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ABSTRACT
A classic model to study strategic decision making in multi-agent

systems is the normal-form game. This model can be generalised

to allow for an infinite number of pure strategies leading to con-

tinuous games. Multi-objective normal-form games are another

generalisation that model settings where players receive separate

payoffs in more than one objective. We bridge the gap between

the two models by providing a theoretical guarantee that a game

from one setting can always be transformed to a game in the other.

We extend the theoretical results to include guaranteed equiva-

lence of Nash equilibria. The mapping makes it possible to apply

algorithms from one field to the other. We demonstrate this by

introducing a fictitious play algorithm for multi-objective games

and subsequently applying it to two well-known continuous games.

We believe the equivalence relation will lend itself to new insights

by translating the theoretical guarantees from one formalism to

another. Moreover, it may lead to new computational approaches

for continuous games when a problem is more naturally solved in

the succinct format of multi-objective games.
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1 INTRODUCTION
Connecting seemingly unrelated models can bridge together re-

search communities and complement missing pieces in either set-

ting. To that extent, we identify two well-known extensions of

normal-form games and show that there are underlying equiv-

alences which may be exploited for theoretical and algorithmic

contributions. On the one hand, we consider continuous games

which allow for an infinite amount of actions for players [25]. An

example of such games can be found in economic models where
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firms have to set a price over a continuous range which maximises

their profit in a competitive environment [13]. On the other hand,

we consider Multi-Objective Normal-Form Games (MONFGs) [2],

which extend normal-form games by returning a vectorial payoff

rather than a scalar payoff. Multi-objective games can for example

be applied for scheduling household appliances in residential build-

ings with the objectives to minimise electricity cost while adhering

as much as possible to the desired operating period [15].

Our theoretical results establish a novel equivalence relation be-

tween continuous games and MONFGs. The equivalence is shown

to leave the underlying game dynamics intact, including Nash equi-

libria. The established connection allows one to straightforwardly

transfer known results and algorithms from either model to the

other, thus bridging the gap between them. From a theoretical

perspective, much more is known about continuous games than

MONFGs, enabling rapid advances in the latter model. Conversely,

due to their succinct format, MONFGs are amenable to general al-

gorithmic solutions which can then be applied to continuous games.

The main contributions are summarised as follows
1
:

• We define pure strategy equivalence between a continuous

game and MONFG. This equivalence relation formalises the

existence of a bijective function that maps pure strategies

from the continuous game to mixed strategies in the MONFG

and for which the utilities remain equal.

• We show that for every continuous game with convex strat-

egy sets, a pure strategy equivalent MONFG can be con-

structed. We also show this in the other direction.

• We introduce hierarchical strategies for MONFGs and define

mixed strategy equivalence between these strategies and the

mixed strategies in a continuous game.

• We show that a pure strategy Nash equilibrium in a continu-

ous game is a mixed strategy equilibrium in an equivalent

MONFG. We extend this for mixed strategy equilibria in the

continuous game and hierarchical equilibria in the MONFG.

• We guarantee the existence of a hierarchical Nash equilib-

rium in MONFGs with continuous utility functions.

• We demonstrate the algorithmic value of our equivalence

notion by computing a Nash equilibrium in two continuous

games, namely a polynomial game and a Bertrand price game,

using a fictitious play algorithm for MONFGs.

1
The supplementary material of this work can be found in [24].
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2 BACKGROUND
2.1 Continuous Games
Continuous games, sometimes referred to as infinite games, extend

the normal-form game model to include settings where players

have a nonempty compact metric space of pure strategies, rather

than a finite set. Intuitively, this means that players may have an

infinite number of actions to choose from. We define a continuous

game as follows [25],

Definition 2.1 (Continuous game). A continuous game is a tuple

(𝑁,S, 𝑣), where:
• 𝑁 is a finite set of 𝑛 players, indexed by 𝑖;

• S = 𝑆1 × · · · × 𝑆𝑛 , where 𝑆𝑖 is a nonempty compact metric

space of pure strategies available to player 𝑖;

• 𝑣 = (𝑣1, . . . , 𝑣𝑛) where 𝑣𝑖 : S → R is a real-valued and

continuous utility function for player 𝑖 .

The set of mixed strategies for player 𝑖 in a continuous game is

defined as the set of Borel probability measures on 𝑆𝑖 and is denoted

by B(𝑆𝑖 ). We define the expected utility for player 𝑖 for a given

joint mixed strategy ` ∈ B(S) as follows [4, 25],

𝑣𝑖 (`) =
∫
𝑆1×···×𝑆𝑛

𝑣𝑖 (𝑠1, · · · , 𝑠𝑛)𝑑`1 (𝑠1) · · ·𝑑`𝑛 (𝑠𝑛) . (1)

We refer readers unfamiliar with these concepts from measure

theory to a brief treatment of them in Appendix A.

2.2 Multi-Objective Normal-Form Games
Multi-Objective Normal-Form Games (MONFGs) are a generalisa-

tion of (single-objective) normal-form games to vectorial payoffs.

This is formalised as follows [19].

Definition 2.2 (Multi-objective normal-form game). A (finite, 𝑛-

player) multi-objective normal-form game is a tuple (𝑁,A,𝒑), with
𝑑 objectives, where:

• 𝑁 is a finite set of 𝑛 players, indexed by 𝑖;

• A = 𝐴1 × · · · × 𝐴𝑛 , where 𝐴𝑖 is a nonempty finite set of

actions available to player 𝑖;

• 𝒑 = (𝒑1, . . . ,𝒑𝑛) where 𝒑𝑖 : A → R𝑑 is the vectorial payoff

function for player 𝑖 .

A mixed strategy for any given player is defined as a probability

distribution over their set of actions. A set of probability distri-

butions over a finite number of points is known as a probability

simplex, formally defined below.

