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ABSTRACT
In this paper, we study scenarios such as diffusion of innovations

in a social system and belief propagation in social choice decision-

making, which can be captured by a social influence network. In

such networks, nodes are distributed and are connected by links

between them. Nodes have two different states, 𝑠 and 𝑟 . They can

change from state 𝑠 to state 𝑟 , but not backward [24]. Nodes are

interested in changing to state 𝑟 only if a sufficient number of their

neighbors change to state 𝑟 . In many scenarios, it is desired to

design local decision algorithms that guarantee this feature, termed

as the safety of node conversion.

We design optimal algorithms that maximize the number of

nodes that change to state 𝑟 . In particular, we assume that each

node can observe its neighbors up to a distance of 𝑘 from itself,

which introduces complexity to the setting that each node can only

observe its immediate neighbors, i.e., 𝑘 = 1. Moreover, we con-

sider the models that nodes have the same threshold or different

thresholds under which their conversion from 𝑠 to 𝑟 is safe. We first

present the optimal algorithm for the uniform threshold model and

establish its optimality by characterizing a monotonicity property.

We then generalize the algorithm to maximize node conversion

when they have different threshold values. The monotonicity prop-

erties and insights on nodes’ recursive reasoning of their neighbors’

status may be of independent interest.
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1 INTRODUCTION
In this paper, we follow the literature [4, 8, 18, 32] and consider the

distributed decision-making multi-agent coordination problem. In

daily life, most decisions people make, from which new products

to buy to whom to vote for, are influenced by their friends’ choices.

Taking the diffusion of innovations, for example, often, individu-

als only wish to buy a new product if a sufficient fraction of their

friends do. The purchase from their friends justifies the popularity

and quality of the new product. For another example, when the

shareholders of a company defend against a hostile takeover, an
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essential factor in their decision-making is how many other share-

holders are resisting the acquisition. Naturally, the more shares

have been acquired by the bidder, the more likely they would sell

their shares. This empirical evidence on these peer effects motivates

the theoretical study of Influence Networks.

On an influence network, agents are spatially separated but are

linked by mutual relationships. Although communication is a pow-

erful instrument to enable coordination, sometimes it is not as

efficient as it is supposed to be [9, 10]. Thereafter, intelligent agents

must be able to optimize their actions even without the benefit of

communication. In many practical applications, indeed, commu-

nication may not be feasible. For instance, embedded platforms

have strict energy constraints; communication channels are under

electromagnetic interference; enemies can detect security risks of

potential interception of messages in hostile territory. Therefore, it

is natural to ask the question that can agents coordinate without

communication? We tackle this question by considering situations

where communication is impossible or forbidden, popularized by

[3, 13, 16].

We consider a model in which agents have two possible statuses

and can observe the network’s local topology. Each agent can either

keep its current status (not buying a new product and not attending

a conference) or change to a different status (buying a new product

and attending a conference). They would like to change their status

if there are a sufficient number of their peers who do so; otherwise,

they prefer to keep their original status. To prevent the system

from being stuck in a suboptimal configuration, we are interested

in protocols that change as many agents’ statuses as possible.

Existing literature in studying influence networks has been im-

plicitly assumed that not only does the individual’s preferences

depend on the status of their neighbors, but also that each indi-

vidual only knows the information of their immediate neighbors.

Therefore, agents do not mull over information beyond its 1-hop

neighbors. This way, problems such as determining conditions

under which it is safe to change status and maximizing node con-

version is often tractable. However, in many scenarios, such as the

aforementioned example in which academics decide to attend a

conference, their decision is affected by their close colleagues and a

wider range of friends who will attend the conference. In addition,

each individual could have a different threshold on their neighbors’

conversion beyond which they will decide to attend the conference.

Hence, investigating the multi-hop information setting and gener-

alizing the uniform threshold case to allow agents to have arbitrary

thresholds is a natural extension in studying influence networks.

In this case, on the one hand, the agents stand a better chance to

make their decision if they view further on these networks; on the

other hand, enabling agents to have distant views introduces extra

complexity in their decision-making analysis.
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In this paper, we allow agents to perceive their 𝑘-hop neigh-

bors and their thresholds. We design algorithms to facilitate agents’

distributed decision-making. We present optimal algorithms to

maximize the number of agents changing status in any influence

network on the premise that the transition is safe. Moreover, we ex-

tend previous works by generalizing the model on another aspect.

That is, to allow agents having different thresholds. Our analy-

ses show that the general threshold model and the 𝑘-hop setting

fundamentally change how the system behaves.

Due to the nature of the setting, our algorithms recursively

reason for a node’s neighbors’ possible actions. To make sure that

the transition is safe, an agent needs to view and reason through

its neighbors’ lens, and the neighbors do the same while making

their decisions. This ponderation naturally introduces a hierarchy
of views, which lies underneath the design of our algorithms. To

maximize the number of nodes conversion, we introduce a two-

phase “prediction-counting" approach for designing local decision
algorithms. In the prediction phase, we classify the neighbors of an

agent into different groups according to whether their views are the

same as the agent’s view or their views are strictly smaller than its

view. The agent then conservatively predicts its neighbors’ decisions.
This is because even if there might be extra information beyond the

agent’s perception that would trigger its neighbors’ conversion, the

agent cannot take the risk. This way, we narrow down the decision-

making problem to a smaller scale, which becomes tractable in the

counting phase. En route to show the optimality of the algorithms,

we peek behind the hierarchy-of-views curtain by characterizing

its monotonicity properties.

1.1 Related Work
The influence network model presented in this paper is motivated

by [5, 6, 11, 19, 22–24] and their variants. Models allowing nodes to

convert from state A to state B but not backward have been widely

studied, to name a few, see [27, 36, 41]. The threshold effects in

these models are discussed in [25, 40]. In which, the most relevant

work to ours is [24]. In the paper, the authors define a hierarchy

of safety properties and devise algorithms for maximizing node

conversion for each hierarchy. When constrained by the strongest

safety guarantee, under which the class of algorithms is fully con-

tained in the class of lower safety levels, their algorithm is optimal.

However, for lower safety level guarantees that admit a larger class

of algorithms, their algorithms are not optimal unless additional

assumptions on the network structure aremade. In addition, their al-

gorithms include an exhaustive search procedure that is impractical.

Since then, the problem of devising more constructive algorithms

that are applicable to any network remains open. We improve the

state-of-the-art by devising optimal protocol-safe algorithms. We

present algorithms that work for the uniform threshold case and

the case of the general threshold.

The influence network is a typical Collective Action model

which studies the actions take by a group of agents to achieve

their common goal. These models have been widely applied in

biology [14, 26], economics [15, 20, 35], robotics [33], and sociol-

ogy [1, 12, 30].

In scenarios where communication is feasible, it plays an impor-

tant role in facilitating coordination. For example, communication

is used to organize all loyal generals to agree upon a battle plan [21],

reach an agreement in distributed systems [31], or improve players’

performance in tasks [7, 13]. When communication is not feasible,

one circumvention is letting agents leverage some public informa-

tion to coordinate. For example, in the standard beauty contest game

[28] and price competition in a duopoly [29], agents have access

to a public signal which drastically reduces the expected behavior

uncertainty and thus leads to coordination. Another circumvention

is that agents can make use of the observable historical activity

they produce to generate cooperative behaviors [2, 34, 37, 38]. In

this paper, though, we study a one-shot model in which there is no

historical data, and the only information available for the agents is

their observed network structure.

In the game theory domain, [19] provides an overview of the

literature analyzing games where players are connected via a net-

work structure. [22] model a public goods game played on a social

network. In [39] and [17], the authors employ propositional logic

to study the incentive engineering problems in Boolean games.

Together with other coalitional game theory models, these works

concern the typical questions in game theory, such as equilibrium

existence and the complexity of best response dynamics.

2 PRELIMINARIES
We model an Influence Network as a connected undirected simple

graph 𝐺 = (𝑉 , 𝐸) in which 𝑉 denotes a set of nodes, 𝐸 denotes a

set of (undirected) edges. In a 𝑘-hop influence network, each node

𝑣 ∈ 𝑉 has complete information about the topology of the network

up to a distance of 𝑘 from itself, known as its 𝑘-hop neighborhood.

