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ABSTRACT
In this paper, we investigate the learnability of the function ap-
proximator that approximates Nash equilibrium (NE) for games
generated from a distribution. First, we offer a generalization bound
using the Probably Approximately Correct (PAC) learning model.
The bound describes the gap between the expected loss and empiri-
cal loss of the NE approximator. Afterward, we prove the agnostic
PAC learnability of the Nash approximator. In addition to theoreti-
cal analysis, we demonstrate an application of NE approximator in
experiments. The trained NE approximator can be used to warm-
start and accelerate classical NE solvers. Together, our results show
the practicability of approximating NE through function approxi-
mation.

CCS CONCEPTS
• Theory of computation→ Exact and approximate compu-
tation of equilibria; Sample complexity and generalization
bounds; Solution concepts in game theory.
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1 INTRODUCTION
Nash equilibrium (NE) [49], in which each agent’s strategy is op-
timal given the strategies of all other agents, is one of the most
important solution concepts in game theory. It can be used to ana-
lyze the outcome of strategic interactions among rational agents.
An NE or ϵ-approximate Nash equilibrium (ϵ-NE) strategy can also
be a good guide for agents in the game since agents have no or neg-
ligible incentive to disobey individually. There has been increasing
interest in NE due to its broad applications in Generative Adver-
sarial Networks (GAN) [28], Multi-Agent Reinforcement Learning
(MARL) [61], multi-agent systems [56], economics [19, 20], and
online advertising [18]. Although NE always exists in normal-form
games [49], finding an NE is PPAD-complete even for 2-player
games [9] and 3-player games [14]. Such negative results lead to
increased attention on developing algorithms to approximate NE.

While many algorithms were proposed to find ϵ-NE for some
approximation ϵ > 0 [7, 12, 15–17, 37, 38, 58], these works focus on
solving a single game in isolation. However, many similar games
usually need to be solved in practice or in some multi-agent learn-
ing algorithms. For instance, in repeated contextual games such as
traffic routing [54], the utility function depends on contextual in-
formation generated from a distribution. The Nash Q-learning [34]
algorithm, which solves Markov games via value-based reinforce-
ment learning, needs to compute NE for a normal-form game every
time it updates the Q-value. In these settings, traditional solvers
have to compute from scratch for every game, ignoring the similar-
ity among those games. As an improvement, it can be preferable to
construct a function approximator that predicts NE from game util-
ity [26, 46]. The NE approximator is trained through the historical
data and can provide an approximate solution quickly at the test
time.

Several critical theoretical issues arise in developing algorithms
to predict NE from samples. First, the NE approximator is learned
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from training data and will be evaluated by unseen games in test-
ing. Therefore, its generalization ability, i.e., its performance in
testing, needs to be clarified. Moreover, people also care about the
sample complexity (how many training samples we need) to get a
reasonable approximator.

In this paper, we make the first step to study the learnability
of predicting NE by function approximation. We consider general
n-player normal-form games with fixed action space. We follow the
standard Probably Approximately Correct (PAC) learning [31, 59]
model, in which game utilities are independently generated from an
identical distribution, both in training and testing. One challenge
is the non-uniqueness issue of exact NE, which brings difficulty
for naively adopting supervised learning techniques. Inspired by
the definition of ϵ-NE, we set up a self-supervised loss function
to evaluate the performance of an NE approximator. Such Nash
approximation loss is Lipschitz continuous to game utility and play-
ers’ strategies. Based on that, we present a generalization bound
for any NE approximators. The bound provides a confidence in-
terval on the expected loss based on the empirical loss in training.
Furthermore, based on a mild assumption of the NE approximator
function class, we prove that it is agnostic PAC learnable to predict
NE from samples. To the best of our knowledge, this is the first
result that addresses the PAC learnability of Nash equilibrium.

In addition to the theoretical analysis, we demonstrate a prac-
tical application of the learned NE approximator. We show that
it can warm-start other classic approximate NE solvers. By doing
so, we combine both advantages of the function approximation
method and the traditional approach. The former helps to provide
an effective initial solution in batches with low computational costs,
and the latter provides theoretical guarantees. Specifically, we con-
duct numerical experiments in bimatrix games. We train a neural
network-based NE approximator and use the predicted solutions as
the pre-solving initialization for the algorithm of Tsaknakis and Spi-
rakis [58] and the start-of-the-art approximate NE solver proposed
by Deligkas et al. [17]. In both cases, we report faster convergence.

Our paper is organized as follows: In Section 2 we describe
related works; In Section 3 we introduce the preliminary of game
theory; In Section 4 we set up the PAC learning framework for
predicting NE from samples; We present our learnability results in
Section 5; We conduct numerical experiments and demonstrate the
application in Section 6; We draw our conclusion in Section 7.

2 RELATEDWORK
Classic solvers with feasibility guarantee. For 2-player games,

there are algorithms with a theoretical guarantee for maximum
Nash approximation loss (See definition in Equation (1)). Kon-
togiannis et al. [37] and Daskalakis et al. [16] introduced sim-
ple polynomial-time algorithms based on searching small sup-
ports to reach an approximation loss of 3/4 and 1/2, respectively.
Daskalakis et al. [15] provided an algorithm of approximation loss
0.38 by enumerating arbitrarily large supports, and this approxi-
mation loss is also achieved by Czumaj et al. [12] with a different
approach. Bosse et al. [7] proposed an algorithm based on Konto-
giannis and Spirakis [38] to reach an approximation loss of 0.36.
TS algorithm [58] achieves an approximation loss of 0.3393, and

Chen et al. [10] proved that the bound is tight. Recently, DFM al-
gorithm [17], an improved version of Tsaknakis and Spirakis [58],
establishes the best currently known approximation loss of 1/3.
However, computing approximate NE for even arbitrary constant
approximation is PPAD-hard [13].

Learning approaches. Learning is another paradigm to compute
approximate NE by repeatedly proposing temporal strategies and
updating them with feedback rewards. Fictitious play [48] is the
most well-known learning-based algorithm to approximate NE,
and Conitzer [11] proves that it reaches an approximate loss of
1/2 when given constant rounds. Double Oracle methods [21, 47]
and PSRO methods [40, 51], though effective, target solving zero-
sum games only. Online learning methods, including regret match-
ing [30], Hedge [4] and Multiplicative weight update [3], are proved
to converge to (approximate) coarse correlated equilibrium [8].