Definition 2.3. A probability 𝑘-simplex Δ𝑘 is a set of points for

which,

Δ𝑘 =

{
(𝑥0, . . . , 𝑥𝑘 ) ∈ R𝑘+1

����� 𝑘∑︁
𝑖=0

𝑥𝑖 = 1 and 𝑥𝑖 ≥ 0 for 𝑖 = 0, . . . , 𝑘

}
.

As such, a mixed strategy for player 𝑖 is a probability distribution

𝛿𝑖 ∈ Δ𝑘𝑖 where 𝑘𝑖 = |𝐴𝑖 | − 1. Let Δ = Δ𝑘1 × · · · × Δ𝑘𝑛 be the set of

joint mixed strategies. The expected payoff for player 𝑖 of a mixed

strategy 𝛿 ∈ Δ is then naturally defined as,

𝒑𝑖 (𝛿) =
∑︁
𝑎∈A

𝒑𝑖 (𝑎)
𝑛∏
𝑗=1

𝛿 𝑗 (𝑎 𝑗 ). (2)

Multi-objective decision making frequently assumes a utility-

based approach [21], which is also a standard game-theoretic ap-

proach. In the MONFG model, the utility of a player is based on

a particular trade-off of the various payoffs, that is, we make the

additional assumption that a utility function 𝑢𝑖 : R
𝑑 → R is known

for any player 𝑖 . We compute the utility of a mixed strategy 𝛿 as,

𝑢𝑖 (𝒑𝑖 (𝛿)) = 𝑢𝑖
©«
∑︁
𝑎∈A

𝒑𝑖 (𝑎)
𝑛∏
𝑗=1

𝛿 𝑗 (𝑎 𝑗 )
ª®¬ . (3)

We note that an alternative definition exists for the utility of

mixed strategies in multi-objective games, where players first apply

the utility function to the payoffs and subsequently compute their

expected utility. In the multi-objective decision making literature,

this method is referred to as the expected scalarised returns crite-

rion, while the method from Eq. (2) is referred to as the scalarised

expected returns criterion [9, 18].

2.3 Nash Equilibria
We consider a central solution concept in both models, namely the

Nash equilibrium (NE). Informally, a Nash equilibrium is a joint

strategy from which no player can unilaterally deviate and improve

their utility. Definition 2.4 defines this in continuous games, while

Definition 2.5 defines this in MONFGs.

Definition 2.4 (Nash equilibria in continuous games). A mixed

strategy profile `∗ is a Nash equilibrium if,

𝑣𝑖 (`∗𝑖 , `
∗
−𝑖 ) ≥ 𝑣𝑖 (`𝑖 , `∗−𝑖 ),

for all players 𝑖 and mixed strategies `𝑖 ∈ B(𝑆𝑖 ).

Definition 2.5 (Nash equilibria in multi-objective normal-form

games). A mixed strategy profile 𝛿∗ is a Nash equilibrium if,

𝑢𝑖 (𝛿∗𝑖 , 𝛿
∗
−𝑖 ) ≥ 𝑢𝑖 (𝛿𝑖 , 𝛿∗−𝑖 ),

for all players 𝑖 and mixed strategies 𝛿𝑖 ∈ Δ𝑘𝑖 .

An important early result is that every continuous game must

have a mixed strategy Nash equilibrium [7]. In MONFGs however,

Nash equilibria are not guaranteed to exist under nonlinear utility

functions [19]. In Section 3.3, we expand further on this issue and

provide a novel Nash equilibrium existence result for MONFGs.

3 EQUIVALENCE RELATION
Our main contribution establishes an equivalence relation between

continuous and multi-objective games. With this goal in mind, we

first introduce a special game, called an identity game, which plays

a crucial role in bridging the two models. Next, we prove that a

bijective mapping for pure strategies in the continuous game to

mixed strategies in the MONFG always exists. To complete the full

equivalence, we introduce a novel concept for MONFGs, which

we call hierarchical strategies. Lastly, we show that Nash equilib-

ria are preserved in the process, allowing us to guarantee a Nash

equilibrium in hierarchical strategies in MONFGs.

3.1 Identity Game
An identity game returns, as the name suggests, a payoff vector

equal to the strategy it received as input. We will use such games
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in Section 3.2 to prove an equivalent MONFG can be constructed

for every continuous game and vice versa.

Lemma 3.1 (Identity Game). For any finite set of players and
finite sets of pure strategies, there exists a set of payoff functions 𝒑
such that for each player 𝑖 , 𝒑𝑖 (𝛿) = 𝛿 .

Proof sketch. The main idea behind the proof is to define the

payoff vectors for all pure strategies as the pure strategy itself. Note

that, strictly speaking, this relies on the notation of joint strategies,

which we define as a vector of concatenated individual strategies.

It is then possible to show, using the law of total probability, that

this results in the desired property. □

A formal proof is given in Appendix B. To illustrate the payoff

mechanism in more detail, we provide an example below.

𝐴 𝐵

𝐴 (1, 0, 1, 0); (1, 0, 1, 0) (1, 0, 0, 1); (1, 0, 0, 1)
𝐵 (0, 1, 1, 0); (0, 1, 1, 0) (0, 1, 0, 1); (0, 1, 0, 1)

Figure 1: The identity game for a 2-player 2-action setting.

Example 1. Consider the identity game in Fig. 1. Assume that

player one plays the mixed strategy 𝛿1 = ( 1
2
, 1
2
) and player two

plays the mixed strategy 𝛿2 = ( 1
3
, 2
3
). This leads to a joint strategy

𝛿 = (𝛿1, 𝛿2) = ( 1
2
, 1
2
, 1
3
, 2
3
). According to Lemma 3.1, the expected

payoff vector should then also be ( 1
2
, 1
2
, 1
3
, 2
3
). We verify this:

𝒑𝑖 (𝛿) =
∑︁
𝑎∈A

𝒑𝑖 (𝑎)
𝑛∏
𝑗=1

𝛿 𝑗 (𝑎 𝑗 )

= (1, 0, 1, 0) · 1
6

+ (1, 0, 0, 1) · 1
3

+ (0, 1, 1, 0) · 1
6

+ (0, 1, 0, 1) · 1
3

=

(
1

6

, 0,
1

6

, 0

)
+
(
1

3

, 0, 0,
1

3

)
+
(
0,
1

6

,
1

6

, 0

)
+
(
0,
1

3

, 0,
1

3

)
=

(
1

2

,
1

2

,
1

3

,
2

3

)
= 𝛿.