It includes any node 𝑢 that is connected to 𝑣 by a path of at most

𝑘 edges and the edges on this path. Note that it includes node

𝑣 itself as well. Let 𝑉𝑘 (𝑣) and 𝐸𝑘 (𝑣) denote the set of nodes and
edges within the 𝑘-hop neighborhood of node 𝑣 , respectively. There

are two possible states of a node, 𝑠 and 𝑟 . The nodes can convert

from state 𝑠 to state 𝑟 , but they cannot convert back to 𝑠 . Without

loss of generality
1
, we assume that all nodes start with state 𝑠 . We

denote the nodes’ binary decision on their states as a function

𝑑 : 𝑉 → {𝑟, 𝑠}. Denote Φ : 𝑉 → 𝑍+ a threshold function. That is,

for each node 𝑣 , if there are at least Φ(𝑣) number of nodes, including

itself, in its 𝑘-hop neighborhood ending up in state 𝑟 , then 𝑑 (𝑣) = 𝑟

is a safe action for node 𝑣 ; otherwise, 𝑑 (𝑣) = 𝑠 is safe. We define

the k-hop view and a view of a node as follows.

Definition 2.1. A view Γ(𝑣) of node 𝑣 is Γ(𝑣) = (𝑉 (𝑣), 𝐸 (𝑣)),
where 𝑉 (𝑣) ⊆ 𝑉𝑘 (𝑣), 𝐸 (𝑣) ⊆ 𝐸𝑘 (𝑣). In particular, the k-hop view

Γ𝑘 (𝑣) of node 𝑣 is Γ𝑘 (𝑣) = (𝑉𝑘 (𝑣), 𝐸𝑘 (𝑣)).

We note that the threshold of a node is an invariant in any view.

Node 𝑣 has access to the value Φ(𝑢), for any node 𝑢 within its 𝑘-

hop view, i.e., 𝑢 ∈ 𝑉𝑘 (𝑣). For any vertex set 𝑆 , let Φ(𝑆) denote the
maximum threshold of nodes in 𝑆 . That is, Φ(𝑆) = max𝑣∈𝑆 {Φ(𝑣)}.
Throughout the paper, with a slight abuse of notation, we may

denote a node 𝑢 in node 𝑣 ’s view by 𝑢 ∈ Γ(𝑣). That is, 𝑢 ∈ 𝑉 (𝑣) and
𝑢 ∈ Γ(𝑣) are used interchangeably. Depending on whether a view

is a proper subset of another view, we define the equivalent view
and the sub-view, respectively.

1
Even if some nodes start with state 𝑟 , they do not introduce any uncertainty when

their neighbors reason about their possible actions, as they cannot convert back to 𝑠 .
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• Equivalent view: View Γ(𝑣) is equivalent to view Γ(𝑢), de-
noted by Γ(𝑣) = Γ(𝑢), if 𝑉 (𝑣) = 𝑉 (𝑢), 𝐸 (𝑣) = 𝐸 (𝑢).
• Sub-view: View Γ(𝑣) is a sub-view of view Γ(𝑢), denoted by

Γ(𝑣) ⊊ Γ(𝑢), if 𝑉 (𝑣) ⊆ 𝑉 (𝑢), 𝐸 (𝑣) ⊆ 𝐸 (𝑢), and Γ(𝑣) ≠ Γ(𝑢).
That is, Γ(𝑣) can be obtained by removing some nodes or

edges from Γ(𝑢).
A local decision algorithm F is a distributed protocol designed

by some global algorithm designer. It takes each node 𝑣 and its view

Γ𝑘 (𝑣) as input, and outputs a decision 𝑑 (𝑣), i.e., 𝑑 (𝑣) = F (𝑣, Γ𝑘 (𝑣)).
We are interested in algorithms that are protocol-safe.

Definition 2.2. An algorithm F is protocol-safe if it outputs a
safe decision 𝑑 (𝑣) for any node 𝑣 and any influence network 𝐺 .

Within the class of protocol-safe algorithms, we are particularly

interested in the algorithm that converts as many nodes to state 𝑟

as possible, in any network. That is, the optimal algorithm. Denote

|𝑆 | the cardinality of set 𝑆 .

Definition 2.3. A protocol-safe algorithm F ∗ is optimal if |{𝑣 ∈
𝑉 | F ∗ (𝑣, Γ(𝑣)) = 𝑟 }| ≥ |{𝑣 ∈ 𝑉 | F (𝑣, Γ(𝑣)) = 𝑟 }|, for any other
safe algorithm F and network 𝐺 .

In designing the optimal algorithms, it is unavoidable that a node

𝑣 needs to recursively view the network through another node 𝑢’s

lens subject to its own 𝑘-hop neighborhood. Node 𝑣 does so to infer

whether, given this information, node 𝑢 will convert to 𝑟 . For this

reason, we define visualization Γ(𝑣 ;𝑢) for ease of notation.

Definition 2.4. Γ(𝑣 ;𝑢) is node 𝑣 ’s visualization of node 𝑢’s view,
obtained by removing all nodes in Γ(𝑣) whose distance to 𝑢 is larger
than 𝑘 , as well as all edges that are incident to those nodes.

In other words, Γ(𝑣 ;𝑢) is the part of𝑢’s view that node 𝑣 can per-

ceive, subject to 𝑣 ’s scope. By definition, Γ(𝑣 ;𝑢) ⊂ Γ(𝑣). However,
we note that a visualization is not equivalent to the intersection of

two views, i.e., Γ(𝑣 ;𝑢) ≠ Γ(𝑣) ∩ Γ(𝑢). We present such an example

in Figure 1.

We note that visualization can be recursively defined. For exam-

ple, the visualization Γ(𝑣 ;𝑢;𝑤) is obtained by removing all nodes

in Γ(𝑣 ;𝑢) whose distance to𝑤 is larger than 𝑘 , as well as all edges

incident to those nodes. In case that 𝑣 and 𝑤 are the same node,

Γ(𝑣 ;𝑢;𝑤) = Γ(𝑣 ;𝑢).

3 THE HEURISTICS AND INTUITION
A heuristic towards designing the optimal algorithm is to identify

a set of nodes that are within each other’s view, and such that the

number of these nodes is larger than or equal to their threshold

values. If these nodes collectively convert from state 𝑠 to state

𝑟 , their conversion is safe. We formalize this idea by defining an

eligible subgraph, which will be used throughout the paper.

Definition 3.1. A non-empty subgraph 𝑆𝐸 of the network is eli-
gible if
(i) The diameter of 𝑆𝐸 is at most 𝑘 , i.e., the greatest distance between
any pair of nodes in 𝑆𝐸 is at most 𝑘 .
(ii) For any node 𝑣 ∈ 𝑉 (𝑆𝐸 ), 𝑆𝐸 ⊆ Γ(𝑣), i.e., every node and edge of
𝑆𝐸 is within node 𝑣 ’s view.
(iii) |𝑉 (𝑆𝐸 ) | ≥ Φ(𝑆𝐸 ). That is, the cardinality of set 𝑆𝐸 is no less than
the maximum threshold of nodes in set 𝑉 (𝑆𝐸 ).

u

v

(a) 𝑘 = 2, Graph𝐺

u

v

(b) Γ (𝑣)

u

v

(c) Γ (𝑣;𝑢 )

u

v

(d) Γ (𝑣) ∩ Γ (𝑢 )

Figure 1: Γ(𝑣 ;𝑢) is not necessarily the same as Γ(𝑣) ∩ Γ(𝑢)

The first two conditions guarantee that the nodes in 𝑉 (𝑆𝐸 ) are
within each other’s view. The third condition guarantees that there

are a sufficient number of nodes such that their conversion to state

𝑟 is safe.

Following this idea, a heuristic algorithm is to search for eligible

subgraphs of the network. It is protocol-safe, but not optimal, which

is evident in the following example.