Data-driven approaches. In addition to traditional methods, many
works have proposed to approximate NE through data-driven ap-
proaches. Some of them make use of the historical game-playing
data and learn the game utility functions [1, 6, 62] or game gradi-
ents [32, 42, 43] from the observed (approximate) NE. By doing so,
they can predict approximate NE solutions for a class of games (e.g.,
contextual games [32, 54]). Another way is to learn a function ap-
proximator that maps game utility to an approximate solution [46].
Such NE approximator can be applied in PSRO [26]. Recently, Har-
ris et al. [29] introduce meta-learning algorithms for equilibrium
finding. In our paper, we study the generalization ability of the NE
approximator and the PAC learnability of NE.

Learnability. As for learnability analysis in games, Viqueira et al.
[60] and Marchesi et al. [45] provide the PAC analysis of learning
the game utility in simulation-based games, in which the utility is
obtained by query and would potentially be disturbed by noise. A
Nash Oracle, which can output the exact NE for arbitrary games di-
rectly, is assumed in these papers. Similarly, Fele and Margellos [25]
considers games with noisy utilities and studies the learnability of
NE, given the strong assumption of Nash Oracle. As a comparison,
we do not assume any Nash Oracles in our paper. Some other works
consider query complexity to approximate NE [22, 24], while we
focus on the sample complexity to learn a generalizable NE approx-
imator. Moreover, while Jin et al. [36] and Bai et al. [5] propose
PAC learnable algorithm to approximate NE in a zero-sum Markov
game, and to approximate Coarse Correlated Equilibria (CCE) or
Correlated Equilibria (CE) in a general-sum Markov game, we must
highlight the difference that we consider the PAC analysis of NE
in general-sum games sampled from a same arbitrary distribution,
instead of approximating NE for one specific game instance.

3 GAME THEORY PRELIMINARIES
Normal-form games. We denote a normal-form game with joint

utility function u as Γu = (N ,A,u) and explain each item as fol-
lows.
• N = {1, 2, . . . ,n} is the set of all the n players. Each player

is represented by the index i ∈ N .
• A = A1 × A2 × · · · × An is the combinatorial action space

of all players, in which Ai is the action space for player i .
For player i ∈ N , let ai ∈ Ai be a specific action and |Ai |
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be the number of actions (An action is also referred to as a
pure strategy). An action profile a = (a1,a2, . . . ,an) ∈ A
represents one play of the game in which the player i takes
her corresponding action ai ∈ Ai . The action space A is a
Cartesian product that contains all possible action profiles.
Therefore, we have |A| =

∏
i ∈N |Ai |.

• u = (u1, . . . ,un) is the game utility (payoff), in which ui :
A → R is the utility function (or utility matrix, equiva-
lently) for player i .ui describes the utility of player i on each
possible action profile a = (a1,a2, . . . ,an) ∈ A. We have
|ui | = |A| and |u | = n |A|. In our paper, we assume each util-
ity is in the range of [0, 1]without loss of generality. Such an
assumption is widely-used in previous literatures [17, 58].

A mixed strategy of player i , denoted by σi , is a distribution
over her action set Ai . Specifically, σi(ai) represents the proba-
bility that player i chooses action ai . Under such definition, we
have

∑
ai ∈Ai σi(ai) = 1. Denote ∆Ai 3 σi be the set of all the

possible mixed strategies for player i . A mixed strategy profile
σ = (σ1,σ2, . . . ,σn) is a joint strategy for all the players. Based
on σ , the probability of action profile a = (a1,a2, . . . ,an) being
played is σ(a) :=

∏
i ∈N σi(ai). Notice that an action profile a (i.e.,

a pure strategy profile) can also be seen as a mixed strategy profile
σ with σi(ai) = 1 for all i ∈ N . The expected utility of player i
under σ is

ui(σ) = Ea∼σ [ui(a)] =
∑
a∈A

σ(a)ui(a).

Besides, on behalf of player i , the other players’ strategy profile is
denoted as σ−i = (σ1, . . . ,σi−1,σi+1, . . . ,σn).

(ϵ-approximate) Nash equilibrium. Nash equilibrium is one of
the most important solution concepts in game theory. A (mixed)
strategy profile σ ∗ = (σ ∗1,σ

∗
2, . . . ,σ

∗
n) is called a Nash equilibrium

if and only if for each player i ∈ N , her strategy is the best response
given the strategies σ ∗

−i of all the other players. Formally,

ui(σi ,σ
∗
−i) ≤ ui(σ

∗
i ,σ
∗
−i), ∀i ∈ N ,σi ∈ ∆Ai (NE)

However, computing NE for even general 2-player or 3-player
games is PPAD-hard [9, 14]. Given such hardness, many works
focus on finding approximate solutions. For arbitrary ϵ > 0, we say
a strategy profile σ̂ is an ϵ-approximate Nash equilibrium (ϵ-NE) if
no one can achieve more than ϵ utility gain by deviating from her
current strategy. Formally,

ui(σi , σ̂−i) ≤ ui(σ̂i , σ̂−i) + ϵ, ∀i ∈ N ,σi ∈ ∆Ai (ϵ-NE)

The definition of ϵ-NE reflects the idea that players might not be
willing to deviate from their strategies when the amount of utility
they could gain by doing so is tiny (not more than ϵ).

4 LEARNING FRAMEWORK
In this section, we set up the PAC learning framework of predicting
NE in n-player normal-form games with fixed players and fixed
action space. The learning framework includes a domain setU, a
game-generation distribution D, a hypothesis classH of the NE
approximator, a training set S , and evaluation metrics to evaluate
the performance of any NE approximators.

Domain set is defined as the set of all the possible input games.
In our paper, the domain set U includes all the possible game

Table 1: An example illustrating the non-uniqueness issue
of exact NE, in which A1 = {L,R} and A2 = {U ,D}. Each
element (x ,y) in the table representsu1(·, ·) = x andu2(·, ·) =
y for the corresponding joint action profile. There are two
pure NE (bolded) and one mixed NE in the example.

U D

L (0, 0) (1, 0.5)

R (0.5, 1) (0, 0)

utilities given the fixed players and action space. Following the
standard PAC learning paradigm, we assume each game utility u ∈
U is sampled independent and identically from a game-generation
distribution D with supp(D) ⊆ U. The generated games may
belong to a specific game class (e.g., symmetric games). We make
no assumption about D. The learner does not know the exact form
of D, but she can access the generated samples.

