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ABSTRACT

In this work, we design an Artificially Intelligent Task Allocator
(AITA) that proposes a task allocation for multi-agent systems espe-
cially with humans. A key property of this allocation is that when
an agent with imperfect knowledge (about their teammate’s costs
and/or the team’s performance metric) questions the allocation by
contesting with a counterfactual, a contrastive explanation is pro-
vided to answer their challenge. For this, we consider a negotiation
process that produces a negotiation-aware task allocation and, in
turn, leverages a negotiation tree to provide a contrastive expla-
nation. With human subject studies, we show that the proposed
allocation indeed appears fair to a majority of participants, and the
explanations generated are easy to comprehend and convincing.
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1 INTRODUCTION

Task allocation is crucial for the smooth functioning of human
teams; it involves assigning individual teammembers to tasks while
optimizing a set of predefined metrics, such as skill-sets, capacity,
and timing constraints [24]. An array of distributed approaches
exist that comprise of online methods which consider negotiation,
bargaining and local commitments to arrive at a Pareto optimal
allocation [3, 5, 6, 8–11, 19, 21]. While these distributed negotiation-
based allocations can make individual agents happy, they tend to
compromise on the efficiency and optimality of the solution. In this
regard, centralized approaches produce more efficient and optimal
allocations [7, 12], but lead to disgruntled agents who may wish
to contest the proposed solution. Therefore, a centralized solution
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needs to foresee this challenge when coming up with a solution
and, in turn, be able to provide explanations [2, 16]. Further, [13]
highlights that providing explanations is both important and chal-
lenging in a multi-agent environment (such as task allocation).
While generating explicable solutions [14, 17, 26] and providing
explanations [4, 15, 20, 22, 23] has been extensively studied for ma-
chine learning and automated planning, these considerations have
not been tantamount to optimality and efficiency in multi-agent
task-allocation scenarios. To bridge this gap, we propose AITA,
an Artificially Intelligent Task Allocator that initially leverages
a centralized allocation algorithm modeled after negotiation to
come up with an allocation that accounts for the costs of individual
agents and overall team performance. AITA can then provide con-
trastive explanations when a proposed allocation is contested using
a counterfactual. The explanations have two desirable properties:
they have a graphical form that effectively distills relevant pieces
of information, and they also act as a certificate which guaran-
tees explicability to the human. We conduct human subject studies
in three different task-allocation scenarios and show that the al-
locations proposed by AITA are deemed fair by the majority of
subjects. When users question AITA’s allocations and are presented
different explanations, they find our explanation to be the most
understandable and the most convincing.

2 PROBLEM FORMULATION

Our task allocation problem can be defined using a 3-tuple ⟨𝐴,𝑇 ,𝐶⟩
where 𝐴 = {0, 1, . . . , 𝑛} where 𝑛 denotes AITA and 0, . . . 𝑛 − 1
denotes the 𝑛 humans,𝑇 = {𝑇1, . . . ,𝑇𝑚} denotes𝑚 indivisible tasks
that need to be allocated to the 𝑛 humans, and 𝐶 = {𝐶0,𝐶1, . . .𝐶𝑛}
denotes the cost functions of each agent. 𝐶𝑛 represents the overall
performance cost metric associatedwith a task allocation outcome𝑜 .
For a task 𝑡 , we denote the human 𝑖’s cost for that task as𝐶𝑖 (𝑡). Let
𝑂 denote the set of allocations and an allocation 𝑜 (∈ 𝑂) represent a
one-to-many function from the set of humans to tasks . An outcome
𝑜 can be written as ⟨𝑜1, 𝑜2, . . . 𝑜𝑚⟩ where each 𝑜𝑖 ∈ {0, . . . , 𝑛 − 1}
denotes the human performing task 𝑖 . Further, let us denote the set
of tasks allocated to a human 𝑖 , given allocation 𝑜 , as 𝑇𝑖 = { 𝑗 : 𝑜 𝑗 =
𝑖}. For any allocation 𝑜 ∈ 𝑂 , there are two types of costs for AITA:
(1) Cost for each human 𝑖 to adhere to 𝑜 . 𝐶𝑖 (𝑜) = Σ 𝑗∈𝑇𝑖𝐶𝑖 ( 𝑗), and
(2) An overall performance cost 𝐶𝑛 (𝑜).
Negotiation Tree The negotiation between agents can be rep-
resented as a tree where each node (𝑖, 𝑜) represents an agent 𝑖
proposing an outcome 𝑜 , and other agents can accept or reject it.
If rejected, the next agent 𝑖 + 1 proposes an outcome that (1) not
an offer previously seen in the tree, and (2) is optimal regarding to
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agent 𝑖 + 1’s cost among the remaining offers. The tree progresses
either until all agents accept the offer or all outcomes are exhausted.
Each negotiation step increases the time needed to reach a final
task-allocation. So, similar to [1], we consider a discount factor.
The acceptance or rejection of an allocation for agent 𝑖 is based on
whether the cost of the allocation is less than or equal to their cost
of a negotiation-aware explicable allocation 𝑂𝑖

𝑛𝑎_𝑒𝑥𝑝 .{
𝑎𝑐𝑐𝑒𝑝𝑡 𝑜 𝑖 𝑓 𝐶𝑖 (𝑜) ≤ 𝐶𝑖 (𝑂𝑖

𝑛𝑎_𝑒𝑥𝑝 )
𝑟𝑒 𝑗𝑒𝑐𝑡 𝑜 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Negotiation-Aware Explicable Allocation
An allocation is considered explicable by all agents iff, upon negoti-
ation, all the agents are willing to accept it. Formally, an acceptable
allocation at step 𝑠 of the negotiation, denoted as 𝑂𝑛𝑎_𝑒𝑥𝑝 (𝑠), has
the following properties:
1. All agents believe that allocations at a later step of the negotiation
will result in a higher cost for them.