Example 1. Consider a 2-hop influence network that is a path with
five nodes 𝑣1, 𝑣2, 𝑣3, 𝑣4, and 𝑣5. Their threshold values are Φ(𝑣1) =
Φ(𝑣2) = Φ(𝑣4) = Φ(𝑣5) = 2, and Φ(𝑣3) = 5. For any heuristic
algorithms that search for an eligible subgraph, it will not include
the central node 𝑣3, as the threshold Φ(𝑣3) = 5 is greater than the
cardinality of any subgraph with a diameter of at most 2. Therefore,
𝑣3 will remain in state 𝑠 . So, these algorithms can only convert at most
four nodes to state 𝑟 . Nevertheless, as we will see later, the optimal
algorithm F ∗

𝐺
introduced in Section 5 will convert all five nodes to

state 𝑟 .

Before introducing the optimal algorithm, we provide a high-

level intuition in its design, which follows a maximin principle. On

the one hand, for an algorithm to be safe, we have to consider the

worst scenario. That is, beyond node 𝑣 ’s visualization of a node 𝑢’s

view, we assume that there are no extra nodes to trigger node 𝑢’s

conversion to state 𝑟 , which may effectively trigger 𝑣 ’s conversion

to state 𝑟 being a safe action. To this end, we ignore the nodes

that are beyond 𝑣 ’s 𝑘-hop neighborhood. On the other hand, to

maximize the number of nodes that would convert to state 𝑟 on any

graph, we shall make full use of the nodes within 𝑣 ’s 𝑘-hop view.

To this end, we introduce a two-phase approach.

In the Prediction phase, we recursively examine smaller views

until it boils down to a stage that either the view of the considering

node is equivalent to its upper-layer node’s view, or it is a sub-view

of its upper-layer node’s view and the node contains a sufficient
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number of nodes within its view to secure its conversion to 𝑟 . We

carry over these two types of nodes to the Counting Phase and

disregard other indefinite nodes. In the Counting Phase, we con-

vert as many nodes as possible to 𝑟 on the premise that it is safe.

Depending on whether all nodes have the same threshold value,

the exact execution of this process differs. The optimality of the

algorithms is built upon a monotonicity property.

4 THE UNIFORM THRESHOLD MODEL
In this section, we consider the case that all nodes have the same

threshold value Φ. We present the algorithm F ∗
𝑈

as follows and

show that it is optimal in this model.

Algorithm 1 Algorithm F ∗
𝑈
(𝑣, Γ(𝑣))

𝑆𝑠𝑢𝑏 = 𝑆𝑒𝑞𝑙 = ∅. \\ local variables
–The Prediction Phase–

1: for each node 𝑢 in Γ(𝑣) do
2: if Γ(𝑣 ;𝑢) ⊊ Γ(𝑣) then
3: if F ∗

𝑈
(𝑢, Γ(𝑣 ;𝑢)) = 𝑟 then

4: 𝑆𝑠𝑢𝑏 ← 𝑆𝑠𝑢𝑏 ∪ {𝑢}.
5: end if
6: else
7: 𝑆𝑒𝑞𝑙 ← 𝑆𝑒𝑞𝑙 ∪ {𝑢}.
8: end if
9: end for
–The Counting Phase–

10: if |𝑆𝑠𝑢𝑏 | + |𝑆𝑒𝑞𝑙 | ≥ Φ(𝑣) then
11: return 𝑟 .

12: else
13: return 𝑠 .

14: end if

The algorithm F ∗
𝑈
(𝑣, Γ(𝑣)) takes a node 𝑣 and its view as input. It

classifies the nodes in Γ(𝑣) into three sets, i.e., 𝑆𝑒𝑞𝑙 , 𝑆𝑠𝑢𝑏 , and𝑉 (𝑣) \
(𝑆𝑠𝑢𝑏∪𝑆𝑒𝑞𝑙 ). 𝑆𝑒𝑞𝑙 contains those nodes𝑢 such that the visualization

Γ(𝑣 ;𝑢) is equivalent to Γ(𝑣); 𝑆𝑠𝑢𝑏 contains those nodes 𝑢 such that

Γ(𝑣 ;𝑢) is a sub-view of Γ(𝑣), and when the algorithm proceeds

with taking 𝑢 and the visualization Γ(𝑣 ;𝑢) as inputs, eventually the

local information is sufficient to assure that node 𝑢’s conversion

to 𝑟 is safe. Nodes in the set 𝑉 (𝑣) \ (𝑆𝑠𝑢𝑏 ∪ 𝑆𝑒𝑞𝑙 ) are those that

would not necessarily convert to 𝑟 , subject to 𝑣 ’s view. That is,

there might be some nodes beyond 𝑣 ’s view Γ(𝑣) such that, in

the event that they convert to 𝑟 , it would be safe for nodes in

𝑉 (𝑣) \ (𝑆𝑠𝑢𝑏 ∪ 𝑆𝑒𝑞𝑙 ) to convert to 𝑟 ; as a consequence, it would be

safe for 𝑣 to convert to 𝑟 as well. However, as node 𝑣 can observe

𝑘-hop local information only, it is not safe to account on these

nodes to convert to 𝑟 . Therefore, following a risk-averse reasoning,

node 𝑣 would ignore the nodes in 𝑉 (𝑣) \ (𝑆𝑠𝑢𝑏 ∪ 𝑆𝑒𝑞𝑙 ). In contrast,

the state of nodes in the set 𝑆𝑠𝑢𝑏 is settled as they are committed to

converting to 𝑟 with the proceeding of the algorithm. Nodes in 𝑆𝑒𝑞𝑙
are more accessible to 𝑣 as these nodes’ views are equivalent to its

view, through the lens of 𝑣 itself. By counting on the conversion

of nodes in 𝑆𝑠𝑢𝑏 ∪ 𝑆𝑒𝑞𝑙 , the algorithm converts as many nodes to

state 𝑟 as possible.

We note that the algorithm guarantees that a node 𝑢 ∈ Γ(𝑣),
which converts to 𝑟 according to subproblem F ∗

𝑈
(𝑢, Γ(𝑣 ;𝑢)) = 𝑟 ,

is assured to convert to 𝑟 when implementing F ∗
𝑈
(𝑢, Γ(𝑢)). This

is critical in proving that the algorithm is protocol-safe. Since

Γ(𝑣 ;𝑢) ⊆ Γ(𝑢), we denote this fact as the monotonicity property of

an algorithm.

Definition 4.1. An algorithm F is monotone if for any node 𝑣 , a
view Γ(𝑣) and its sub-view Γ′ (𝑣) ⊆ Γ(𝑣), the fact that F (𝑣, Γ′ (𝑣)) =
𝑟 implies F (𝑣, Γ(𝑣)) = 𝑟 .

Lemma 4.1. F ∗
𝑈
is monotone.

Proof. Assume by contradiction that F ∗
𝑈

is not monotone, then

there must exist a node 𝑣 , a view Γ(𝑣) and its sub-view Γ′ (𝑣) ⊊ Γ(𝑣),
such that F ∗

𝑈
(𝑣, Γ′ (𝑣)) = 𝑟 and F ∗

𝑈
(𝑣, Γ(𝑣)) = 𝑠 . Amongst these

cases, take the one such that the number of nodes in view Γ(𝑣) is
the smallest. If there are multiple such views, take the one with the

least number of edges. If there is still a tie, we break ties arbitrarily.

Denote by 𝑆𝑠𝑢𝑏 and 𝑆𝑒𝑞𝑙 the corresponding sets when the algo-

rithm F ∗
𝑈
takes 𝑣 and the view Γ(𝑣) as input; denote by 𝑆 ′

𝑠𝑢𝑏
and

𝑆 ′
𝑒𝑞𝑙

the corresponding sets when the algorithm F ∗
𝑈

takes 𝑣 and the

sub-view Γ′ (𝑣) as input. Since F ∗
𝑈
(𝑣, Γ′ (𝑣)) = 𝑟 , we have that

|𝑆 ′
𝑠𝑢𝑏
| + |𝑆 ′

𝑒𝑞𝑙
| ≥ Φ, (1)

F ∗𝑈 (𝑢, Γ
′ (𝑣 ;𝑢)) = 𝑟, ∀𝑢 ∈ 𝑆 ′

𝑠𝑢𝑏
, (2)

F ∗𝑈 (𝑢, Γ
′ (𝑣 ;𝑢)) = 𝑟, ∀𝑢 ∈ 𝑆 ′

𝑒𝑞𝑙
. (3)

Combining (2) and (3), we obtain that

F ∗𝑈 (𝑢, Γ
′ (𝑣 ;𝑢)) = 𝑟, ∀𝑢 ∈ 𝑆 ′

𝑠𝑢𝑏
∪ 𝑆 ′

𝑒𝑞𝑙
.