The learner should choose in advance (before seeing the data)
a class of functions H , where each function h : U → ∆A1 ×

∆A2 × · · · × ∆An in H maps a game utility to a joint strategy
of n players. We call such function classH the hypothesis class. In
our paper, we consider hypothesis classes with infinite size. We
will describe how we measure the capacity ofH in Section 5. Dur-
ing learning, a training set S of sizem is provided to the learner.
S = {u(1),u(2), . . . ,u(m)} contains m game utilities drawn i.i.d.
from domain setU according to D.

One challenge for learning to predict NE is the non-uniqueness
issue: There may be multiple NEs for a game (See Table 1 for an
illustration). Such an issue brings trouble for applying supervised
learning. The equilibrium selection problem is nontrivial and many
works made some assumptions to ensure the uniqueness of NE [6,
32, 41, 62]. To deal with the issue, we use Nash approximation
loss to measure the level of approximation of a mixed strategy to
NE. The metrics is widely used in the literature for approximating
NE[17, 58]. Nash approximation is defined as follows 1:

Definition 4.1 (Nash approximation,NashApr). For normal-form
game Γu = (N ,A,u), the Nash approximation loss of strategy
profile σ with respect to game utility u is the maximum utility gain
each player can obtain by deviating from her strategy. Formally,

NashApr(σ ,u) :=max
i ∈N

max
σ ′i ∈∆Ai

[ui(σ
′
i ,σ−i) − ui(σi ,σ−i)]

=max
i ∈N

max
ai ∈Ai

[ui(ai ,σ−i) − ui(σi ,σ−i)].
(1)

The computation of NashApr(σ ,u) only involves σ and u. Thus
we do not need any NE or side information. Besides, as we will
discuss in Section 5, the Nash approximation loss is Lipschitz con-
tinuous with respect to both inputs, which helps to derive our
results.

For finiteH , it is trivial to provide a PAC learnable result [55].
The learning algorithm A : Um → H aims to learn a good NE
approximator h ∈ H from the training data S , aiming to minimize

1 Another similar concept is called Nash exploitability [44]: NashExpli(σ , u) :=
maxσ ′i ∈∆Ai ui(σ

′
i, σ−i) − ui(σ ).
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Algorithm 1 NE approximator Learning via minibatch SGD

1: Input: Training set S of sizem
2: Parameters: Number of iterations T > 0, batch size B > 0,

learning rate η > 0, initial parameters w0 ∈ R
d of the NE

approximator model.
3: for t = 0 to T do
4: Receive minibatch St = {u(1), . . . ,u(B)} ⊂ S
5: Compute the empirical average loss of St :
6: LSt (h

wt )← 1
B
∑B
i=1 NashApr(hwt (u(i)),u(i))

7: Update model parameters:
8: wt+1 ← wt − η∇wtLSt (h

wt )
9: end for

the true risk LD(h) of using h. The true risk is the expected Nash
approximation of h under distribution D:

LD(h) := Eu∼D

[
NashApr(h(u),u)

]
, (2)

We also define the empirical risk LS (h) on the data set S as:

LS (h) :=
1

|S |

∑
u ∈S

NashApr(h(u),u) (3)

Given enough samples, the true risk can be estimated by the
empirical risk (See Theorem 5.7). Therefore, empirical risk mini-
mization (ERM) can be applied to learn an NE approximator h from
hypothesis classH :

ERMH(S) ∈ arg min
h∈H

LS (h) (4)

However, in practice, it is usually intractable to implement the
ERM algorithm, especially whenH is infinite. Following the stan-
dard approach in deep learning community [27], we can approx-
imate ERM by minibatch Stochastic Gradient Descent (minibatch
SGD). Specifically, we parameterize the NE approximator as hw

with d-dimensional parameter variable w ∈ Rd (e.g., the weights
of a neural network). We optimize w by the standard minibatch
SGD algorithm (See Algorithm 1). This method is feasible since
NashApr(σ ,u) is differentiable almost everywhere, except for some
minor points on a zero-measure set. Those minor points appear
when one of the two maximum operations in NashApr(σ ,u) has
multiple maximum inputs. We can set one of them according to
any tie-breaking rule as the outcome to compute the corresponding
gradient.

We must emphasize that the empirical risk minimization algo-
rithm will only be used in the PAC learnability analysis in Sec-
tion 5.3. Moreover, Algorithm 1 will only be used to demonstrate
the application of NE approximator in Section 6. The generaliza-
tion bound in Section 5.2 is unrelated to the learning algorithm
we apply. Instead, we can use any learning algorithms such as the
approach in Marris et al. [46] to obtain the NE approximator, and
the generalization bound still holds.

5 THEORETICAL LEARNABILITY RESULTS
In this section, we present our theoretical learnability result for
predicting NE from samples. We first analyze the Lipschitz property
of Nash approximation loss. Based on that, we provide a general-
ization bound for the NE approximator. We further show that Nash

Table 2: An example illustrating the non-smooth issue of ex-
act NE, in which A1 = {L,R} and A2 = {U ,D}. Each element
(x ,y) in the table represents u1(·, ·) = x and u2(·, ·) = y for
the corresponding joint action. Minor changes in the util-
ity of game Γu (into game Γv ) can cause different exact NE
solutions. (a): Game Γu . The unique NE is (L,U ). (b): Game
Γv . The unique NE is (R,U ). The only difference between Γu
and Γv is the utilityu1(R,U ), which only differs by arbitrary
small 2ϵ .

(a)

U D

L (0.5, 0.5) (1, 0)

R (0.5 − ϵ, 1) (0, 0)

(b)

U D

L (0.5, 0.5) (1, 0)

R (0.5+ϵ, 1) (0, 0)

equilibrium is agnostic PAC learnable under a mild assumption on
H . All the omitted proofs are presented in Appendix.

5.1 Lipschitz Property of Nash Approximation
We start with deriving the Lipschitz continuity of NashApr(σ ,u)
with respect to its first input: the joint strategy profile σ . We
get the following lemma, which indicates that NashApr(σ ,u) is
2-Lipschitz continuous with respect to σ under `1-distance.

Lemma 5.1. For arbitrary strategy profile σ and σ ′, we have

|NashApr(σ ,u) − NashApr(σ ′,u)| ≤ 2‖σ − σ ′‖1,

where

‖σ − σ ′‖1 :=
∑
i ∈N

∑
ai ∈Ai

|σi(ai) − σ
′
i (ai)|

is the `1-distance between two mixed strategy profiles σ ,σ ′ ∈ ∆A1 ×

∆A2 × · · · ×∆An .