3.2 Pure Strategy Equivalence
We introduce a novel equivalence notion between continuous games

and MONFGs, called Pure Strategy Equivalence (PSE). Informally,

two games are pure strategy equivalent whenever the pure strate-

gies from the continuous game can be bijectively mapped to mixed

strategies in the MONFG while keeping the corresponding utilities

equal. We formally define this below.

Definition 3.1 (Pure strategy equivalence). A continuous game

𝐺𝑐 = (𝑁𝑐 ,S, 𝑣) is pure strategy equivalent to a finitemulti-objective

normal-form game𝐺𝑚 = (𝑁𝑚,A,𝒑) with utility functions 𝑢 when

there exists a tuple of functions (𝜋, 𝜑) such that:

• 𝜋 : 𝑁𝑐 → 𝑁𝑚 is a bijective function called the player bijec-
tion;
• 𝜑 = 𝜑1 × · · · × 𝜑𝑛 where ∀𝑖 ∈ 𝑁𝑐 , 𝜑𝑖 : 𝑆𝑖 → Δ𝑘𝜋 (𝑖 ) is
a continuous bijective function with a continuous inverse,

called the strategy bijection;

• ∀𝑖 ∈ 𝑁𝑐 ,∀𝑠 ∈ S, 𝑣𝑖 (𝑠) = 𝑢𝜋 (𝑖)
(
𝒑𝜋 (𝑖) (𝜑 (𝑠))

)
.

We first show that for every MONFG there exists a pure strategy

equivalent continuous game. We note that this property has already

been used [22, Lemma 1], but has not yet been explicitly described

in terms of pure strategy equivalence.

Theorem 3.2. For every multi-objective normal-form game with
continuous utility functions, there exists a pure strategy equivalent
continuous game.

Proof. Let 𝐺𝑚 = (𝑁𝑚,A,𝒑) be a multi-objective normal-form

game and let 𝑢 be the set of continuous utility functions used by

players in 𝐺𝑚 . We construct a continuous game 𝐺𝑐 = (𝑁𝑐 ,S, 𝑣)
that is pure strategy equivalent to 𝐺𝑚 .

First, let𝑁𝑐 = 𝑁𝑚 , making the player bijection 𝜋 = 1. To simplify

the notation, we can directly substitute 𝜋 (𝑖) = 𝑖 .

Recall that the set of mixed strategies for player 𝑖 in 𝐺𝑚 was

defined as a simplex Δ𝑘𝑖 . For all 𝑆𝑖 ∈ S, we define 𝑆𝑖 = Δ𝑘𝑖 , thus
satisfying the condition of being a nonempty compact metric space.

As such, each strategy bijection 𝜑𝑖 = 1.

Finally, define each 𝑣𝑖 = 𝑢𝑖◦𝒑𝑖 . Observe that each 𝑣𝑖 is continuous
as it is a composition of two continuous functions. As such, 𝐺𝑐 is

pure strategy equivalent to 𝐺𝑚 . □

The proof presented here provides an explicit construction of a

pure strategy equivalent continuous game for any MONFG, which

we outline in Appendix C.1 (see Algorithm 2). Moreover, as the strat-

egy sets in both games are equal, the strategy bijection is simply

the identity function. This is critical from an algorithmic view-

point, as it ensures that the mapping may be computed efficiently.

This result has two important implications. First, observe that we

may also perform the construction in single-player settings, such

as those studied in multi-objective planning and reinforcement

learning. This suggests that algorithms designed for continuous

action spaces can be used whenever the utility function of the agent

is known a priori. Secondly, whenever the resulting utility func-

tions are (twice) differentiable, the resulting game falls under the

class of differentiable games, which may be solved using efficient

gradient-based methods [14].

We now show a converse to Theorem 3.2, namely that every

continuous game with convex strategy sets can be mapped to a

pure strategy equivalent MONFG.

Theorem 3.3. For every continuous game whose strategy spaces
are convex subsets of an Euclidean space, there exists a pure strategy
equivalent multi-objective normal-form game.

Proof. Let 𝐺𝑐 = (𝑁𝑐 ,S, 𝑣) be a continuous game where each

𝑆𝑖 ∈ S is a compact, convex and nonempty subset of Euclidean

space. We construct a finite multi-objective normal-form game

𝐺𝑚 = (𝑁𝑚,A,𝒑) with utility functions 𝑢 that is pure strategy

equivalent to 𝐺𝑐 .

The player bijection is trivial by letting 𝑁𝑚 = 𝑁𝑐 and thus 𝜋 = 1.

To simplify the notation, we can directly substitute 𝜋 (𝑖) = 𝑖 and

refer to 𝑁𝑚 or 𝑁𝑐 simply as 𝑁 .

It is a known property that all compact convex subsets of R𝑘

with a nonempty interior are homeomorphic to the probability 𝑘-

simplex [3, Theorem 16.4]. Let us first assume that each strategy set
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𝑆𝑖 indeed has a nonempty interior. This means that for every player

𝑖 there exists a continuous bijective function 𝑓𝑖 with a continuous

inverse 𝑓 −1
𝑖

such that,

𝑓𝑖 : 𝑆𝑖 → Δ𝑘𝑖 . (4)

Recall that the set of mixed strategies Δ𝑘𝑖 for player 𝑖 in 𝐺𝑚 is

defined as the probability simplex over their actions. Therefore,

we may use this homeomorphism to construct the set of mixed

strategies over 𝑘𝑖 + 1 actions,

∀𝑖 ∈ 𝑁 : 𝑓𝑖 (𝑆𝑖 ) = Δ𝑘𝑖 . (5)

Note that the vertices of the simplex naturally represent the actions

in 𝐺𝑚 . This ensures that each joint strategy can be bijectively

mapped from 𝐺𝑐 to 𝐺𝑚 with

∀𝑠 ∈ S : 𝑓 (𝑠) = 𝑓1 (𝑠1) × · · · × 𝑓𝑛 (𝑠𝑛). (6)

We can therefore define the strategy bijection 𝜑 = 𝑓 . Because 𝑓 is a

homeomorphism, it is by definition a continuous bijective function

with a continuous inverse.