In addition, according to our choice of a view Γ(𝑣) with the least

number of nodes and secondly the least number of edges, we get

that for any𝑢 ∈ 𝑆 ′
𝑠𝑢𝑏
∪𝑆 ′

𝑒𝑞𝑙
, it holds that the node𝑢 in Γ(𝑣) satisfies

either

• Γ(𝑣 ;𝑢) = Γ(𝑣), or
• Γ(𝑣 ;𝑢) ⊊ Γ(𝑣) and F ∗

𝑈
(𝑢, Γ(𝑣 ;𝑢)) = 𝑟 .

Otherwise, if Γ(𝑣 ;𝑢) ⊊ Γ(𝑣) and F ∗
𝑈
(𝑢, Γ(𝑣 ;𝑢)) = 𝑠 , we can infer

that F ∗
𝑈
(𝑢, Γ′ (𝑣 ;𝑢)) = 𝑠 which contradicts the assumption. So, 𝑢 ∈

𝑆 ′
𝑠𝑢𝑏
∪ 𝑆 ′

𝑒𝑞𝑙
implies 𝑢 ∈ 𝑆𝑠𝑢𝑏 ∪ 𝑆𝑒𝑞𝑙 . Therefore,

|𝑆𝑠𝑢𝑏 | + |𝑆𝑒𝑞𝑙 | ≥ |𝑆 ′𝑠𝑢𝑏 | + |𝑆
′
𝑒𝑞𝑙
| ≥ Φ,

which implies that F ∗
𝑈
(𝑣, Γ(𝑣)) = 𝑟 . A contradiction occurs. □

With the monotonicity property, we show that the algorithm is

protocol-safe.

Theorem 4.1. F ∗
𝑈
is protocol-safe.

Proof. To show that F ∗
𝑈
is safe, we need to show that at least

Φ nodes within 𝑣 ’s 𝑘-hop neighborhood converted to state 𝑟 , if

F ∗
𝑈
(𝑣, Γ(𝑣)) = 𝑟 . Since |𝑆𝑠𝑢𝑏 | + |𝑆𝑒𝑞𝑙 | ≥ Φ, this can be guaranteed

if nodes 𝑢 ∈ Γ(𝑣) in the sets 𝑆𝑠𝑢𝑏 and 𝑆𝑒𝑞𝑙 will indeed convert to 𝑟

when the algorithm takes them and their views as inputs. For a node

𝑢 ∈ 𝑆𝑠𝑢𝑏 , according to the monotonicity property, F ∗
𝑈
(𝑢, Γ(𝑣 ;𝑢)) =

𝑟 implies F ∗
𝑈
(𝑢, Γ(𝑢)) = 𝑟 , as Γ(𝑣 ;𝑢) ⊆ Γ(𝑢). For a node 𝑢 ∈ 𝑆𝑒𝑞𝑙 ,

Γ(𝑣 ;𝑢) = Γ(𝑣) implies Γ(𝑣) ⊆ Γ(𝑢). In case Γ(𝑣) = Γ(𝑢), then
F ∗
𝑈
(𝑣, Γ(𝑣)) = 𝑟 implies that F ∗

𝑈
(𝑢, Γ(𝑣)) = 𝑟 , and further implies

that F ∗
𝑈
(𝑢, Γ(𝑢)) = 𝑟 ; in case Γ(𝑣) ⊊ Γ(𝑢), then F ∗

𝑈
(𝑢, Γ(𝑣)) = 𝑟

implies that F ∗
𝑈
(𝑢, Γ(𝑢)) = 𝑟 due to the monotonicity property. So,

F ∗
𝑈
(𝑢, Γ(𝑢)) = 𝑟,∀𝑢 ∈ 𝑆𝑠𝑢𝑏 ∪ 𝑆𝑒𝑞𝑙 . □
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Next, we show the first main result.

Theorem 4.2. F ∗
𝑈
is optimal when the nodes have the same thresh-

old value.

Proof. We prove the optimality of F ∗
𝑈

by contradiction. Sup-

pose there is a safe algorithm F ′, a node 𝑣 and its view Γ(𝑣), such
that F ′ (𝑣, Γ(𝑣)) = 𝑟 and F ∗

𝑈
(𝑣, Γ(𝑣)) = 𝑠 . Furthermore, we as-

sume that Γ′ (𝑣) is the view with the minimum number of nodes

and, in case of a tie, with a minimum number of edges such that

F ′ (𝑣, Γ′ (𝑣)) = 𝑟 and F ∗
𝑈
(𝑣, Γ′ (𝑣)) = 𝑠 . Therefore, by executing

algorithm F ∗
𝑈
(𝑣, Γ′ (𝑣)), we know that |𝑆𝑠𝑢𝑏 | + |𝑆𝑒𝑞𝑙 | < Φ where

𝑆𝑠𝑢𝑏 contains any node 𝑢 ∈ Γ′ (𝑣) such that 1) Γ′ (𝑣 ;𝑢) ≠ Γ′ (𝑣)
and 2) F ∗

𝑈
(𝑢, Γ′ (𝑣 ;𝑢)) = 𝑟 , and 𝑆𝑒𝑞𝑙 contains any node 𝑢 ∈ Γ′ (𝑣)

that Γ′ (𝑣 ;𝑢) = Γ′ (𝑣). Denote 𝑆𝑛𝑠𝑢𝑏 the set of nodes in Γ′ (𝑣) but
not in 𝑆𝑠𝑢𝑏 ∪ 𝑆𝑒𝑞𝑙 . We can infer that for any 𝑢 ∈ 𝑆𝑛𝑠𝑢𝑏 , it holds

that 1) Γ′ (𝑣 ;𝑢) ≠ Γ′ (𝑣) and 2) F ∗
𝑈
(𝑢, Γ′ (𝑣 ;𝑢)) = 𝑠 . According to the

assumption, we can infer that for any𝑢 ∈ 𝑆𝑛𝑠𝑢𝑏 , F ′ (𝑢, Γ′ (𝑣 ;𝑢)) = 𝑠 .

Otherwise, as Γ′ (𝑣 ;𝑢) ≠ Γ′ (𝑣), Γ′ (𝑣 ;𝑢) either has fewer nodes than
Γ′ (𝑣) or has the same number of nodes but fewer edges than Γ′ (𝑣)
and satisfies F ∗

𝑈
(𝑢, Γ′ (𝑣 ;𝑢)) = 𝑠 and F ′ (𝑢, Γ′ (𝑣 ;𝑢)) = 𝑟 , which

contradicts the assumption. Then the total number of nodes that

convert to state 𝑟 is no more than |𝑆𝑠𝑢𝑏 | + |𝑆𝑒𝑞𝑙 | < Φ, which con-

tradicts the assumption that F ′ is safe. □

5 THE GENERAL THRESHOLD MODEL
In this section, we generalize the optimal algorithm F ∗

𝑈
to allow the

nodes having different threshold values. Since different nodes have

different thresholds, after classifying the nodes in Γ(𝑣) into 𝑆𝑒𝑞𝑙
and 𝑆𝑠𝑢𝑏 , we adapt the Counting Phase in F ∗𝑈 so that the optimality

is preserved.