We also analyze the Lipschitz property of NashApr(σ ,u) with
respect to the game utility u, and get the following result:

Lemma 5.2. For strategy profile σ and arbitrary normal-form game
Γu = (N ,A,u) and Γv = (N ,A,v) with u,v ∈ U, we have

|NashApr(σ ,u) − NashApr(σ ,v)| ≤2‖u −v ‖max,

where

‖u −v ‖max := max
i ∈N

max
a∈A
|ui(a) −vi(a)| (5)

is the `max-distance between game utilities u and v .

Remark 5.3. While minor changes in game utility may cause differ-
ent NEs (See Table 2 for illustration of such non-smooth issue), as
we can see in Lemma 5.2 the Nash approximation loss is 2-Lipschitz
continuous with respect to the game utility. Such a continuity re-
sult plays a critical role in the theoretical analysis of game utility
learning in simulation-based games [60], in which the goal is to
recover the actual game utility through the noisy query data and
to compute an approximate NE for the underlying game.
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5.2 Generalization Bound
We measure the generalizability of an NE approximator by general-
ization bound. Such a bound depends on the complexity of hypoth-
esis classH . We characterize such complexity through (external)
covering numbers [55], a standard technique in PAC analysis [2].
We first define the distance between two different approximators.

Definition 5.4 (`∞,1-distance). The `∞,1-distance between two
NE approximators h1,h2 is:

‖h1 − h2‖∞,1 := max
u ∈U

‖h1(u) − h2(u)‖1,

Under `∞,1-distance, we define the r -cover and the r -covering
number for hypothesis classH :

Definition 5.5 (r -cover). We say function class Hr r -covers H
under `∞,1-distance if for all function h ∈ H , there exists hr inHr
such that ‖h − hr ‖∞,1 ≤ r .

Definition 5.6 (r -covering number). The r -covering number ofH ,
denoted by N∞,1(H , r), is the cardinality of the smallest function
classHr that r -coversH under `∞,1-distance.

We then derive the generalization bound of NE approximators. It
describes the gap between the NE approximator’s true risk LD(h)
and empirical risk LS (h) on the training set S .

Theorem 5.7. [Generalization bound] For hypothesis classH of NE
approximator and distribution D, with probability at least 1 − δ over
draw of the training set S from D, ∀h ∈ H we have

LD(h) − LS (h) ≤ 2∆m + 4

√
2 ln(4/δ)

m

where ∆m B infr>0{

√
2 lnN∞,1(H,r )

m + 2r }.

Theorem 5.7 is quite general and orthogonal to the learning
algorithm we use. It characterizes the generalization ability of all
the NE approximators in normal-form games with fixed action
space. As we can see, with a large enough training set, the bound
goes to zero (ifN∞,1(H , r) is bounded) so that we can estimate the
true risk through the empirical risk.

5.3 Agnostic PAC Learnable
If for arbitrary r > 0 the covering number N∞,1(H , r) can be
bounded, then the bound inTheorem 5.7 goes to zero as the training
set sizem →∞. Inspired by this, wemake the following assumption
to limit the representativeness ofH :

Assumption 5.8. For hypothesis class H , we assume the loga-
rithm of its r -covering number grows as a polynomial with respect
to 1/r . i.e.,

lnN∞,1(H , r) ≤ Poly(
1

r
)

for r > 0.

Assumption 5.8 is a standard assumption in PAC analysis [2]. It
holds for many widely used machine learning models, including the
classical linear model [63] and kernel method [64]. Moreover, as we
will prove, Assumption 5.8 also holds for the Lipschitz hypothesis
class, which includes neural networks with parameters of bounded
ranges [52, 57].

Definition 5.9 (Lipschitz hypothesis class). We say H is a Lip-
schitz hypothesis class if there is a constant LH > 0 such that
for each function h ∈ H and game utility u,v ∈ U, we have
‖h(u) − h(v)‖1 ≤ LH ‖u −v ‖max,

Lemma 5.10. Assumption 5.8 holds For Lipschitz hypothesis class
H since we have

N∞,1(H , r) ≤ O

(
(
LH
r

)n |A | ln
1

r

)
.

Based on Assumption 5.8, Lemma 5.1 and Lemma 5.2, we prove
the uniform convergence of hypothesis class H with respect to
Nash approximation loss. It characterizes the sample complexity
to probably obtain an ϵ-representative training set S . That is, for an
arbitrary function h ∈ H , the empirical risk LS (h) on S is close to
the true risk LD(h) up to ϵ .

Theorem 5.11. [Uniform convergence] Fix ϵ,δ ∈ (0, 1), for hypoth-
esis classH and distribution D, with probability at least 1 − δ over
draw of the training set S with

m ≥ mUC
H

(ϵ,δ) :=
9

2ϵ2

(
ln

2

δ
+ lnN∞,1(H ,

ϵ

6
)

)
games from D, we have

|LS (h) − LD(h)| ≤ ϵ

for all h ∈ H .mUC
H

(ϵ,δ) grows as a polynomial of 1/ϵ and ln(1/δ)
under Assumption 5.8.

Theorem 5.11 is the sufficient condition for agnostic PAC learn-
able, which provides the learnability guarantee of predicting NE
from samples.

Theorem 5.12. Fix ϵ,δ ∈ (0, 1), for hypothesis classH and distri-
bution D, with probability at least 1 − δ over draw of the training
set S with

m ≥ mH(ϵ,δ) :=
18

ϵ2

(
ln

2

δ
+ lnN∞,1(H ,

ϵ

6
)

)
games from D, when running empirical risk minimization on Nash
approximation loss, we have

LD(ERMH(S)) ≤ min
h∈H

LD(h) + ϵ .

The sample complexitymH(ϵ,δ) grows as a polynomial of 1/ϵ and
ln(1/δ) under Assumption 5.8.

Theorem 5.12 provides the (agnostic) PAC learnability of NE.
Under Assumption 5.8, when using a training set with size larger
than a polynomial of 1/ϵ and ln(1/δ), with probability at least 1−δ
the learned NE approximator can reach the near-optimal perfor-
mance in H up to ϵ . As we will demonstrate by experiments in
Section 6, even equipped with the most simple neural architectures,
the learned NE approximator can efficiently compute approximate
NE solutions for games under the same distribution.

