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ABSTRACT
Recent work in human-robot teaming has demonstrated that when
robots build and maintain “shared mental models”, the effective-
ness of the whole human-robot team is overall better compared to
a baseline with no shared mental models. In this work, we expand
on this insight by introducing proactive behaviors to investigate
potential further improvements of team performance and task effi-
ciency. We hypothesize that, combined with shared mental models,
robots with these more proactive behaviors become even more
effective teammates. To this end, we developed a set of robot be-
haviors aligned with reactive, active and proactive team behaviors
in human-human teams. We ran a human behavioral study to eval-
uate our system. The results show that proactive robot behavior
improves task efficiency and performance over mere reactive be-
havior in high cognitive load environments.
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1 INTRODUCTION
Teams consisting of humans and robots have incredible potential
to improve our lives in numerous areas like search-and-rescue mis-
sions, manufacturing and education. An open question in this area
is how to enable effective task-based communication between hu-
mans and robots. There is increasing evidence showing that humans
prefer to work with proactive robots (e.g. Fong et al. [5], Baraglia et
al. [1], Cakmak et al. [2]), however as Bhattacharjee et al. [4] show
“more autonomy is not always better”. Additionally, Shared Mental
Models (SMMs) have shown great promise in increasing effective-
ness of human-robot teams (e.g. Gervits et al. [6]). In this work, we
design a system that integrates three different autonomous teaming
behaviors (reactive, active and proactive) and SMMs in the cognitive
robotic architecture DIARC. We evaluate our system with a hu-
man behavioral study and show that proactive human-robot teams
perform better than reactive ones on team performance metrics.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

2 TECHNICAL APPROACH
We build on DIARC [8] by implementing event memory, three
autonomous actions with different behavior types, initiation of
dialogue, initiation of shared goals, further goal management be-
haviour, autonomous reactivation, and shared mental models. The
robots use a “supervisory control” policy [3] where actions are
carried out independently, but the human can intervene.

Setting. We utilize a spaceship environment in virtual reality
with one human and two PR2 robots that have SMMs. The simula-
tion was developed to simulate a use case for human-robot teams
in space via a collaborative intravehicular activity (IVA) with a mis-
sion and a maintenance task. The spaceship has three wings and
a central area that contains the mapping console. The human “as-
tronaut” is given a “primary task” to record geological information
given verbally and written by an off-ship rover onto a map in the
ship’s central area. This is a distractor task meant to increase the
cognitive load of the participant throughout the experiment. Their
real task is to keep the spaceship running, by repairing tubes, when
they start breaking, as they are vital for the spaceship’s health. The
human-robot team has to collaboratively repair the tubes before
they become unfixable. In order to repair a tube, the robot is either
commanded to do so by the human or receives confirmation after
asking whether the human wants to repair the tube. The process
follows: the human turns the tube off, the robot repairs it and finally
the human turns it back on.

Teaming Behaviors. In this study, we designed three robotics
behaviors: reactive, active, and proactive. All agent teaming behav-
iors behave in the exact same way, but for their communication
with the human. Thus, all agent teaming behaviors use SMMs with
the same base autonomy script. Following [7, 9], the best team-
mates try to independently identify the team’s goal and take steps
to achieve it. To this end, all teaming behaviors are aware of the
overall goal (keep the space-station working) and independently
choose which area to patrol next. Two of the teaming behaviors
(active, proactive) share unsolicited information with the human.

(1) Reactive: The reactive agent silently patrols, only giving
information when prompted.

(2) Active: In addition to patrolling, the active agent readily
offers information related to breaking tubes to the human
teammates, being mindful of becoming a distraction.

(3) Proactive: The proactive agent will offer information to the
human teammates, attempt to initiate shared tasks (repairing
a tube) when the situation calls for it, and reminding the
human to perform necessary actions that have already been
committed to, but unfinished.
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Figure 1: (Left) We show the mean tube task efficiency per
agent behavior. (Right)We show themean % of tubes repaired
per agent behavior. The error bars represent standard error.
We show that the more proactive an agent is (vs reactive),
the more efficient the human-agent team is and the better it
performs.

3 HUMAN SUBJECT EVALUATION
We evaluate the effect of the different behaviors on mixed-initiative
human-robots teams with a within-subjects evaluation study with
23 participants (with approval by our University’s Internal Review
Board), where each human participant was paired with two robots
(with the same behavior) in the simulated environment and three
trials one of each with reactive, active, and proactive robots. The
trial order was always randomized to account for learning curve
and fatigue. Participants were told that the robot behaviors may
change between trials. Participants had two tasks: to log all rover
events announced by the space station and to collaborate with the
robots on board to keep the station running.