∀𝑖, ∀𝑠
′
> 𝑠 𝐶𝑖 (𝑂 (𝑠

′
)) > 𝐶𝑖 (𝑂𝑛𝑎_𝑒𝑥𝑝 (𝑠))

2. All allocations offered by agent 𝑖 at step 𝑠′′ before 𝑠 , denoted as
𝑂𝑖
𝑜𝑝𝑡 (𝑠′′), is rejected at least by one other agent. The 𝑜𝑝𝑡 in the

subscript indicates that the allocation 𝑂𝑖
𝑜𝑝𝑡 (𝑠′′) at step 𝑠′′ has the

optimal cost for agent 𝑖 at step 𝑠′′. Formally,

∀𝑠
′′
< 𝑠, ∃ 𝑗 ≠ 𝑖, 𝐶 𝑗 (𝑂𝑖

𝑜𝑝𝑡 (𝑠
′′
)) > 𝐶 𝑗 (𝑂𝑛𝑎_𝑒𝑥𝑝 (𝑠))

We now describe how AITA finds a negotiation-aware explicable
allocation. The negotiation process to find an explicable alloca-
tion can be viewed as an sequential bargaining game. With the
correct information about the costs, and considering the limited
computational capability of the humans, AITA uses the simulated
negotiation by enumerating all the periods of the sequential bar-
gaining game to find the negotiation-aware explicable allocation
that is accepted by all. The optimal solution of our defined bargain-
ing game (negotiation-aware explicable allocation) is the Subgame
Perfect Equilibrium of the game that can be found using backward
induction [18].

Counterfactual Allocation and Explanation
In situations where a human has complete information and compu-
tational capabilities, they will understand that AITA’s allocation is
explicable and does not need an explanation. However, in real-world
settings, humans may not have complete information about other
humans’ utility functions [21], so a human may perceive AITA’s
allocation as suboptimal. This can result in the human contesting
thier allocation by proposing a counterfactual allocation that they
believe would be better for them and accepted by all other players.
AITA can generate an effective explanation that refutes the counter-
factual allocation by describing a negotiation tree using actual costs.
An explanation is a negotiation tree that shows the counterfactual
allocation will result in a final allocation with a higher cost for the
human than AITA’s proposed allocation.

3 EXPERIMENTAL RESULTS

This section examines if the proposed explicable allocation is per-
ceived as fair and if the contrastive explanations generated by AITA
are effective. Two experiments are conducted:

Table 1: Users who felt AITA’s allocation was fair (% Fair) and
the average Understandable (U) and Convincing (C) scores
for the various explanations.

Domain % Fair Vacuous Verbose Neg-tree
U C U C U C

Cooking 84.2% 4.5 2.33 4.3 4 4.5 4
Class Project 86.4% 4.4 2.8 4.2 3.4 3.8 4.4
Paper Writing 55.0% - - - - - -

Relative Case We presented two task allocation scenarios to 38
participants - (1) cooking at a restaurant with two teammates and
three tasks, and (2) dividing five tasks between a senior and ju-
nior grad/undergrad student. we presented the participants with
AITA’s proposed allocation and counterfactual allocations. When
the human selects a counterfactual, implying that AITA’s proposed
allocation is inexplicable, we present them with three explanations:
our negotiation-tree based explanation, a vacuous explanation that
simply states that the human’s counterfactual won’t be accepted
by others and doesn’t ensure a good overall performance metric, a
verbose explanation that provides the cost of all their teammates
and the performance metric for all allocations.
Absolute Case Setup In this study, we had 40 human subjects par-
ticipate in a task allocation scenario where a senior researcher and a
junior researcher are working on a paper with three different tasks.
Similar to the previous case, the subjects have to select whether
the AITA’s proposed allocation is fair or select between either of
the two counterfactual allocations. In contrast to the previous case,
upon selecting a counterfactual, the subject is only presented with
the negotiation-tree explanation.

Results. Across the three different domains, a majority of the
participants selected that AITA’s allocation is fair (see table 1).
This shows that our formally defined negotiation-aware explicable
allocation does indeed appear fair to humans. For participants who
asked for explanations by providing a counterfactual, they were
asked to rate the comprehensibility and convincing power of the
provided explanations on a scale of 1 − 5. We observed that the
negotiation tree was judged to be understandable and moderately
convincing on average in the absolute setting. In the cumulative
setting, results in both the cooking and the class project domain
show that our explanation is the most convincing one. It is also
perceived as the most understandable explanation (but shared the
stage with the Vacuous explanation.)

4 CONCLUSION
In this paper, we proposed a centralized AI task allocator that
provides negotiation-aware explicable allocation to human teams
using a simulated negotiation-based approach. AITA also gives
counterfactual explanations to team members unsatisfied with the
proposed allocation. The paper includes human subject studies to
show that the allocation is fair to the majority of humans, and the
provided explanations are understandable and convincing.
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