Remark 5.13. While realizability assumption [55], i.e., the assump-
tion that minh∈H LD(h) = 0, is adopted in many PAC analy-
ses [35, 39], however, it is not feasible in our case. Due to the
non-smooth issue, we discussed in Table 2, it remains an open
question whether there is a hypothesis class that satisfies the realiz-
ability assumption with limited complexity. As a result, we consider
agnostic PAC learnability.
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6 EXPERIMENTS AND APPLICATION
In this section, we first provide numerical experiments to verify the
practicality of our PAC result. Specifically, we construct a parame-
terized model as our hypothesis class and train an NE approxima-
tor via Algorithm 1. We show that the learned NE approximator
is computation-efficient with low generation loss. Afterward, we
demonstrate an application for the NE approximator: It can warm-
start other NE solvers in bimatrix games by providing effective
initializing points. All of our experiments are run on a Linux ma-
chine with 48 core Intel(R) Xeon(R) CPU (E5-2650 v4@2.20GHz)
and 4 TITAN V GPU. Each experiment is run by 5 times, and the
average results are presented.

6.1 Experimental Setup
We use GAMUT2 [50], a suite of game generators designated for
testing game-theoretic algorithms, to generate the game instances.
We select 5 game classes as our data distribution since they are
nontrivial for TS algorithm [58] to solve [23]:
• TravelersDilemma: Each player simultaneously requests an

amount of money and receives the lowest of the requests
submitted by all players.
• GrabTheDollar: A price is up for grabs, and both players have

to decide when to grab the price. The action of each player is
the chosen times. If both players grab it simultaneously, they
will rip the price and receive a low payoff. If one chooses a
time earlier than the other, she will receive the high payoff,
and the opposing player will receive a payoff between the
high and the low.
• WarOfAttrition: In this game, both players compete for a

single object, and each chooses a time to concede the object
to the other player. If both concede at the same time, they
share the object. Each player has a valuation of the object,
and each player’s utility is decremented at every time step.
• BertrandOligopoly: All players in this game are producing

the same item and are expected to set a price at which to
sell the item. The player with the lowest price gets all the
demand for the item and produces enough items to meet the
demand to obtain the corresponding payoff.
• MajorityVoting: This is an n-player symmetric game. All play-

ers vote for one of the |A1 | candidates. Players’ utilities for
each candidate being declared the winner are arbitrary. If
there is a tie, the winner is the candidate with the lowest
number. There may be multiple Nash equilibria in this game.

For bimatrix games, we set the game size as 300 × 300. For
multiplayer games, we generate the 3 and 4 player versions of
BertrandOligopoly and MajorityVoting (The suffix -3 and -4 repre-
sent the 3 and 4 player versions, respectively). We set the game
size as 30 × 30 × 30 for 3-player games and 15 × 15 × 15 × 15 for
4-player games. For each game class, we generate 2 × 104 game
instances with different random seeds, and we randomly divide
2000 and 200 instances for validation and testing.

As for the NE approximator, we construct a fully connected
neural network as the hypothesis class due to the universal approxi-
mation theorem of it [33]. We apply ReLU as the activation function

2http://gamut.stanford.edu/

and add batch normalization (without learnable parameters) before
the activation function. We use 4 hidden layers with 1024 nodes
of each layer in our neural network. We learn our model using the
Adam optimizer, and we restrict the parameters of our model in
the range of [0, 1]. By doing so, we make our model a Lipschitz
hypothesis class so that it satisfies Assumption 5.8.

6.2 Generalization and Efficiency
Generalization. Table 3 and Table 4 report the average Nash

approximation loss of the trained NE approximator. We observe
that the Nash approximation loss in the test set is sufficiently small
and much lower than the random solutions. Such a comparison
result inspires us to use the predicted solution as the initial point
for classical solvers. Moreover, we can also see a small gap between
the training and testing performance, which gives the feasibility
of estimating the true risk of the NE approximator through its
empirical risk on the training set. It also verifies the generalization
bound in Theorem 5.7.

Efficiency. Notice that the NE approximator has never seen the
test game instances in training. The approximate solution is ob-
tained by just a simple feed-forward neural network computation.
As a result, it can be used to infer approximate solutions quickly. To
better demonstrate the efficiency of the trained NE approximator,
we record the time and iterations traditional algorithms spent (on
the test set) to reach the same performance. We use the following
algorithms:

• Fictitious play (FP) [48]: The most well-known learning algo-
rithm to approximate Nash equilibrium;
• Regret matching (RM) [30]: Representative method of no-

regret learning, and it leads to coarse correlated equilibrium.
• Replicator dynamics (RD) [53]: A system of differential equa-

tions that describe how a population of strategies, or repli-
cators, evolve through time.
• TS Algorithm (TS): The algorithm proposed by Tsaknakis and

Spirakis [58]. It reaches an approximation ratio ϵ = 0.3393
for bimatrix games.
• DFM algorithm (DFM): The algorithm proposed by Deligkas

et al. [17]. It is an improved version of the TS algorithm, and
reaches the current best approximation ratio ϵ = 1/3 for
bimatrix games.

During implementation, we use GPU to speed up the computa-
tion of the baselines. TS and DFM algorithm cannot be accelerated
by GPU, so we run them on CPU. For FP, RM and RD, we set the
maximum number of iterations to 100000 and terminate the algo-
rithm once it reaches the same performance. TS and DFM algorithm
terminates with probability 1, so we stop them early if the same
performance has already been reached.

We present the efficiency results of bimatrix game in Table 5 and
multiplayer game in Table 6. While the NE approximator efficiently
comes upwith an approximate solution, the baseline methods spend
much more time to reach the same performance. Sometimes the
learning approaches FP, RM and RD even fail to converge to the
same performance as NE approximator.
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Table 3: The average Nash approximation loss (and the corresponding standard deviation across random seeds) of the learned
NE approximator on training and testing, compared with random solutions. All the games are 300 × 300 bimatrix games.