Algorithm 2 Algorithm F ∗
𝐺
(𝑣, Γ(𝑣))

𝑆𝑠𝑢𝑏 = 𝑆𝑒𝑞𝑙 = 𝑆𝑐𝑎𝑑 = 𝑆𝑚𝑎𝑥 = ∅.
–The Prediction Phase–

1: for each node 𝑢 in Γ(𝑣) do
2: if Γ(𝑣 ;𝑢) ⊊ Γ(𝑣) then
3: if F ∗

𝐺
(𝑢, Γ(𝑣 ;𝑢)) = 𝑟 then

4: 𝑆𝑠𝑢𝑏 ← 𝑆𝑠𝑢𝑏 ∪ {𝑢}.
5: end if
6: else
7: 𝑆𝑒𝑞𝑙 ← 𝑆𝑒𝑞𝑙 ∪ {𝑢}.
8: end if
9: end for
–The Counting Phase–

10: for 𝑖 = |𝑆𝑠𝑢𝑏 | + |𝑆𝑒𝑞𝑙 |, ..., 1, 0 do
11: 𝑆𝑐𝑎𝑑 ← {𝑢 | 𝑢 ∈ 𝑆𝑒𝑞𝑙 and Φ(𝑢) ≤ 𝑖}.
12: if |𝑆𝑠𝑢𝑏 | + |𝑆𝑐𝑎𝑑 | ≥ 𝑖 then
13: 𝑆𝑚𝑎𝑥 ← 𝑆𝑐𝑎𝑑 , {//used in the proof}

14: if 𝑖 ≥ Φ(𝑣) then
15: return 𝑟 .

16: else
17: return 𝑠 .

18: end if
19: end if
20: end for

We run Algorithm 2 on Example 1, to check whether it will safely

convert all five nodes to 𝑟 . For node 𝑣1, it is clear that 𝑣1, 𝑣2, 𝑣3 ∈
Γ(𝑣1). In addition,

Γ(𝑣1; 𝑣2) = Γ(𝑣1) and Γ(𝑣1; 𝑣3) = Γ(𝑣1) .

So, 𝑣1, 𝑣2, 𝑣3 ∈ 𝑆𝑒𝑞𝑙 and 𝑆𝑠𝑢𝑏 = ∅. In the Counting Phase, for 𝑖 =

|𝑆𝑠𝑢𝑏 | + |𝑆𝑒𝑞𝑙 | = 3, 𝑆𝑐𝑎𝑑 = {𝑣1, 𝑣2}. However, |𝑆𝑠𝑢𝑏 | + |𝑆𝑐𝑎𝑑 | =
0 + 2 < 𝑖 . So, node 𝑣1 is not converting to state 𝑟 yet. For 𝑖 = 2,

𝑆𝑐𝑎𝑑 = {𝑣1, 𝑣2}. Now, |𝑆𝑠𝑢𝑏 | + |𝑆𝑐𝑎𝑑 | = 0 + 2 ≥ 𝑖 . So, the algorithm

returns 𝑟 for node 𝑣1. By symmetry, the output is the same for 𝑣5.

Next, we consider node 𝑣2. It is clear that 𝑣1, 𝑣2, 𝑣3, 𝑣4 ∈ Γ(𝑣2).
In addition, Γ(𝑣2; 𝑣3) = Γ(𝑣2); so, 𝑣2, 𝑣3 ∈ 𝑆𝑒𝑞𝑙 . Then, let us ex-

amine whether 𝑣1 ∈ 𝑆𝑠𝑢𝑏 . Since Γ(𝑣2; 𝑣1) = Γ(𝑣1), we know that

F ∗
𝐺
(𝑣1, Γ(𝑣2; 𝑣1)) = F ∗

𝐺
(𝑣1, Γ(𝑣1)) = 𝑟 . So, 𝑣1 ∈ 𝑆𝑠𝑢𝑏 . Similarly,

𝑣4 ∈ 𝑆𝑠𝑢𝑏 . In the Counting Phase, for 𝑖 = |𝑆𝑠𝑢𝑏 | + |𝑆𝑒𝑞𝑙 | = 4,

𝑆𝑐𝑎𝑑 = {𝑣2}. However, |𝑆𝑠𝑢𝑏 | + |𝑆𝑐𝑎𝑑 | = 2 + 1 < 𝑖 . So, node 𝑣2

is not converting to state 𝑟 yet. For 𝑖 = 3, 𝑆𝑐𝑎𝑑 = {𝑣2}. Now,
|𝑆𝑠𝑢𝑏 | + |𝑆𝑐𝑎𝑑 | = 2+1 ≥ 𝑖 . So, the algorithm returns 𝑟 for node 𝑣2. By

symmetry, the output is the same for 𝑣4. Last, for node 𝑣3, clearly,

𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 ∈ Γ(𝑣3) and 𝑣3 ∈ 𝑆𝑒𝑞𝑙 . Since Γ(𝑣3; 𝑣1) = Γ(𝑣1), we
know that

F ∗𝐺 (𝑣1, Γ(𝑣3; 𝑣1)) = F ∗𝐺 (𝑣1, Γ(𝑣1)) = 𝑟 .

So, 𝑣1 ∈ 𝑆𝑠𝑢𝑏 . Similarly, 𝑣2, 𝑣4, 𝑣5 ∈ 𝑆𝑠𝑢𝑏 . In the Counting Phase, for

𝑖 = |𝑆𝑠𝑢𝑏 | + |𝑆𝑒𝑞𝑙 | = 5, 𝑆𝑐𝑎𝑑 = {𝑣3}. In this round, |𝑆𝑠𝑢𝑏 | + |𝑆𝑐𝑎𝑑 | =
4 + 1 ≥ 𝑖 . So, the algorithm returns 𝑟 for node 𝑣3. As we see, the

algorithm will return 𝑟 for all five nodes, and their thresholds are

met.

Next, we need the following notations in proving the optimality

of F ∗
𝐺
. To differentiate the node sets in F ∗

𝐺
when the algorithm takes

different nodes and views as inputs, denote them by 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)),
𝑆𝑒𝑞𝑙 (𝑣, Γ(𝑣)), 𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)) when taking node 𝑣 and view Γ(𝑣) as
inputs, respectively. Denote the critical value ΦF∗

𝐺
(𝑣, Γ(𝑣)) as fol-

lows.

ΦF∗
𝐺
(𝑣, Γ(𝑣)) = |𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) | + |𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)) |.

The critical value is the maximum permissible value of node 𝑣 ’s

threshold, such that its conversion to 𝑟 is safe according to the

algorithm. Obviously, according to the execution of F ∗
𝐺
, any two

nodes𝑢 and 𝑣 whose views Γ(𝑢) and Γ(𝑣) are equivalent, must have

the same critical value, i.e., ΦF∗
𝐺
(𝑣, Γ(𝑣)) = ΦF∗

𝐺
(𝑢, Γ(𝑢)).

In the execution of Algorithm 2, while all nodes in 𝑆𝑠𝑢𝑏 are

promised to convert to 𝑟 in the Prediction Phase, for each 𝑖 , in the

Counting Phase, the algorithm verifies whether it is safe to convert

those nodes in 𝑆𝑒𝑞𝑙 whose threshold is at most 𝑖 to 𝑟 . If it is safe,

together with the inequalities in lines 12 and 14, it implies that it is

safe for node 𝑣 to convert to 𝑟 . 2

The following lemmas establish properties of the critical value,

which will be useful in proving the main theorem of this section,

Theorem 5.1.

Lemma 5.1. Given node 𝑣 and its view Γ(𝑣), ifΦ(𝑣) ≤ ΦF∗
𝐺
(𝑣, Γ(𝑣)),

then F ∗
𝐺
(𝑣, Γ(𝑣)) = 𝑟 ; otherwise, F ∗

𝐺
(𝑣, Γ(𝑣)) = 𝑠 .

2
We note that an alternative version of the Counting Phase is that first check whether

|𝑆𝑠𝑢𝑏 | + |𝑆𝑒𝑞𝑙 | ≥ Φ(𝑣) , if it is true, then decrease the value of 𝑖 from |𝑆𝑠𝑢𝑏 | + |𝑆𝑒𝑞𝑙 |
till Φ(𝑣) . This way, the sets 𝑆𝑐𝑎𝑑 and 𝑆𝑚𝑎𝑥 may not be well-defined in some cases,

which will create extra complexity in proving the monotonicity property.
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Proof. Suppose the execution of the loop in the Counting Phase

stops at 𝑖 = 𝑗 . Note that the loop executes in decreasing order

of 𝑖 , we have 𝑗 + 1 > |𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) | + |𝑆𝑐𝑎𝑑 ( 𝑗, 𝑣, Γ(𝑣)) | = 𝑗 . Since

𝑆𝑐𝑎𝑑 ( 𝑗, 𝑣, Γ(𝑣)) is assigned to 𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)), we haveΦF∗
𝐺
(𝑣, Γ(𝑣)) =

|𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) | + |𝑆𝑚𝑎𝑥 ( 𝑗, 𝑣, Γ(𝑣)) | = 𝑗 . Thus, the algorithm returns

𝑟 if and only if ΦF∗
𝐺
(𝑣, Γ(𝑣)) ≥ Φ(𝑣). □

The following lemma states that the critical value ΦF∗
𝐺
(𝑣, Γ(𝑣))

is non-decreasing in view Γ(𝑣). The intuition is that if a node has

a larger view, it can predict more 𝑘-hop neighbors that convert

to state 𝑟 , and so it should have a higher critical value. However,

based on the formula definition of ΦF∗
𝐺
(𝑣, Γ(𝑣)), it consists of two

parts where the first part |𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) | is not monotone in view

Γ(𝑣). We must carefully analyze the change between 𝑆𝑠𝑢𝑏 and 𝑆𝑚𝑎𝑥

caused by the larger view.

