network
In this experiment, we compare the performance of our DC-UCB

algorithm with other baselines on the synthetic network with dif-

ferent activation probabilities.

For the synthetic network, we randomly generate an Erdös-Rényi

graph with 𝑝 = 0.2 for 𝑛 = 20 nodes. The resulting network con-

tains𝑚 = 70 edges, as shown in Figure 1(a). For this network, we

set up three groups of activation probabilities falling into different

intervals. Specifically, each activation probability is uniformly sam-

pled from [0.1, 0.5], [0.3, 0.7], [0.5, 0.9] in three groups, respectively.

Different values of activation probabilities correspond to different

ability levels of the social network to spread information. Thus the

performance of algorithms in these settings could represent their

learning ability in different environments. To maintain the decreas-

ing property of the DC model, the probability sequence of each

node is then sorted in decreasing order. The seed set cardinality is

set to 𝐾 = 2 under all three settings.

We compare the performance of our DC-UCB with UCB, CMAB-

UCB-average, CMAB-UCB-random and DILinUCB, when solving

the OIM problem under DC. All algorithms run for𝑇 = 10𝑘 rounds.

The averaged rewards of those algorithms defined as the cumulative

reward divides by the number of iterations are shown in Figure

1(b)(c)(d). All results are averaged over 10 independent runs.

Benefitting from the careful consideration of the decreasing prop-

erty in DC, our DC-UCB achieves the best performance over all

baselines in three settings. The baselines UCB and CMAB-UCB-

random also have comparable performance finally, but they con-

verge much slower. This is because these two algorithms need to

evaluate the reward of each seed set/node, which costs a lot of

rounds to get accurate estimations. Especially the baseline UCB

is not realistic to apply in larger networks due to the exponential

number of seed sets to be evaluated. Other two baselines are at least

5.77% (7.83%, 5.21%) lower than ours in group [0.1, 0.5] ([0.3, 0.7],
[0.5, 0.9], respectively).

5.2 Real Networks
We then compare the performance of our DC-UCB with other re-

lated baselines on two real networks, NetHEPT
2
and Flickr

3
.

The original NetHEPT (Flickr) dataset contains 27, 770 (105, 938)

nodes and 352, 807 (2, 316, 948, respectively) edges. Since it will be

easier for the learning algorithm to identify the optimal seed set

in the original sparse graph, here we extract a relatively dense

one to make the learning task more challenging. We first select

nodes whose degree (in-degree plus out-degree) is in [20, 120], then
randomly select 10 nodes among them and keep all edges that have

a start node or end node in these 10 nodes as an intermediate graph.

The largest connected subgraph of it forms our final network. The

resulting subgraph of NetHEPT is composed of 𝑛 = 323 nodes and

𝑚 = 3, 478 edges, the subgraph of Flickr is composed of 𝑛 = 319

nodes and𝑚 = 5, 904 edges.

We again set up three different groups with activation probabili-

ties falling into intervals [0.1, 0.5], [0.3, 0.7], [0.5, 0.9]. The proba-
bility sequence for each node is then sorted in decreasing order to

maintain the decreasing property of DC. The seed set cardinality is

set to 𝐾 = 5 in both subgraphs of NetHEPT and Flickr under three

different settings.

We compare the performance of our DC-UCB with DILinUCB,

CMAB-UCB-average and CMAB-UCB-random. Since UCB needs

2
https://snap.stanford.edu/data/cit-HepTh.html

3
https://snap.stanford.edu/data/web-flickr.html
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NetHEPT(0.2) NetHEPT(0.5) NetHEPT(0.8) Flickr(0.2) Flickr(0.5) Flickr(0.8)

DC-UCB(ours) 137.43 230.96 256.99 234.72 292.02 309.32
CUCB(IC) 132.01 227.40 252.76 223.31 283.82 304.20

IMLinUCB(IC) 130.64 224.25 251.87 231.36 284.55 305.18

IMFB (IC) 89.58 211.47 235.60 178.96 238.24 261.57

DILinUCB 131.75 204.78 232.31 220.98 277.02 288.89

CMAB-UCB-average 68.45 131.51 160.16 157.48 219.34 251.20

CMAB-UCB-random 95.71 192.71 228.35 207.54 268.89 289.17

Table 2: Comparisons of DC-UCB with CUCB(IC), IMLinUCB(IC), IMFB(IC), DILinUCB, CMAB-UCB-average and CMAB-UCB-
random under homogeneous activation probabilities. Conducted on the NetHEPT and Flickr datasets with three values of 𝑝
tested on each dataset. The performance is evaluated in averaged reward and all results are averaged over 10 independent runs.

to enumerate the exponential number of seed sets, here we do not

include this baseline. All algorithms run for 𝑇 = 10𝑘 rounds. The

averaged rewards of those algorithms are shown in Table 1 and all

results are averaged over 10 independent runs.