Let the payoff functions 𝒑 of 𝐺𝑚 be the payoffs of the identity

game from Lemma 3.1. We define the utility functions 𝑢 in 𝐺𝑚 as

follows,

∀𝑖 ∈ 𝑁,𝑢𝑖 = 𝑣𝑖 ◦ 𝑓 −1𝑖 . (7)

We show that this ensures that,

∀𝑖 ∈ 𝑁,∀𝑠 ∈ S : 𝑣𝑖 (𝑠) = 𝑢𝑖 (𝒑𝑖 (𝜑𝑖 (𝑠))) . (8)

Substituting the necessary values, we get ∀𝑖 ∈ 𝑁,∀𝑠 ∈ S,
𝑢𝑖 (𝒑𝑖 (𝜑𝑖 (𝑠))) = 𝑢𝑖 (𝒑𝑖 (𝑓𝑖 (𝑠))) (9)

= 𝑢𝑖 (𝒑𝑖 (𝛿)) (10)

= 𝑢𝑖 (𝛿) (11)

= 𝑣𝑖 ◦ 𝑓 −1𝑖 (𝛿) (12)

= 𝑣𝑖 (𝑠) . (13)

As such, 𝐺𝑐 is pure strategy equivalent to 𝐺𝑚 .

In the case where one or more 𝑆𝑖 has an empty interior, those 𝑆𝑖
have a nonempty interior with respect to their affine span. Then

𝑆𝑖 is homeomorphic to the 𝑘-simplex, where 𝑘 = dim aff(𝑆𝑖 ). The
remainder of the construction follows analogous to before. □

The main idea behind the proof is to construct an MONFG using

the identity game payoffs and reuse the utility functions from the

continuous game. As we assumed convexity of the strategy sets, it

is known that a homeomorphism between each strategy set and

a probability simplex can be constructed. These simplices are the

mixed strategies in theMONFG. The utility functions in theMONFG

can then be defined as the composition between the utility functions

of the continuous game and the inverse of each homeomorphism.

The construction defined in this proof also establishes a compu-

tational approach to transform a continuous game to an MONFG,

formalised in Appendix C.1 (see Algorithm 3). However, contrary to

the other direction, the strategy bijection does appear here. As such,

the algorithm requires the strategy bijection to be explicitly defined

which poses two distinct challenges. First, these strategy bijections

may not be easily obtainable, in which case we present a standard

approach that initially goes through a unit ball and subsequently to

the probability simplex as a suitable first attempt in Appendix C.2.

Second, the resulting functions are not guaranteed to be efficiently

computable, hence rendering the procedure intractable for some

applications. We leave the application of Theorem 3.3 to such sce-

narios for future work.

An interesting implication of Theorem 3.3 is that it can straight-

forwardly be extended to continuous games with non-convex strat-

egy sets whenever they are still homeomorphic to a simplex. How-

ever, while convexity of strategy sets is a frequently made assump-

tion for continuous games, there can be games of interest which

do not have this property. In this case, one can approximate the

original continuous game with another continuous game that does

satisfy the convexity requirement by, for example, taking the con-

vex hull of each strategy set. In a subsequent stage, a pure strategy

equivalent MONFG can be constructed for this approximate game,

resulting in an MONFG which is approximately PSE to the original

continuous game. We demonstrate this approach in Section 4.3 and

show that it may still succeed in capturing the original game.

Given the constructions outlined in Theorems 3.2 and 3.3, it

raises the question of whether they lead to unique descriptions

of pure strategy equivalent games. The following remark shows

that this is not the case. We show this formally in Appendix C.1 by

constructing multiple pure strategy equivalent games.

Remark 1. A continuous game may have multiple pure strategy

equivalent multi-objective normal-form games and vice versa.

An important consequence of Remark 1 is that some PSE games

can be more amenable to analysis than others. For example, we

have shown that for a continuous game a pure strategy equivalent

MONFG can be constructed with identity game payoffs. If this con-

tinuous game can also be proven to be PSE to an MONFG with

a dominated action in its payoff and monotonic utility functions,

the latter game will certainly be easier to analyse. Using equiva-

lence between games to solve a difficult game through a simpler

equivalent has been studied with success before [10].

3.3 Mixed Strategy Equivalence
Given the results for pure strategy equivalence, a pressing question

becomes how to handle the mixed strategies from a continuous

game in an equivalent MONFG. For this purpose, we introduce a

novel strategy concept in MONFGs, named hierarchical strategies.
Hierarchical strategies allow for mixing over mixed strategies and

are defined for each player 𝑖 as the set of Borel probability measures

on their set of mixed strategies Δ𝑘𝑖 and denoted by B(Δ𝑘𝑖 ). The
expected utility of a hierarchical strategy ` is then defined analo-

gously to the way expected utility of a mixed strategy in continuous

games is defined in Eq. (1), that is,

𝑢𝑖 (`) =
∫
Δ𝑘

1×···×Δ𝑘𝑛

𝑢𝑖 (𝒑𝑖 (𝛿1, · · · , 𝛿𝑛)) 𝑑`1 (𝛿1) · · ·𝑑`𝑛 (𝛿𝑛).
(14)

We stress that the probabilities in a hierarchical strategy cannot

be distributed to form an equivalent mixed strategy. This is be-

cause the utility of the resulting mixed strategy need not equal

the expected utility of the hierarchical strategy, specifically when

nonlinear utility functions are used. We illustrate this in Example 2.