TravelersDilemma GrabTheDollar WarOfAttrition BertrandOligopoly MajorityVoting
NashApr NashApr NashApr NashApr NashApr

Random 0.2644 ± 2.57e-4 0.2603 ± 2.78e-4 0.3396 ± 2.65e-4 0.3208 ± 3.86e-4 0.4727 ± 5.98e-4

Train 1.013e-6 ± 1.07e-7 8.328e-5 ± 7.87e-5 2.984e-7 ± 1.65e-8 3.402e-4 ± 5.48e-5 4.416e-6 ± 1.02e-6

Test 0.991e-6 ± 1.04e-7 4.823e-5 ± 5.36e-5 2.871e-7 ± 1.89e-8 3.338e-4 ± 4.90e-5 5.526e-6 ± 2.04e-6

Table 4: The average Nash approximation loss (and the corresponding standard deviation across random seeds) of the learned
NE approximator on training and testing, compared with random solutions. The game dimension is 30 × 30 × 30 for 3-player
games and 15 × 15 × 15 × 15 for 4-player games.

BertrandOligopoly-3 MajorityVoting-3 BertrandOligopoly-4 MajorityVoting-4
NashApr NashApr NashApr NashApr

Random 0.1145 ± 9.16e-4 0.3534 ± 1.11e-3 0.0573 ± 5.41e-4 0.2428 ± 1.34e-3

Train 4.046e-6 ± 7.22e-6 1.018e-3 ± 3.45e-4 1.619e-7 ± 3.51e-8 3.881e-4 ± 1.45e-4

Test 2.525e-6 ± 4.20e-6 0.612e-3 ± 2.54e-4 1.643e-7 ± 3.53e-8 2.359e-4 ± 4.36e-4

Table 5: The average time and iterations traditional algorithms spent on each test set to reach the same performance as the
NE approximator (NEA) in 300 × 300 bimatrix games. ∗ represents the method fails to reach the same performance under the
limitation of the maximum iterations in some of the 5 runs.

TravelersDilemma GrabTheDollar WarOfAttrition BertrandOligopoly MajorityVoting
Time Iteration Time Iteration Time Iteration Time Iteration Time Iteration

FP ∗99.9s ∗100000 ∗95.2s ∗100000 57.6s 59919.6 61.5s 63794.8 77.1s 80452.6
RM 162.2s 85442.2 ∗190.3s ∗98788.2 149.3s 79151.2 28.1s 14544.0 ∗189.4s ∗100000
RD 4.3s 3813.4 2.5s 2212.4 2.8s 2482.8 1.0s 826.2 ∗118.7s ∗100000
TS 149.9s -- 47.1s -- 41.9s -- 26.6s -- 44.1s --

DFM 147.6s -- 45.8s -- 39.8s -- 27.1s -- 44.7s --

NEA <0.5s 1.0 <0.5s 1.0 <0.5s 1.0 <0.5s 1.0 <0.5s 1.0

Table 6:The average time and iterations traditional algorithms spent on each test set to reach the same performance as the NE
approximator (NEA) in 30 × 30 × 30 and 15 × 15 × 15 × 15 games. ∗ represents the method fails to reach the same performance
under the limitation of the maximum iterations in some of the 5 runs.

Methods BertrandOligopoly-3 MajorityVoting-3 BertrandOligopoly-4 MajorityVoting-4
Time Iteration Time Iteration Time Iteration Time Iteration

FP ∗186.3s ∗100000 2.5s 1273.8 ∗311.6s ∗100000 183.8s 59324.0
RM ∗258.6s ∗100000 19.8s 7395.6 ∗393.3s ∗100000 106.5s 27331.6
RD 33.0s 28629.0 0.9s 607.2 50.6s 23100.2 143.3s 61431.2

NEA <0.5s 1.0 <0.5s 1.0 <0.5s 1.0 <0.5s 1.0

6.3 Application: Warm-Start Classical Solvers
As we can see from the previous experiments, the NE approximator
could be efficient for the games under the same distribution. More-
over, it can achieve a better Nash approximation loss than random
solutions. Meanwhile, the classical NE solvers, such as the TS and
DFM algorithm, usually set random strategies as the starting point.

Therefore, it is promising to warm-start those algorithms with the
NE approximator. By doing so, we benefit from both advantages of
the function-approximation method and the traditional approach.
The NE approximator can infer initial solutions in batches with low
computational costs, and the classical solvers can provide theoreti-
cal guarantees.
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Figure 1: Experimental results of warm-starting TS algo-
rithm and DFM algorithm with NE approximator. Each ex-
periment is run by 5 times. Average results and 95% confi-
dence intervals are shown.

Figure 1a and Figure 1b report the experimental results of warm-
starting TS and DFM algorithm, respectively. We can observe that
by taking the output strategies of the NE approximator as the pre-
solving initialization, both TS and DFM algorithms spend less time
to terminate, especially in game TravelersDilemma and WarOfAt-
trition. Notice that both algorithms ensure that the final solutions
will be better than the initial solutions. Thus, it would always be
helpful to provide a good starting point for them.

7 CONCLUSION
In this paper, we study the learnability of predicting NE in n-player
normal-form games with fixed action space. Theoretically, we pro-
vide a generalization bound for the NE approximator under Nash
approximation loss. The bound gives a theoretical guarantee of
the generalization ability. We then prove that Nash equilibrium is
agnostic PAC learnable. Such a result provides the feasibility of
obtaining a good NE approximator via empirical risk minimiza-
tion. Empirically, we conduct numerical experiments to verify the
learned NE approximator’s generalization ability and efficiency.
Afterward, we demonstrate the application of the NE approximator

to warm-start other classical solvers, and we report fast conver-
gence. Our theoretical and empirical results show the practicability
of learning an NE approximator via data-driven approach. As for
future work, we are interested in extending the learnability results
of the NE approximator to settings beyond normal-form games, and
exploring a more efficient hypothesis class for the NE approximator.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (Grant No. 62172012). We thank Xiang Yan, Dongge Wang,
David Mguni and Kun Shao for various helpful discussions. We
thank all anonymous reviewers for their helpful feedback.

REFERENCES
[1] Stephanie Allen, Steven A Gabriel, and John P Dickerson. 2022. Using inverse

optimization to learn cost functions in generalized Nash games. Computers &
Operations Research 142 (2022), 105721.

[2] Martin Anthony, Peter L Bartlett, Peter L Bartlett, et al. 1999. Neural network
learning: Theoretical foundations. Vol. 9. cambridge university press Cambridge.

[3] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The multiplicative weights
update method: a meta-algorithm and applications. Theory of Computing 8, 1
(2012), 121–164.

[4] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 1995.
Gambling in a rigged casino: The adversarial multi-armed bandit problem. In
Proceedings of IEEE 36th Annual Foundations of Computer Science. IEEE, 322–331.