Lemma 5.2. If Γ′ (𝑣) ⊆ Γ(𝑣), then ΦF∗
𝐺
(𝑣, Γ′ (𝑣)) ≤ ΦF∗

𝐺
(𝑣, Γ(𝑣)).

Proof. We prove it by induction. For node 𝑣 , let 𝐻𝑣 (𝑛,𝑚) be the
set of 𝑣 ’s views Γ(𝑣) that has no more than 𝑛 nodes and𝑚 edges.

Note that any view in 𝐻𝑣 (𝑛,𝑚) is a connected simple graph. So, for

any view Γ(𝑣) ∈ 𝐻𝑣 (𝑛,𝑚), it has at least 𝑛 − 1 nodes and at most

(𝑛−1)𝑛
2

edges. It is easy to verify that for views Γ′ (𝑣) ⊆ Γ(𝑣) ∈
𝐻𝑣 (2, 1), the lemma holds. Assume that for 𝑛 ≥ 2 and𝑚, for any

views Γ′ (𝑣) ⊆ Γ(𝑣) ∈ 𝐻𝑣 (𝑛,𝑚), the lemma holds. We will show

that the lemma holds for two possible cases:

(1) any views Γ′ (𝑣) ⊆ Γ(𝑣) ∈ 𝐻𝑣 (𝑛 + 1, 𝑛), if𝑚 =
𝑛 (𝑛−1)

2
,

(2) any views Γ′ (𝑣) ⊆ Γ(𝑣) ∈ 𝐻𝑣 (𝑛,𝑚 + 1), if𝑚 <
𝑛 (𝑛−1)

2
.

That is, if the view set 𝐻𝑣 (𝑛,𝑚) in the induction step contains

views that are complete graphs with 𝑛 nodes, then in Case 1 we

show that the lemma holds when the number of nodes is increased

by one, and the view graphs are trees. If the view set 𝐻𝑣 (𝑛,𝑚)
does not contain views that are complete graphs, then in Case 2

we show that the lemma holds when the number of edges in the

view graphs is increased by one. In both cases, we show that the

nodes in 𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) and 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)) will be in 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣))
and 𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)). Therefore, |𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) | + |𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)) | ≤
|𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) | + |𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)) |.

Case 1. To prove this case, it is sufficient to consider views

Γ′ (𝑣) ⊊ Γ(𝑣) such that view Γ(𝑣) is a tree of size 𝑛 + 1 and view

Γ′ (𝑣) is obtained by removing a degree-one node in Γ(𝑣) and the

edge incident on the node. Other cases are covered in the induction

step.

We partition 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)) into two node sets 𝐴 and 𝐵. Let 𝐴

contain the nodes in 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)) such that their corresponding

nodes in 𝑉 (𝑣) have the equivalent view as node 𝑣 ’s view Γ(𝑣). So,
𝐴 ⊆ 𝑆𝑒𝑞𝑙 (𝑣, Γ(𝑣)). Let 𝐵 = 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)) \ 𝐴. We will show that

𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) ∪ 𝐵 ⊆ 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) and 𝐴 ⊆ 𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)).
If 𝐵 = ∅, then it is trivial that 𝐵 ⊆ 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)). If 𝐵 ≠ ∅,

for each node 𝑢 ∈ 𝐵, since 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)) ⊆ 𝑆𝑒𝑞𝑙 (𝑣, Γ′ (𝑣)), we
know that 𝑢 ∈ 𝑆𝑒𝑞𝑙 (𝑣, Γ′ (𝑣)). Therefore, Γ′ (𝑣 ;𝑢) = Γ′ (𝑣). Ex-
cept the return value, the execution of algorithm F ∗

𝐺
is identi-

cal when it takes (𝑣, Γ′ (𝑣)) and (𝑢, Γ′ (𝑣 ;𝑢)) as inputs. Then we

have 𝑢 ∈ 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)) = 𝑆𝑚𝑎𝑥 (𝑢, Γ′ (𝑣 ;𝑢)), it implies Counting

Phase of algorithm with input (𝑢, Γ′ (𝑣 ;𝑢)) stops at 𝑖 ≥ Φ(𝑢). Hence
F ∗
𝐺
(𝑢, Γ′ (𝑣 ;𝑢)) = 𝑟 . The view of 𝑢’s corresponding node in 𝑉 (𝑣) is

a sub-view of Γ(𝑣). Therefore, the number of nodes in Γ(𝑣 ;𝑢) must

be at most 𝑛. That is, Γ(𝑣 ;𝑢) ∈ 𝐻𝑣 (𝑛, 𝑛 − 1). According to the in-

duction step, it holds that ΦF∗
𝐺
(𝑣, Γ′ (𝑣 ;𝑢)) ≤ ΦF∗

𝐺
(𝑣, Γ(𝑣 ;𝑢)). Since

Γ′ (𝑣 ;𝑢) ⊆ Γ(𝑣 ;𝑢), by Lemma 5.1, we have that F ∗
𝐺
(𝑢, Γ(𝑣 ;𝑢)) = 𝑟 ,

which indicates that 𝐵 ⊆ 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)).
For each node 𝑢 ∈ 𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)), we know that Γ′ (𝑣 ;𝑢) ⊊

Γ′ (𝑣). As both views are trees, it implies that Γ(𝑣 ;𝑢) ⊊ Γ(𝑣). Since
Γ(𝑣 ;𝑢) ∈ 𝐻 (𝑛, 𝑛 − 1), again, by the induction step and Lemma 5.1,

we obtain that F ∗
𝐺
(𝑢, Γ(𝑣 ;𝑢)) = 𝑟 . So, 𝑢 ∈ 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)). Therefore,

we conclude that 𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) ∪ 𝐵 ⊆ 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)).
Denote 𝑆𝑐𝑎𝑑 ( 𝑗, 𝑣, Γ(𝑣)) the set 𝑆𝑐𝑎𝑑 in the For loop of the Count-

ing Phase when 𝑖 = 𝑗 . In the Counting Phase of F ∗
𝐺
(𝑣, Γ(𝑣)), if

the inequality in Line 12 holds at a For loop 𝑖 > Φ(𝐴), then the

set 𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)) contains all nodes that belong to 𝑆𝑒𝑞𝑙 (𝑣, Γ(𝑣))
and their thresholds are at most 𝑖 . Therefore, 𝐴 ⊆ 𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)).
Otherwise, we will show that the Counting Phase will stop at the

loop 𝑖 = Φ(𝐴) and 𝐴 ⊆ 𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)) as well. When 𝑖 = Φ(𝐴), set
𝑆𝑐𝑎𝑑 (𝑖, 𝑣, Γ(𝑣)) contains all nodes that belong to 𝑆𝑒𝑞𝑙 (𝑣, Γ(𝑣)) and
their thresholds are at most Φ(𝐴). Therefore, 𝐴 ⊆ 𝑆𝑐𝑎𝑑 (𝑖, 𝑣, Γ(𝑣)).
Hence,

|𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) | + |𝑆𝑐𝑎𝑑 (𝑖, 𝑣, Γ(𝑣)) |
≥(|𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) | + |𝐵 |) + |𝐴|
=|𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) | + |𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)) |
≥Φ(𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣))) ≥ Φ(𝐴) = 𝑖 .