Example 2. Consider the game in Fig. 2 and utility functions

𝑢1 (𝑥,𝑦) = 𝑢2 (𝑥,𝑦) = 𝑥2 + 𝑦2 . (15)
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𝐴 𝐵

𝐴 (3, 1); (3, 1) (1, 3); (1, 3)
𝐵 (1, 3); (1, 3) (3, 1); (3, 1)

Figure 2: The game used in Example 2.

For the row player, we define two strategies, 𝛿1,1 = (1, 0) and
𝛿1,2 = (0, 1). For simplicity, we assume a deterministic strategy

𝛿2 = (1, 0) for the column player where they always play action 𝐴.

For both players, the joint strategy (𝛿1,1, 𝛿2) leads to an expected

payoff vector of (3, 1) and (𝛿1,2, 𝛿2) to an expected payoff vector of

(1, 3). Both joint strategies individually result in a utility of 10.

Consider now the following hierarchical strategy for the row

player,

`1 =

(
𝑃 (𝛿1,1) =

1

2

, 𝑃 (𝛿1,2) =
1

2

)
.

This hierarchical strategy denotes the fact that they will play 𝛿1,1
with 50% probability and 𝛿1,2 with 50% probability. As both strate-

gies result in a utility of 10, the expected utility of `1 is also 10.

However, distributing the probabilities in `1 to form a mixed strat-

egy, 𝛿1,3 = ( 1
2
, 1
2
), results in an expected payoff vector of (2, 2) with

a utility of 8. This demonstrates that a hierarchical strategy cannot

be distributed to form an equivalent mixed strategy.

While mainly used as an instrument in our analysis, hierarchical

strategies may also have an applied use in multi-objective games.

Concretely, hierarchical strategies are appropriate to consider when

agents have to decide on a strategy which is then executed for a

given period without the possibility for downstream adjustments.

For example, agents joining an auction may have to commit a single

mixed strategy to an automated auctioneer a priori, after which

auctions are held for a number of rounds without further input

from the agents.

We now definemixed strategy equivalence between a continuous

game and an MONFG. Informally, this equivalence notion gener-

alises pure strategy equivalence to relate mixed strategies from the

continuous game with hierarchical strategies in the MONFG.

Definition 3.2 (Mixed strategy equivalence). Let𝐺𝑐 = (𝑁𝑐 ,S, 𝑣)
be a continuous game and𝐺𝑚 = (𝑁𝑚,A,𝒑) a finite multi-objective

normal-form game with utility functions 𝑢. 𝐺𝑐 is mixed strategy

equivalent to 𝐺𝑚 if they are pure strategy equivalent with (𝜋, 𝜑)
and there exists a function𝜓 such that,

• 𝜓 = 𝜓1 × · · · ×𝜓𝑛 where ∀𝑖 ∈ 𝑁𝑐 ,𝜓𝑖 : B(𝑆𝑖 ) → B(Δ𝑘𝜋 (𝑖 ) ) is
a bijective function;

• ∀𝑖 ∈ 𝑁𝑐 ,∀` ∈ B(S), 𝑣𝑖 (`) = 𝑢𝜋 (𝑖) (𝜓 (`)).
We remark that, by definition, mixed strategy equivalence im-

plies pure strategy equivalence. Moreover, recall that the definition

of mixed strategies in continuous games is similar to the defini-

tion of the set of hierarchical strategies in MONFGs. This is no

coincidence and allows us to show that whenever a continuous

game is pure strategy equivalent to an MONFG, it also implies

mixed strategy equivalence. A formal proof of this is deferred to

Appendix D.

Theorem 3.4. If a continuous game is pure strategy equivalent
to a multi-objective normal-form game, they are also mixed strategy
equivalent.

Proof sketch. By definition of pure strategy equivalence, a

continuous bijective function with a continuous inverse is given

which maps strategies from one game to the other. Moreover, mixed

strategies and hierarchical strategies were respectively defined to

be the set of all Borel probability measures over their pure strategies

and mixed strategies. We can use this fact to show that a measure

defined over the strategies in one set must also be a measure in

the other set defined over the mapped strategies. This also implies

equal utility, thereby completing the proof. □

3.4 Mapping of Nash Equilibria
Our final theoretical contributions consider Nash equilibria in pure

strategy equivalent games. Theorem 3.5 first specifies that pure

strategy Nash equilibria in continuous games correspond to mixed

strategy Nash equilibria in pure strategy equivalent MONFGs. Intu-

itively, this is clear as utilities for pure strategies in the continuous

game were already guaranteed to be equal to the utilities for mixed

strategies in the MONFG. Therefore, if a joint strategy cannot be im-

proved upon unilaterally in either game, the mapped joint strategy

in the related game can also not be improved upon.

Theorem 3.5. A pure strategy is a Nash equilibrium in a continu-
ous game if and only if it is a mixed strategy Nash equilibrium in a
pure strategy equivalent multi-objective normal-form game.

We define a hierarchical Nash equilibrium below, such that we

can construct a similar argument to show that mixed strategy NE in

continuous games necessarily correspond to a hierarchical strategy

NE in pure strategy equivalent MONFGs.

Definition 3.3 (Hierarchical Nash equilibria in multi-objective nor-

mal-form games). A hierarchical strategy profile `∗ is a hierarchical
Nash equilibrium if,

𝑢𝑖 (`∗𝑖 , `
∗
−𝑖 ) ≥ 𝑢𝑖 (`𝑖 , `∗−𝑖 ),

for all players 𝑖 and alternative hierarchical strategies `𝑖 ∈ B(Δ𝑘𝑖 ).

Theorem 3.6. A mixed strategy is a Nash equilibrium in a con-
tinuous game if and only if it is a hierarchical Nash equilibrium in a
pure strategy equivalent multi-objective normal-form game.