We hypothesize that robot proactivity would improve the per-
formance and efficiency of human-robot teams and that the most
significant differences would be between the reactive and proactive
cases. For our performance measure we use the % of tubes repaired.
We measure the task efficiency of the teams by computing the av-
erage time to repair a tube (in case a tube was never repaired, we
defaulted to 200 seconds which is the maximum logged repair time).

We performed several one-way ANOVAs together with Tukey
HSD tests on the above performancemeasures to determinewhether
the data supported our hypotheses. We plot the results in Fig. 1.
Hypothesis 𝐻1. We predict that the % of tubes repaired would
improve as the agents become more proactive.

Results. We found that the percent of tubes repaired was higher
as the agents’ proactivity increased (𝐹 = 3.87, 𝑝 = .0257, [2 = .10).
Using Tukey’s HSD test, we found that there was no statistically
significant difference between the reactive and active behaviors (𝑝 =

.73) or the active and proactive behaviors (𝑝 = .12). However, the
difference between reactive and proactive behaviors was significant
(𝑝 = .024). Our results support 𝐻1, i.e., teams with proactive agents
achieve better task performance than ones with reactive agents.
Hypothesis 𝐻2. We predict that participants would have an in-
creased task efficiency in teams with more proactive agents.

Results. The task efficiency significantly improved when the
agents were proactive (𝐹 = 6.02, 𝑝 = .0039, [2 = .15). Tukey’s
HSD test showed no significant difference between the reactive and
active behaviors (𝑝 = .65), but there was a statistical significance
between the active and proactive behaviors (𝑝 = .04). The statistical

significance was even higher between the reactive and proactive
behaviors (𝑝 = .0039). Our results thus support the hypothesis.

4 DISCUSSION
There was a significant difference in task performance and effi-
ciency under the proactive vs. the reactive condition, supporting
our hypothesis that proactive behavior can further increase team
performance building upon the benefits of SMMs. The active behav-
ior was not able to cause as large of a change in team performance
since it did not relieve the participant of enough responsibilities.

𝐻1 Supported: Proactivity of Robots Under SMM Conditions In-
crease Task Performance.We found improvement in our main task
performance metric, percent of tubes repaired. Based on our data,
only the proactive case actually made a statistically significant
difference to our task performance metric. Our results show that
volunteering information to the human does not suffice to improve
teamwork. Agents need to actively take responsibility in shared
tasks to be better teammates. The combination of the human not
needing to determine which tubes need to be repaired and being
relieved from some decision-making, allows the proactive agent-
human team to repair more tubes and thus perform better than the
reactive or active agent-human. Interestingly, we found that there
is no significant difference in performance of the reactive versus
active agents, or the active versus proactive agents. This leads us to
believe that the active behavior is a right step towards better teams
since the team performance was not significantly different from
either the reactive or proactive behavior.

𝐻2 Supported: Proactivity of Robots Under SMM Conditions Im-
proves Task Efficiency. Agents with proactive behaviors improve
the task efficiency over reactive agents. Additionally, teams with
proactive agents perform significantly better than teams with ac-
tive agents. The proactive agents both inform the human of the
breaking tubes, but also initiate the task of fixing a tube. The salient
difference between the active and proactive agent is the task ini-
tiation. Our results show that the simple act of initiating a task,
without changing any of the steps, had a positive impact on the
team efficiency.

Participant Feedback. During our experiments, we gathered
written and oral feedback from the participants. The participants
preference for proactive behavior was sometimes exhibited verbally
during their proactive trial with one participant mentioning “These
robots are helping me out this time and I really appreciate that.”. In
the post survey, one participant wrote “There’s definitely room for
humans and robots to work together to advance human goals.”.

5 CONCLUSION
We developed methods for proactive robot behavior in teaming
contexts and integrated them into cognitive architecture DIARC. A
human subject evaluation to validate our system showed that in
a high cognitive load scenario, human-robot teams where robots
exhibit more proactive behaviors tend to perform better in terms
of task efficiency and task performance. This is a promising result
suggesting that extending the current methods to a broader more
general range of proactive behaviors in autonomous robots could
significantly improve the performance of mixed-initiative human-
robot teams.
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