Therefore, the inequality in Line 12 holds, and the set 𝑆𝑐𝑎𝑑 (𝑖, 𝑣, Γ(𝑣))
is assigned to 𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)). Hence, 𝐴 ⊆ 𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)). In conclu-

sion,

ΦF∗
𝐺
(𝑣, Γ′ (𝑣)) = |𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) | + |𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)) |

= ( |𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) | + |𝐵 |) + |𝐴|
≤ |𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) | + |𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)) |
= ΦF∗

𝐺
(𝑣, Γ(𝑣)).

Case 2. To prove this case, it is sufficient to consider views

Γ′ (𝑣) ⊊ Γ(𝑣) such that view Γ(𝑣) is a graph with 𝑛 nodes and

𝑚 + 1 edges, and view Γ′ (𝑣) is obtained by removing an edge in

Γ(𝑣). Other cases are covered in the induction step. Distinct from

Case 1, in this case, there may exist a node in 𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) and its

corresponding node is in 𝑆𝑒𝑞𝑙 (𝑣, Γ(𝑣)).
First, we show that 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)) ⊆ 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣))∪𝑆𝑒𝑞𝑙 (𝑣, Γ(𝑣)).

For any𝑢 ∈ 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)) ⊆ 𝑆𝑒𝑞𝑙 (𝑣, Γ′ (𝑣)), we have that Γ′ (𝑣 ;𝑢) =
Γ′ (𝑣). Similar to Case 1, the execution of the algorithm is identical

except the return value when it takes (𝑣, Γ′ (𝑣)) and (𝑢, Γ′ (𝑣 ;𝑢))
as inputs. The loop in Counting Phase stops at some 𝑖 which is

larger than Φ(𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣))) and it is larger than Φ(𝑢). By Algo-

rithm 2, we have F ∗
𝐺
(𝑢, Γ′ (𝑣 ;𝑢)) = 𝑟 . If Γ(𝑣 ;𝑢) = Γ(𝑣), we have

that 𝑢 ∈ 𝑆𝑒𝑞𝑙 (𝑣, Γ(𝑣)). Otherwise, Γ(𝑣 ;𝑢) ⊊ Γ(𝑣), together with
Γ′ (𝑣 ;𝑢) ⊆ Γ(𝑣 ;𝑢), Γ′ (𝑣 ;𝑢) = Γ′ (𝑣) ⊆ Γ(𝑣), and that Γ′ (𝑣) is ob-
tained by removing an edge in Γ(𝑣), we have that Γ′ (𝑣 ;𝑢) = Γ(𝑣 ;𝑢).
It implies that F ∗

𝐺
(𝑢, Γ(𝑣 ;𝑢)) = F ∗

𝐺
(𝑢, Γ′ (𝑣 ;𝑢)) = 𝑟 . Therefore,

𝑢 ∈ 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)).
Second, we show that 𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) ⊆ 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣))∪𝑆𝑒𝑞𝑙 (𝑣, Γ(𝑣)).

For any 𝑢 ∈ 𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)), we know that F ∗
𝐺
(𝑢, Γ′ (𝑣 ;𝑢)) = 𝑟 . If

Γ(𝑣 ;𝑢) = Γ(𝑣), we have that𝑢 ∈ 𝑆𝑒𝑞𝑙 (𝑣, Γ(𝑣)). Otherwise, Γ(𝑣 ;𝑢) ⊊
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Γ(𝑣). Since Γ′ (𝑣 ;𝑢) ⊆ Γ(𝑣 ;𝑢) ∈ 𝐻𝑣 (𝑛,𝑚), according to the induc-

tion step and Lemma 5.1, we have that F ∗
𝐺
(𝑢, Γ(𝑣 ;𝑢)) = 𝑟 . Therefore,

𝑢 ∈ 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)).
In conclusion, we have shown that

𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) ∪ 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)) ⊆ 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) ∪ 𝑆𝑒𝑞𝑙 (𝑣, Γ(𝑣)) .
(4)

Next, wewill show that for any node𝑢 ∈ 𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣))∪𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣))
such that its corresponding node 𝑢 ∈ 𝑆𝑒𝑞𝑙 (𝑣, Γ(𝑣)), it must be the

case that 𝑢 ∈ 𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)).
Denote �̄�𝑠 and �̄�𝑚 the nodes that have the largest thresholds

in sets 𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) and 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)), respectively. We consider

two sub-cases.

Case 2(i). Φ(�̄�𝑚) ≥ Φ(�̄�𝑠 ). On the one hand, we know that for

any node 𝑢 ∈ 𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) ∪ 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)), Φ(𝑢) ≤ Φ(�̄�𝑚). On
the other hand, when the algorithm takes (𝑣, Γ(𝑣)) as input, it will
stop the latest at the For loop 𝑖 = Φ(�̄�𝑚), because that

|𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) | + |𝑆𝑐𝑎𝑑 (Φ(�̄�𝑚), 𝑣, Γ(𝑣)) |
=|𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) | + |{𝑧 |𝑧 ∈ 𝑆𝑒𝑞𝑙 (𝑣, Γ(𝑣)),Φ(𝑧) ≤ Φ(�̄�𝑚)}|
≥|𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) | + |{𝑧 |𝑧 ∈ 𝑆𝑒𝑞𝑙 (𝑣, Γ(𝑣)),Φ(𝑧) ≤ Φ(�̄�𝑚)}
∩ (𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) ∪ 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣))) |

≥|𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) | + |𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)) | (By (4))

≥Φ(�̄�𝑚).

Therefore, 𝑆𝑐𝑎𝑑 (Φ(�̄�𝑚), 𝑣, Γ(𝑣)) is assigned to 𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)) and
𝑢 ∈ 𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)).

Case 2(ii). Φ(�̄�𝑚) < Φ(�̄�𝑠 ). Since �̄�𝑠 ∈ 𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)), we know
that F ∗

𝐺
(�̄�𝑠 , Γ

′ (𝑣 ; �̄�𝑠 )) = 𝑟 . It implies �̄�𝑠 ∈ 𝑆𝑚𝑎𝑥 (�̄�𝑠 , Γ
′ (𝑣 ; �̄�𝑠 )).

According to the algorithm, we have

|𝑆𝑠𝑢𝑏 (�̄�𝑠 , Γ
′ (𝑣 ; �̄�𝑠 )) | + |𝑆𝑚𝑎𝑥 (�̄�𝑠 , Γ

′ (𝑣 ; �̄�𝑠 )) | ≥ Φ(�̄�𝑠 ) (5)

For 𝑢 ∈ 𝑆𝑠𝑢𝑏 (�̄�𝑠 , Γ
′ (𝑣 ; �̄�𝑠 )) ∪ 𝑆𝑚𝑎𝑥 (�̄�𝑠 , Γ

′ (𝑣 ; �̄�𝑠 )), we always have
F ∗
𝐺
(𝑢, Γ′ (𝑣, �̄�𝑠 , 𝑢)) = 𝑟 . Since Γ′ (𝑣, �̄�𝑠 , 𝑢) ⊆ Γ′ (𝑣 ;𝑢) ∈ 𝐻𝑣 (𝑛,𝑚),

according to the induction step and Lemma 5.1, we have that

F ∗
𝐺
(𝑢, Γ′ (𝑣 ;𝑢)) = 𝑟 . If Γ′ (𝑣 ;𝑢) = Γ′ (𝑣), we have 𝑢 ∈ 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)).

Otherwise, we have 𝑢 ∈ 𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)). Thus, we have proved

𝑆𝑠𝑢𝑏 (�̄�𝑠 , Γ
′ (𝑣 ; �̄�𝑠 )) ∪ 𝑆𝑚𝑎𝑥 (�̄�𝑠 , Γ

′ (𝑣 ; �̄�𝑠 ))
⊆𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) ∪ 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣))

We plug it into Formula (5) and get

|𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) | + |𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣)) | ≥ Φ(�̄�𝑠 ) .
Similar to Case 1, it suffices to show the inequality in Line 12

holds at 𝑖 = Φ(�̄�𝑠 ). According to Formula (4) and the definition of

�̄�𝑠 , we have

𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) ∪ 𝑆𝑚𝑎𝑥 (𝑣, Γ′ (𝑣))
⊆𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) ∪ 𝑆𝑐𝑎𝑑 (Φ(�̄�𝑠 ), 𝑣, Γ(𝑣)) (6)

Thus, we have |𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) | + |𝑆𝑐𝑎𝑑 (Φ(�̄�𝑠 ), 𝑣, Γ(𝑣)) | ≥ Φ(�̄�𝑠 ) =
Φ(𝑆𝑐𝑎𝑑 (Φ(�̄�𝑠 , 𝑣, Γ(𝑣)))). The inequality in Line (12) holds. It implies

𝑆𝑐𝑎𝑑 (Φ(�̄�𝑠 , 𝑣, Γ(𝑣))) ⊆ 𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)). Plug it into Formula (6), we

get ΦF∗
𝐺
(𝑣, Γ′ (𝑣)) ≤ ΦF∗

𝐺
(𝑣, Γ(𝑣)). □

Lemma 5.3. F ∗
𝐺
is monotone.