Complete proofs for Theorems 3.5 and 3.6 are provided in Ap-

pendix E. These properties are of significant importance as they

introduce algorithmic methods for computing Nash equilibria in

either game model to the other. Moreover, as a consequence of

Theorem 3.6 in particular, we can state the first general result for

Nash equilibria to exist in MONFGs if we allow players to assume

hierarchical strategies rather than limiting them to mixed strategies

only. The proof for Corollary 3.7 is given below.

Corollary 3.7. Every multi-objective normal-form game with
continuous utility functions has a hierarchical Nash equilibrium.

Proof. Theorem 3.2 shows that every MONFG with continu-

ous utility functions can be mapped to a pure strategy equivalent

continuous game. Furthermore, it is known that a mixed strategy

Nash equilibrium exists in every continuous game [7]. Theorem 3.6

guarantees that a mixed strategy Nash equilibrium in a continuous

game is a hierarchical Nash equilibrium in the MONFG, therefore

guaranteeing a hierarchical Nash equilibrium in every MONFG. □
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Algorithm 1 Multi-Objective Fictitious Play

Input: An MONFG 𝐺 = (𝑁,A,𝒑), utility functions 𝑢 and maxi-

mum timestep 𝑇

Output: A joint strategy 𝛿

1: 𝛿1 ← 1
|𝐴1 |

2: ℎ1 ← 0 ⊲ The history for player 1

3: 𝛿2 ← 1
|𝐴2 |

4: ℎ2 ← 0
5: for 𝑡 ∈ 1, · · · ,𝑇 do
6:

˜𝛿2 ← ℎ1

𝑡 ⊲ Compute an empirical mixed strategy

7:
˜𝛿1 ← ℎ2

𝑡

8: 𝛿1 ← BestResponse(𝒑1, 𝑢1, ˜𝛿2) ⊲ Compute a best response

9: 𝛿2 ← BestResponse(𝒑2, 𝑢2, ˜𝛿1)
10: 𝑎1 ← 𝑎 ∼ 𝛿1 ⊲ Sample an action from the best response

11: 𝑎2 ← 𝑎 ∼ 𝛿2
12: ℎ1,𝑎2 ← ℎ1,𝑎2 + 1 ⊲ Update the history

13: ℎ2,𝑎1 ← ℎ2,𝑎1 + 1
14: end for
15: return 𝛿

4 EMPIRICAL RESULTS
We provide empirical evidence for the provided theorems and

show that it can also be applied to compute approximate equi-

libria when the strategy sets do not satisfy the necessary condi-

tions for pure strategy equivalence. We adapt the well-known ficti-

tious play algorithm from single-objective games to multi-objective

games and use it to compute pure strategy Nash equilibria in

continuous games. The results empirically demonstrate the ap-

plicability of our contributions and may serve as a useful tem-

plate for future applications. Our implementation is available at

https://github.com/wilrop/pure-strategy-equivalence.

4.1 Multi-Objective Fictitious Play
Fictitious play aims to learn strategies resulting in a Nash equilib-

rium through repeated plays of the game. While it is not guaranteed

to converge in general-sum single-objective games, fictitious play

and its extensions are widely used in practice. In Algorithm 1, we

show an extension for fictitious play to multi-objective games. For

simplicity, we consider a two-player variant but this can trivially

be extended to 𝑛-player games. In each iteration of the algorithm,

players calculate the empirical strategy of their opponent based on

their history of play and compute a best response to this strategy.

Players subsequently sample an action from their new strategy and

update their histories.

Recent work has studied an adaptation of fictitious play to con-

tinuous games [6]. In their algorithm, a growing array of past

strategies is kept to later compute a best response to, which im-

poses a significant memory requirement. A key advantage of our

approach is that it only requires an array of fixed length, i.e., one

entry per action, where a counter is incremented each time an

action is played. The empirical mixed strategy of the opponent is

then calculated by taking the relative frequency of each action. A

limitation of this approach is that it can only learn pure-strategy

equilibria from the continuous game.

The fictitious play algorithm shown above appears identical to

the original fictitious play algorithm. The exception, however, lies

in the best response computation steps. In single-objective games,

this can be done efficiently by selecting the action with the highest

expected returns, i.e.

𝐵𝑅(𝐴𝑖 , 𝑠−𝑖 , 𝑝𝑖 ) = argmax

𝑎𝑖 ∈𝐴𝑖

𝑝𝑖 (𝑎𝑖 , 𝑠−𝑖 ). (16)

In multi-objective games, this approach can only be guaranteed

to return a correct best response when employing a quasiconvex

utility function [22]. In general MONFGs, the best response can

be a mixed strategy and thus requires executing an optimisation

subroutine to find the strategy generating the maximum utility. As

a best response needs to be a global maximum, this requires the use

of a global optimisation algorithm. Under specific utility functions

or when approximate best responses suffice, a local optimiser could

also be used.

4.2 Polynomial Game
Polynomial games are a subset of continuous games, where utility

functions are guaranteed to be polynomial functions of the player

strategies [25, 26]. We demonstrate that such games can also be

represented as an MONFG and may be solved without employing

any continuous game or polynomial game specific machinery. We

cover a simple example as described by Parrilo [17].

Consider a zero-sum game where both players select a strategy

from the interval [−1, 1]. The utility function for player one is

defined as,

𝑣1 (𝑥,𝑦) = 2𝑥𝑦2 − 𝑥2 − 𝑦, (17)

with 𝑥 the strategy selected by player one and 𝑦 the strategy of

player two. As the game is zero-sum, player two’s utility is given by

𝑣2 (𝑥,𝑦) = −𝑣1 (𝑥,𝑦). The utility functions used in the game guaran-

tee the existence of a unique Nash equilibrium in pure strategies

where 𝑥∗ = 0.397 and 𝑦∗ = 0.630.