[5] Yu Bai, Chi Jin, and Tiancheng Yu. 2020. Near-optimal reinforcement learning
with self-play. Advances in neural information processing systems 33 (2020),
2159–2170.

[6] Dimitris Bertsimas, Vishal Gupta, and Ioannis Ch Paschalidis. 2015. Data-driven
estimation in equilibrium using inverse optimization. Mathematical Programming
153, 2 (2015), 595–633.

[7] Hartwig Bosse, Jaroslaw Byrka, and Evangelos Markakis. 2007. New algorithms
for approximate Nash equilibria in bimatrix games. In International Workshop on
Web and Internet Economics. Springer, 17–29.

[8] Nicolo Cesa-Bianchi and Gábor Lugosi. 2006. Prediction, learning, and games.
Cambridge university press.

[9] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. 2009. Settling the complexity of
computing two-player Nash equilibria. Journal of the ACM (JACM) 56, 3 (2009),
1–57.

[10] Zhaohua Chen, Xiaotie Deng, Wenhan Huang, Hanyu Li, and Yuhao Li. 2021. On
tightness of the Tsaknakis-Spirakis algorithm for approximate Nash equilibrium.
In Algorithmic Game Theory: 14th International Symposium, SAGT 2021, Aarhus,
Denmark, September 21–24, 2021, Proceedings 14. Springer, 97–111.

[11] Vincent Conitzer. 2009. Approximation guarantees for fictitious play. In 2009 47th
Annual Allerton Conference on Communication, Control, and Computing (Allerton).
IEEE, 636–643.

[12] Artur Czumaj, Argyrios Deligkas, Michail Fasoulakis, John Fearnley, Marcin Jur-
dziński, and Rahul Savani. 2019. Distributed methods for computing approximate
equilibria. Algorithmica 81, 3 (2019), 1205–1231.

[13] Constantinos Daskalakis. 2013. On the complexity of approximating a Nash
equilibrium. ACM Transactions on Algorithms (TALG) 9, 3 (2013), 1–35.

[14] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. 2009.
The complexity of computing a Nash equilibrium. SIAM J. Comput. 39, 1 (2009),
195–259.

[15] Constantinos Daskalakis, Aranyak Mehta, and Christos Papadimitriou. 2007.
Progress in approximate Nash equilibria. In Proceedings of the 8th ACMConference
on Electronic Commerce. 355–358.

[16] Constantinos Daskalakis, Aranyak Mehta, and Christos Papadimitriou. 2009. A
note on approximate Nash equilibria. Theoretical Computer Science 410, 17 (2009),
1581–1588.

[17] Argyrios Deligkas, Michail Fasoulakis, and Evangelos Markakis. 2022. A
Polynomial-Time Algorithm for 1/3-Approximate Nash Equilibria in Bimatrix
Games. In 30th Annual European Symposium on Algorithms, ESA 2022, Septem-
ber 5-9, 2022, Berlin/Potsdam, Germany (LIPIcs, Vol. 244), Shiri Chechik, Gonzalo
Navarro, Eva Rotenberg, and Grzegorz Herman (Eds.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 41:1–41:14. https://doi.org/10.4230/LIPIcs.ESA.2022.41

[18] Xiaotie Deng, Tao Lin, and Tao Xiao. 2020. Private data manipulation in optimal
sponsored search auction. In Proceedings of The Web Conference 2020. 2676–2682.

[19] Xiaotie Deng, Tao Xiao, and Keyu Zhu. 2017. Learn to play maximum revenue
auction. IEEE Transactions on Cloud Computing 7, 4 (2017), 1057–1067.

[20] Xiaotie Deng and Keyu Zhu. 2019. On bayesian epistemology of myerson auction.
IEEE Transactions on Cloud Computing 9, 3 (2019), 1172–1179.

Session 1D: Equilibria and Complexities of Games
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

240

https://doi.org/10.4230/LIPIcs.ESA.2022.41


[21] Le Cong Dinh, Stephen Marcus McAleer, Zheng Tian, Nicolas Perez-Nieves,
Oliver Slumbers, David Henry Mguni, Jun Wang, Haitham Bou Ammar, and
Yaodong Yang. 2022. Online Double Oracle. Transactions on Machine Learning
Research (2022). https://openreview.net/forum?id=rrMK6hYNSx

[22] John Fearnley, Martin Gairing, Paul W Goldberg, and Rahul Savani. 2015. Learn-
ing equilibria of games via payoff queries. J. Mach. Learn. Res. 16 (2015), 1305–
1344.

[23] John Fearnley, Tobenna Peter Igwe, and Rahul Savani. 2015. An empirical study
of finding approximate equilibria in bimatrix games. In International Symposium
on Experimental Algorithms. Springer, 339–351.

[24] John Fearnley and Rahul Savani. 2016. Finding approximate Nash equilibria of
bimatrix games via payoff queries. ACM Transactions on Economics and Compu-
tation (TEAC) 4, 4 (2016), 1–19.

[25] Filiberto Fele and Kostas Margellos. 2020. Probably approximately correct Nash
equilibrium learning. IEEE Trans. Automat. Control (2020), 4238–4245.

[26] Xidong Feng, Oliver Slumbers, Ziyu Wan, Bo Liu, Stephen McAleer, Ying Wen,
JunWang, and Yaodong Yang. 2021. Neural auto-curricula in two-player zero-sum
games. Advances in Neural Information Processing Systems 34 (2021), 3504–3517.

[27] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[28] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014).

[29] Keegan Harris, Ioannis Anagnostides, Gabriele Farina, Mikhail Khodak, Steven
Wu, and Tuomas Sandholm. 2023. Meta-Learning in Games. In International
Conference on Learning Representations. https://openreview.net/forum?id=
uHaWaNhCvZD

[30] Sergiu Hart and Andreu Mas-Colell. 2000. A simple adaptive procedure leading
to correlated equilibrium. Econometrica 68, 5 (2000), 1127–1150.

[31] David Haussler. 1990. Probably approximately correct learning. University of
California, Santa Cruz, Computer Research Laboratory.

[32] Howard Heaton, Daniel McKenzie, Qiuwei Li, Samy Wu Fung, Stanley Osher,
and Wotao Yin. 2021. Learn to Predict Equilibria via Fixed Point Networks. arXiv
preprint arXiv:2106.00906 (2021).