Proof. Consider any view Γ(𝑣) and its sub-view Γ′ (𝑣). By Lemma

5.2, we get that ΦF∗
𝐺
(𝑣, Γ′ (𝑣)) ≤ ΦF∗

𝐺
(𝑣, Γ(𝑣)). If

F ∗
𝐺
(𝑣, Γ′ (𝑣)) = 𝑟 , then it must be that Φ(𝑣) ≤ ΦF∗

𝐺
(𝑣, Γ′ (𝑣)). Hence,

Φ(𝑣) ≤ ΦF∗
𝐺
(𝑣, Γ(𝑣)). So, when the algorithm takes Γ(𝑣) as input,

we obtain that F ∗
𝐺
(𝑣, Γ(𝑣)) = 𝑟 . Therefore, F ∗

𝐺
is monotone. □

Finally, we are ready to prove the second main result.

Theorem 5.1. F ∗
𝐺
is optimal in the General Threshold model.

Proof. Firstly, we show that F ∗
𝐺

is safe. For any graph, sup-

pose that F ∗
𝐺
(𝑣, Γ(𝑣)) = 𝑟 . According to the execution of the algo-

rithm, for any node 𝑢 ∈ 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣)) ∪𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)), we have that
F ∗
𝐺
(𝑢, Γ(𝑣 ;𝑢)) = 𝑟 . SinceF ∗

𝐺
is monotone, we have thatF ∗

𝐺
(𝑢, Γ(𝑢)) =

𝑟 . So, each node in 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣))∪𝑆𝑚𝑎𝑥 (𝑣, Γ(𝑣)) will convert to state
𝑟 . Therefore, F ∗

𝐺
is safe.

Secondly, we prove that F ∗
𝐺

is optimal by contradiction. We

will show that for any safe algorithm F and any view Γ(𝑣), if
F ∗
𝐺
(𝑣, Γ(𝑣)) = 𝑠 , then F (𝑣, Γ(𝑣)) = 𝑠 . Suppose that there exists a

safe algorithm F and a view Γ(𝑣) such that F (𝑣, Γ(𝑣)) = 𝑟 and

F ∗
𝐺
(𝑣, Γ(𝑣)) = 𝑠 . Amongst these views Γ(𝑣), we consider the ones

that have the least number of nodes; amongst these views, we take

the one that has the least number of edges and denote it as Γ′ (𝑣)
(break ties arbitrarily). Consider applying algorithm F to a graph

𝐺 that has the same topology as Γ′ (𝑣). Define
• 𝑆𝑟 : the set of nodes in 𝐺 that convert to state 𝑟 under F ;
• 𝑆𝑛𝑠𝑢𝑏 : 𝑉 (𝑣) \ (𝑆𝑒𝑞𝑙 (𝑣, Γ(𝑣)) ∪ 𝑆𝑠𝑢𝑏 (𝑣, Γ(𝑣))).

According to the least number of nodes and edges assumption

of Γ′ (𝑣), for each 𝑢 ∈ 𝑆𝑛𝑠𝑢𝑏 , it holds that F (𝑢, Γ′ (𝑣 ;𝑢)) = 𝑠 . So,

𝑆𝑛𝑠𝑢𝑏 ∩ 𝑆𝑟 = ∅ and further that 𝑆𝑟 ⊆ 𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) ∪ 𝑆𝑒𝑞𝑙 (𝑣, Γ′ (𝑣)).
As F ∗

𝐺
(𝑣, Γ′ (𝑣)) = 𝑠 , we can get that for any 𝑆 ⊆ 𝑆𝑒𝑞𝑙 (𝑣, Γ′ (𝑣))

and Φ(𝑆) ≥ Φ(𝑣) it holds that Φ(𝑆) > |𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) | + |𝑆 |. We set

𝑆 = 𝑆𝑟 ∩𝑆𝑒𝑞𝑙 (𝑣, Γ′ (𝑣)). Since 𝑣 ∈ 𝑆𝑟 and 𝑣 ∈ 𝑆𝑒𝑞𝑙 (𝑣, Γ′ (𝑣)), we have
Φ(𝑆) ≥ Φ(𝑣). As a result,

Φ(𝑆𝑟 ∩ 𝑆𝑒𝑞𝑙 (𝑣, Γ′ (𝑣)))
> |𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) | + |𝑆𝑟 ∩ 𝑆𝑒𝑞𝑙 (𝑣, Γ′ (𝑣)) |
≥|𝑆𝑟 ∩ 𝑆𝑠𝑢𝑏 (𝑣, Γ′ (𝑣)) | + |𝑆𝑟 ∩ 𝑆𝑒𝑞𝑙 (𝑣, Γ′ (𝑣)) | = |𝑆𝑟 |.

It indicates that at least one node in 𝑆𝑟 converts to state 𝑟 without

enough neighbors in state 𝑟 . Hence, F is not safe and we get a

contradiction. □

We define 𝐸𝑚𝑎𝑥 and 𝑁𝑚𝑎𝑥 as the maximum number of edges

and nodes in a node’s view. In the Prediction Phase in Algorithm 2,

the number of edges in a sub-view decreases by at least one. Then

the number of levels of program recursive calls is at most 𝐸𝑚𝑎𝑥 .

Therefore, Line 3 is run at most 𝐸𝑚𝑎𝑥 ! times. In addition, note that

each Counting Phase needs𝑂 (𝑁 2

𝑚𝑎𝑥 ) time. Consequently, the time

complexity of Algorithm 2 is 𝑂 (𝐸𝑚𝑎𝑥 ! · 𝑁 2

𝑚𝑎𝑥 ).
We have assumed that all nodes are set to 𝑠 initially. Actually,

our protocol can be modified to handle the general case that some

nodes start with state 𝑟 . If there are nodes that start with state 𝑟 ,

then we can consider that the threshold of these nodes is 0. That is,

no matter what their neighbors do, they would always commit to

the state 𝑟 . Plus, this fact is known to other nodes. When a node

runs Algorithm 2, the nodes start with state 𝑟 would belong to

either 𝑆𝑠𝑢𝑏 or 𝑆𝑒𝑞𝑙 in the Prediction Phase.
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6 CONCLUSION AND FUTUREWORK
In this paper, we considered the optimization problem that maximiz-

ing node conversion in Influence Networks under the premise that

their conversion is safe. We generalized the literature in two-fold:

from 1-hop to 𝑘-hop neighborhood information and from uniform

threshold to general thresholds. We designed optimal local deci-

sion algorithms in both models, and the proof of their optimality

provides insights into the nodes’ recursive reasoning about their

neighbors’ actions. Themonotonicity properties of these algorithms

may find useful in future works.

Several directions remain open. First, due to the nature of the

problem, the optimal algorithms are exponential time on general

graphs. It remains open whether poly-time algorithms exist for

simpler graph structures. We conjecture that the problem remains

intractable on tree graphs but is polynomial-time solvable on paths.

Second, this paper deals with the asynchronous setting in which

each node has its independent clock so that its conversion is a

one-shot process. In case the nodes are synchronized with a global

clock, the network evolves over a series of rounds. Then, with the

nodes’ historical states, the optimal algorithms can infer additional

information according to their conversion at different rounds and

eventually enable more nodes to convert to state 𝑟 . Moreover, the

extent to which algorithms are having access to the last time epochs

will likely have an impact on the conversion rate of the optimal

algorithms.
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