As the strategy sets are line segments, and thus are 1-simplices,

a pure strategy equivalent multi-objective game is guaranteed to

exist. To complete the transformation from the polynomial game

to a multi-objective game, a strategy bijection 𝜑𝑖 : 𝑆𝑖 → Δ𝑘𝑖 is
required for each player 𝑖 . The strategy bijection for both players

is given by,

𝜑𝑖 (𝑠𝑖 ) =
(

𝑠𝑖 − 𝑠𝑖,min

𝑠𝑖,max − 𝑠𝑖,min

, 1 −
𝑠𝑖 − 𝑠𝑖,min

𝑠𝑖,max − 𝑠𝑖,min

)
, (18)

where 𝑠𝑖,min = −1 and 𝑠𝑖,max = 1 for both players. The inverse

strategy bijection is given by,

𝜑−1𝑖 (𝛿𝑖 ) = 𝑠𝑖,min + 𝛿𝑖,0 ·
(
𝑠𝑖,max − 𝑠𝑖,min

)
. (19)

The final multi-objective game thus has two players with two

actions each and corresponding identity game payoffs. Furthermore,

the utility functions for both players are 𝑢𝑖 = 𝑣𝑖 ◦ 𝜑−1𝑖 . Because the

original utility functions 𝑣1 and 𝑣2 guarantee a pure strategy Nash

equilibrium in the continuous game, fictitious play is well suited to

find the mixed strategy equilibrium in the MONFG.

We execute the fictitious play algorithm for 200 iterations on

the constructed multi-objective game and repeat this for 1000 trials.

Figure 3 shows the learned strategies over time, with the shaded

area denoting the standard variation at that time. We illustrate
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Figure 3: Learning curves for the polynomial game.

the Nash equilibrium (0.397, 0.630) with dotted lines. It is clear

that our algorithm learns the equilibrium after approximately 100

iterations and is able to keep improving its strategies closer to the

exact equilibrium over time.

4.3 Bertrand Price Game
Theorem 3.3 states that a pure strategy equivalent MONFG is only

guaranteed to exist for continuous games whose strategy spaces

are convex subsets of an Euclidean space. We demonstrate that

pure strategy equivalence can still be applied when this condition

is not met by approximating the continuous game. We illustrate

this using the Bertrand price game characterised by Judd et al. [13].

Bertrand price games have been extensively studied as an eco-

nomic model for determining prices in competitive settings. In this

example, we consider two firms, 𝑥 and 𝑦, which respectively pro-

duce a different good for price 𝑝𝑥 and 𝑝𝑦 . There are three types of

customers, which have a distinct demand for both goods. The first

type of customer has linear demand curves 𝑑𝑥,1 and 𝑑𝑦,1 and only

wants the good from firm 𝑥 ,

𝑑𝑥,1 (𝑝𝑥 , 𝑝𝑦) = 𝑎 − 𝑝𝑥 𝑑𝑦,1 (𝑝𝑥 , 𝑝𝑦) = 0, (20)

with 𝑎 signifying all factors, other than price, which influence the

demand. The demand function for the third type of customer is

defined analogously for the good of firm 𝑦,

𝑑𝑥,3 (𝑝𝑥 , 𝑝𝑦) = 0 𝑑𝑦,3 (𝑝𝑥 , 𝑝𝑦) = 𝑎 − 𝑝𝑦 . (21)

Finally, the second type of customer has a demand for both goods,

𝑑𝑥,2 (𝑝𝑥 , 𝑝𝑦) = 𝑛 · 𝑝−𝜎𝑥
(
𝑝1−𝜎𝑥 + 𝑝1−𝜎𝑦

) (𝛾−𝜎)/(−1+𝜎)
(22)

𝑑𝑦,2 (𝑝𝑥 , 𝑝𝑦) = 𝑛 · 𝑝−𝜎𝑦
(
𝑝1−𝜎𝑦 + 𝑝1−𝜎𝑥

) (𝛾−𝜎)/(−1+𝜎)
. (23)

with 𝑛 the number of type two customers, 𝜎 the elasticity of sub-

stitution between 𝑥 and 𝑦 and 𝛾 the elasticity of demand for the

composite good. The total demand for each good, respectively 𝑑𝑥
and 𝑑𝑦 , is given by summing the individual demands for each type.

Finally, let𝑚 be the unit cost of production for each firm, then the

profit for both firms is defined as,

𝑟𝑥 (𝑝𝑥 , 𝑝𝑦) = (𝑝𝑥 −𝑚) · 𝑑𝑥 (𝑝𝑥 , 𝑝𝑦) (24)

𝑟𝑦 (𝑝𝑥 , 𝑝𝑦) =
(
𝑝𝑦 −𝑚

)
· 𝑑𝑦 (𝑝𝑥 , 𝑝𝑦). (25)

𝑝𝑥 𝑝𝑦 𝑟𝑥 𝑟𝑦

2.168 25.157 724.337 608.981

25.157 2.168 608.981 724.337
Table 1: The Nash equilibrium strategies and their profits.
The highest profit for firm 𝑥 and 𝑦 are highlighted.
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Figure 4: Learning curves for the Bertrand price game in the
interval [1, 30].

The range of possible prices considered in the game is the open

interval (0, +∞). As such, strategy spaces in the continuous game

are non-compact, thus violating a necessary condition for pure

strategy equivalence. We can resolve this, however, by making com-

pact convex approximations of the strategy spaces and using these

instead. We do this by constraining prices to be in a closed interval

[𝑝min, 𝑝max], which ensures that strategy sets are 1-simplices as in

the previous example. Because of this approximation, we may reuse

the same strategy bijection as defined in Eqs. (18) and (19). Note that

approximating the continuous game by altering strategy sets may

remove existing equilibria from reach or introduce new ones. In

this particular example, as we are both lower and upper bounding

the strategy sets, it is possible that an equilibrium falls outside of

the bounds and a new equilibrium is created in the MONFG which

is not an equilibrium in the original game.

