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ABSTRACT
Despite high-profile successes in the field of Artificial Intelligence,
machine-driven technologies still suffer important limitations, par-
ticularly for complex tasks where creativity, planning, common
sense, intuition, or learning from limited data is required. These
limitations motivate effective methods for human-machine collabo-
ration. Our work makes two primary contributions. We thoroughly
experiment with an artificial prediction market model to under-
stand the effects of market parameters on model performance for
benchmark classification tasks. We then demonstrate, through sim-
ulation, the impact of exogenous agents in the market, where these
exogenous agents represent primitive human behaviors.
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1 INTRODUCTION
A body of work on artificial prediction markets is emerging. These
are numerically simulated markets, populated by artificial agents
for the purpose of supervised learning of probability estimators [4].
While nascent, this literature has demonstrated the plausibility of
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using a trained market as a supervised learning algorithm, achiev-
ing comparable performance to standard approaches on simple
classification tasks [3, 4, 12, 14].

Like other machine learning algorithms, functioning of an artifi-
cial prediction market depends on several researcher-determined
parameters: number of agents; liquidity; initial cash; alongside
parameters related to training processes. Scenarios in which per-
formance is robust or brittle to these settings are yet unclear. Prior
work has observed that artificial markets may suffer from a lack of
participation [16]. That is, like their human counterparts in tradi-
tional prediction markets, agents may not invest in the market if
they do not have sufficient information [2, 17, 18].

We suggest that a promising opportunity afforded by artificial
prediction markets is eventual human-AI collaboration – a market
framework should support human traders participating alongside
agents to evaluate outcomes. That this approachmay be particularly
valuable in contexts where machine learning falls short (e.g., lack
of training data, complex tasks) and the potential for human-only
approaches is either undesirable or infeasible.
Our work is framed by two primary research questions.

RQ1: How does the performance of a simple artificial prediction
market depend on hyper-parameter selection?

RQ2: What impact does the inclusion of exogenous agents repre-
senting simple, human-like behaviors have onmarket performance?

2 DATA
We consider three classification tasks. The first two are bench-
mark ML tasks [8, 13] used broadly to compare the performance
of machine learning algorithms. The third is the task of classify-
ing scientific research outcomes as replicable or not replicable –
a challenging, complex task on which both machine learning al-
gorithms [1, 15, 19, 20] and human assessment [5–7, 9–11] have
achieved respectable but not excellent performance. Specifically,
we use the dataset and extracted features considered by [16] for
ease of comparison. The dataset contains 192 findings in the social
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and behavioral sciences, each labeled either Replicable or Not Repli-
cable, and a set of 41 features extracted from each associated paper
representing bibliometric, venue-related, author-related, statistical,
and semantic information.

3 EXPERIMENTAL DESIGN
RQ1.We use as a base model the artificial binary prediction market
described in [14] to study the effects of inter-arrival rate _, agent
initial bank value 𝐵𝑖 (0) (or, “cash”), and market liquidity factor 1/𝛽
on artificial market performance. Number of generations is fixed at
five during training; while, market duration is fixed at 20. These
parameters were fixed (vs. manipulated) to avoid combinatorial
complexity during this initial study; however, they should be studied
in future work.
RQ2. We introduce three classes of exogenous agents representing
primitive behaviors that operate fully separate from the agent logic
and feature-based training protocol used for the other agents in the
market. The first, ground truth agents 𝐺𝑇 have perfect knowledge
of the outcome and always buy contracts corresponding to the
correct outcome whenever they have the opportunity to participate
(moderated by arrival rate, _). The second is ground truth inverse
agents 𝐺𝑇𝑖𝑛𝑣 . These agents always buy contracts corresponding
to the incorrect outcome whenever they have an opportunity to
participate. The third class is random agents 𝑟𝑎𝑛𝑑 which purchase
contracts corresponding to one or the other outcome randomly.

4 RESULTS
RQ1. Task 1: Best F1 of 0.91 is achieved for the first benchmark ML
task, Iris image classification [8]. for {liquidity factor = 300, _ = 1.0,
initial cash = 1}. In this setting, accuracy is 0.94 and 100% of the data
is scored. Generally, better performance is obtained when initial
cash ranges between 1 and 4 and when liquidity is greater than 100.
Choice of _ does not appear to significantly impact performance.

Task 2: Performance is generally poorer on the benchmark heart
disease classification task [13] than for the Iris image classification
task, and there is also less clear region of best performance in hyper-
parameter space. Highest F1 of 0.71 is achieved for {liquidity factor
= 50, _ = 0.05, initial cash = 20}. In this setting, accuracy is 0.66
and 99.67% of the data is scored.

Task 3: In the context of replication outcomes prediction, best
F1 of 0.84 is achieved for {liquidity factor = 5, _ = 0.05, initial cash
= 1}. Accuracy is 0.79 and 36% of the test data is scored. The market
algorithm struggles with agent participation on this task; all but
two hyper-parameter combinations leave at least 40% of the test
data unscored. Performance increases with liquidity and decreases
with initial cash, while the effect of _ reveals no clear pattern.
RQ2. Task 1: We introduce 𝐺𝑇 , 𝐺𝑇𝑖𝑛𝑣 and 𝑟𝑎𝑛𝑑 agents into the
market. These agents operate outside of the training process and,
as such, represent primitives that may underlie simple human par-
ticipant inputs. Exogenous agents are introduced into the general
agent pool and are subject to the same arrival rate, _, as trained
agents. We find that the inclusion of even a very small population of
GT agents improves market performance substantially. The impact
of random agents is relatively lesser (Table 1).

Table 1: Average F1 on 10 best and worst-scoring replication
markets, for different exogenous agent populations.

𝐺𝑇 𝐺𝑇 𝐺𝑇𝑖𝑛𝑣 𝐺𝑇𝑖𝑛𝑣 𝑟𝑎𝑛𝑑 𝑟𝑎𝑛𝑑

Baseline 0.1% 1% 0.1% 1% 1% 10%

0.84 0.93 1 0.34 0.09 0.79 0.80
0.84 0.91 0.97 0.34 0.28 0.74 0.75
0.83 0.94 1 0.32 0.06 0.79 0.83
0.83 0.90 0.99 0.33 0.24 0.76 0.82
0.83 0.88 0.94 0.33 0.29 0.75 0.79

0.69 0.89 0.96 0.34 0.28 0.76 0.81
0.69 0.91 0.96 0.34 0.29 0.78 0.77
0.68 0.95 0.96 0.33 0.29 0.78 0.79
0.66 0.89 0.94 0.33 0.29 0.76 0.79
0.65 0.90 0.94 0.34 0.30 0.77 0.81

Figure 1: Average F1 score on the replication prediction task,
plotted in hyper-parameter space.

5 CONCLUSIONS
The comprehensive study of a simple artificial prediction market
we undertake here highlights a promising new machine learning
algorithm, which achieves respectable performance on benchmark
machine learning tasks but which, we argue, affords unique oppor-
tunities for human-AI collaboration.
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