Our DC-UCB algorithm again shows consistent advantages over

other baselines in all six settings, which demonstrates its strong

learning ability in different environments. The CMAB-UCB-random

performs the second-best in the setting NetHEPT[0.3, 0.7], but is
8.24% lower than ours. In the other settings, DILinUCB performs the

second-best but is at least 3.81% lower than DC-UCB. The baseline

CMAB-UCB-average performs worse and more than 25.48% lower

than ours in all six settings.

5.3 Homogeneous Activation Probabilities
Recall that when 𝑝𝑣 (𝑖) ≡ 𝑝 ′𝑣 for any 𝑣 ∈ 𝑉 and 𝑖 ∈ [|𝑁 (𝑣) |],
the influence propagations under DC and IC are equivalent. Thus

in this case, we can compare our DC-UCB with the CUCB(IC),

IMLinUCB(IC) and IMFB(IC) directly.

In this experiment, we adopt the same subgraphs of real networks

as Section 5.2 but with different activation probabilities. We con-

sider the case that all activation probabilities are the same, where

the information diffusions are equivalent under IC and DC. Three

choices of 𝑝 ≡ 0.2, 0.5, 0.8 are tested on each network and the seed

set cardinality is set to 𝐾 = 5 for all choices. Those three values also

reflect different abilities of the social network to spread information

and thus can well demonstrate the learning abilities of algorithms.

We compare ourDC-UCBwith CUCB(IC), IMLinUCB(IC), IMFB(IC),

DILinUCB, CMAB-UCB-average and CMAB-UCB-random. The di-

mension is set to 𝑑 = 5 in IMFB(IC). As for IMLinUCB(IC), since

its tabular case is equivalent to CUCB(IC) and the huge number of

edges could result in high computational complexity, we randomly

generate a 5-dimensional feature vector for each edge as input to

improve its learning efficiency. All algorithms run for 𝑇 = 10𝑘

rounds. The averaged rewards of those algorithms are shown in

Table 2, which are averaged over 10 independent runs. Again UCB

is not tested due to the exponential number of seed sets.

Our DC-UCB algorithm performs better than all baselines in six

environments. These results indicate that in the setting where IC

and DC are equivalent, our DC-based algorithm is more efficient

than that of IC-based algorithms. The reason is that under DC, the

leading probabilities of each nodewould receivemore updates, since

those probabilities would be always observed once the node has

active in-neighbors. And as the leading probabilities are much more

important than the tail probabilities, the influence spread would

be estimated more accurately. While under IC, each activation

probability term is bound to a specific edge, thus the updates are

performed in a uniform manner over all incoming edges, making

the estimated influence spread less accurate when observing the

same propagations with DC.

6 CONCLUSION
This work is the first to study the OIM problem under the DC

model, which generalizes IC by removing its edge independence

assumption. The DC model is general enough to consider the decay

property and the market saturation phenomenon of real informa-

tion diffusion. We propose the DC-UCB algorithm to solve this

problem with rigorous regret bound guarantees. Compared with

the regret order of that under IC, our regret bound is at least as good.

The algorithm is tested extensively on both synthetic datasets and

real datasets of NetHEPT and Flickr against several baselines. Our

algorithm consistently outperforms the baselines by a significant

margin which validates its practical effectiveness.

An interesting future direction is to consider the influence factor

of the start node 𝑢 when 𝑢 tries to activate 𝑣 . This remains an in-

stance of DC but is more general than the assumption in our work.

The generalization is very important as the activation probabilities

between users are likely to depend on the influence ability of the

start node, apart from the end node, in real diffusion problems. It

will be more challenging to derive a general formulation incorpo-

rating such a factor with the decreasing and order-independence

requirement of the DC model.
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