For the following experiments, we define 𝜎 = 3, 𝛾 = 2, 𝑛 =

2700,𝑚 = 1 and 𝑎 = 50. With these parameters, the price game has

two distinct Nash equilibria, shown in Table 1.

4.3.1 Suitable Approximation. To give both equilibria a chance of

being selected, we set 𝑝min = 1 and 𝑝max = 30. Every execution of

the fictitious play algorithm is run for 200 iterations and results are

averaged over 1000 trials as in the previous section.

In Fig. 4, we show the trajectories leading to the two equilibria.

In earlier episodes, the trajectories are non-smooth and show high

standard deviation, as the best response computation from a limited

history of play leads agents to change strategies rapidly. However,

once beliefs converge after approximately 150 episodes, a Nash

equilibrium is consistently played.We also find that the learning tra-

jectories for both equilibria are similar, showing that the individual

trajectory that is followed is mostly determined by randomisation

early on in the learning process. These results demonstrate that

multi-objective algorithms can be applied even to approximations

of continuous games, given that these approximations sufficiently

capture the original game.
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Figure 5: Learning curves for the Bertrand price game in the
interval [4, 30].

4.3.2 Unsuitable Approximation. Next, we consider what happens
when an unsuitable approximation of the strategy sets is used.

Specifically, we raise the minimum price to 4, which renders both

equilibria from Table 1 impossible. Intuitively, these equilibria had

one firm that opted for a mass-market strategy with lower prices

and another that opted for a niche strategy with higher prices. By

raising the minimum price, we render this mass-market strategy

impossible. We show the resulting learning trajectories for this

experiment in Fig. 5.

We find that throughout all trials the firms rapidly converge to

the joint strategy (22.987, 22.987), which leads to a profit of 673.38

for both. In fact, this joint strategy is a Nash equilibrium in the

MONFG but not a Nash equilibrium of the original continuous game,

thus demonstrating the mentioned limitations of the approximation

technique. Interestingly, the Nash equilibrium in the approximate

MONFG leads to a joint strategy with higher social welfare when

considering both the total sum of profits as well as the maximum

lowest profit. Specifically, it returns a total profit of 1346.754, while

both equilibria from Table 1 lead to a total profit of 1333.318 and

has a higher lowest profit. As such, even when using insufficient

approximations for the original game, our contributions may result

in interesting solutions from, e.g., a mechanism design perspective.

We note that designing appropriate approximations for arbitrary

continuous games is a nontrivial task. For most interesting applica-

tions, suitable convex compact approximations will not be given

and thus require leveraging domain knowledge or post-processing

to confirm the retrieved solution in the original game.

5 RELATEDWORK
Multi-objective games were first introduced by Blackwell [2] and

have since been studied broadly. One solution concept that is often

considered are Pareto-Nash equilibria, which take a utility agnostic

approach and are thus defined over the vectorial payoffs directly

[12]. When taking a utility-based approach [21], it has been shown

that Nash equilibria need not exist [19]. Follow up work showed

that assuming only quasiconcave utility functions [22] is a suffi-

cient condition to guarantee existence again. From a computational

perspective, reinforcement learning algorithms and additional tech-

niques such as opponent modelling [20, 27] and communication

[23] have recently been successfully explored.

The second game model we considered in this work are continu-

ous games. General existence guarantees are known in these games,

with for example work on Nash equilibria [7] and correlated equi-

libria [8]. From a computational perspective, both fictitious play

[6] and no-regret learning have been explored [11], with the lat-

ter also obtaining strong convergence guarantees. We note that

while we adhere to the definition of a continuous game by Stein et

al. [25], there exist other definitions for continuous games which

place different assumptions on the strategy sets or utility functions

[1, 6, 11]. Finally, polynomial games, a subset of continuous games,

have been covered in detail with theoretical and algorithmic results

for their Nash equilibria and correlated equilibria [25, 26].

Our work is related to other equivalence notions in game theory.

The first notable example of such an equivalence notion is strategic

equivalence [16]. An advantage of strategic equivalence is that Nash

equilibria are preserved, thus being a useful construct for computing

Nash equilibria in games. For example, the Nash equilibria of an

otherwise intractable game might be computed by constructing a

strategically equivalent zero-sum game for which efficient solving

methods do exist [10].

Pure strategy equivalence, as defined in Section 3.2, is most

closely related to the concept of a game isomorphism which de-

fines two games to be isomorphic when there exists a mapping

from one to the other [5]. Two variants of a game isomorphism are

defined, namely a strong and a weak isomorphism, with a strong iso-

morphism preserving all Nash equilibria and a weak isomorphism

preserving only the pure strategy Nash equilibria.

6 CONCLUSION
We contribute a novel equivalence class, called pure strategy equiv-

alence, between continuous games and multi-objective normal-

form games. We show that for every continuous game whose strat-

egy spaces are convex subsets of an Euclidean space, a pure strat-

egy equivalent MONFG can be constructed and vice versa. More-

over, this equivalence entails the persistence of Nash equilibria.

We demonstrate the applicability of pure strategy equivalence by

learning Nash equilibria in two continuous games utilizing a multi-

objective fictitious play algorithm.

The equivalence notion introduces a range of new theoretical

contributions and computational approaches for both models. For

the theoretical aspect, it is known that other game models which

allow formore complex interactions, such as Bayesian games and ex-

tensive form games, can be reduced to normal-form games [16]. For-

mulating a bridge between continuous games and multi-objective

games thus opens the possibility for additional equivalence results

between these games with an infinite number of pure strategies

and the related multi-objective variant. From an algorithmic per-

spective, we expect that this will allow continuous games to be

solved more efficiently, as the tabular structure of MONFGs can be

more appropriate for computational approaches. For future work,

we aim to evaluate this on larger continuous games with more

complex structures. Finally, as the equivalence notion is not unique,

an interesting question remains how to find the best pure strategy

equivalent game for any given game.
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