[33] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert L. White. 1989. Multilayer
feedforward networks are universal approximators. Neural Networks 2 (1989),
359–366.

[34] Junling Hu and Michael P Wellman. 2003. Nash Q-learning for general-sum
stochastic games. Journal of machine learning research 4, Nov (2003), 1039–1069.

[35] Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. 2021. Bellman eluder dimension:
New rich classes of rl problems, and sample-efficient algorithms. Advances in
neural information processing systems 34 (2021), 13406–13418.

[36] Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. 2022. V-Learning –
A Simple, Efficient, Decentralized Algorithm for Multiagent RL. In ICLR 2022
Workshop on Gamification and Multiagent Solutions.

[37] Spyros C Kontogiannis, Panagiota N Panagopoulou, and Paul G Spirakis. 2006.
Polynomial algorithms for approximating Nash equilibria of bimatrix games. In
International Workshop on Internet and Network Economics. Springer, 286–296.

[38] Spyros C Kontogiannis and Paul G Spirakis. 2007. Efficient algorithms for con-
stant well supported approximate equilibria in bimatrix games. In International
Colloquium on Automata, Languages, and Programming. Springer, 595–606.

[39] Akshay Krishnamurthy, Alekh Agarwal, and John Langford. 2016. PAC reinforce-
ment learning with rich observations. Advances in Neural Information Processing
Systems 29 (2016).

[40] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl
Tuyls, Julien Pérolat, David Silver, and Thore Graepel. 2017. A unified game-
theoretic approach to multiagent reinforcement learning. Advances in neural
information processing systems 30 (2017).

[41] Jiayang Li, Jing Yu, Yu Nie, and Zhaoran Wang. 2020. End-to-end learning and
intervention in games. Advances in Neural Information Processing Systems 33
(2020).

[42] Chun Kai Ling, Fei Fang, and J. Zico Kolter. 2018. What Game Are We Playing?
End-to-end Learning in Normal and Extensive Form Games. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18.
International Joint Conferences on Artificial Intelligence Organization, 396–402.

https://doi.org/10.24963/ijcai.2018/55
[43] Chun Kai Ling, Fei Fang, and J Zico Kolter. 2019. Large scale learning of agent

rationality in two-player zero-sum games. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33. 6104–6111.

[44] Edward Lockhart, Marc Lanctot, Julien Pérolat, Jean-Baptiste Lespiau, Dustin
Morrill, Finbarr Timbers, and Karl Tuyls. 2019. Computing Approximate Equilib-
ria in Sequential Adversarial Games by Exploitability Descent.. In IJCAI, Sarit
Kraus (Ed.). ijcai.org, 464–470.

[45] Alberto Marchesi, Francesco Trovò, and Nicola Gatti. 2020. Learning Probably
Approximately Correct Maximin Strategies in Simulation-Based Games with
Infinite Strategy Spaces. In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems. 834–842.

[46] Luke Marris, Ian Gemp, Thomas Anthony, Andrea Tacchetti, Siqi Liu, and Karl
Tuyls. 2022. Turbocharging Solution Concepts: Solving NEs, CEs and CCEs
with Neural Equilibrium Solvers. In Advances in Neural Information Processing
Systems, Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(Eds.). https://openreview.net/forum?id=RczPtvlaXPH

[47] H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. 2003. Planning in
the presence of cost functions controlled by an adversary. In Proceedings of the
20th International Conference on Machine Learning (ICML-03). 536–543.

[48] Dov Monderer and Lloyd S Shapley. 1996. Fictitious play property for games
with identical interests. Journal of economic theory 68, 1 (1996), 258–265.

[49] John F Nash et al. 1950. Equilibrium points in n-person games. Proceedings of the
national academy of sciences 36, 1 (1950), 48–49.

[50] Eugene Nudelman, Jennifer Wortman, Yoav Shoham, and Kevin Leyton-Brown.
2004. Run the GAMUT: A comprehensive approach to evaluating game-theoretic
algorithms. In AAMAS, Vol. 4. 880–887.

[51] Nicolas Perez-Nieves, Yaodong Yang, Oliver Slumbers, David H Mguni, Ying
Wen, and Jun Wang. 2021. Modelling Behavioural Diversity for Learning in
Open-Ended Games. In International Conference on Machine Learning. PMLR,
8514–8524.

[52] Kevin Scaman and Aladin Virmaux. 2018. Lipschitz regularity of deep neural
networks: analysis and efficient estimation. In NeurIPS. 3839–3848.

[53] Peter Schuster and Karl Sigmund. 1983. Replicator dynamics. Journal of theoretical
biology 100, 3 (1983), 533–538.

[54] Pier Giuseppe Sessa, Ilija Bogunovic, Andreas Krause, and Maryam Kamgarpour.
2020. Contextual games: Multi-agent learning with side information. Advances
in Neural Information Processing Systems 33 (2020), 21912–21922.

[55] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding machine learning:
From theory to algorithms. Cambridge university press.

[56] Yoav Shoham and Kevin Leyton-Brown. 2008. Multiagent systems: Algorithmic,
game-theoretic, and logical foundations. Cambridge University Press.

[57] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, Yoshua Bengio and Yann
LeCun (Eds.).

[58] Haralampos Tsaknakis and Paul G Spirakis. 2007. An optimization approach
for approximate Nash equilibria. In International Workshop on Web and Internet
Economics. Springer, 42–56.

[59] Leslie G Valiant. 1984. A theory of the learnable. Commun. ACM 27, 11 (1984),
1134–1142.

[60] Enrique Areyan Viqueira, Cyrus Cousins, Eli Upfal, and Amy Greenwald. 2019.
Learning equilibria of simulation-based games. arXiv preprint arXiv:1905.13379
(2019).

[61] Yaodong Yang and Jun Wang. 2020. An Overview of Multi-Agent Reinforcement
Learning from Game Theoretical Perspective. arXiv preprint arXiv:2011.00583
(2020).

[62] Jing Zhang and Ioannis Ch Paschalidis. 2017. Data-driven estimation of travel
latency cost functions via inverse optimization in multi-class transportation
networks. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC).
IEEE, 6295–6300.

[63] Tong Zhang. 2002. Covering number bounds of certain regularized linear function
classes. Journal of Machine Learning Research 2, Mar (2002), 527–550.

[64] Ding-Xuan Zhou. 2002. The covering number in learning theory. Journal of
Complexity 18, 3 (2002), 739–767.

Session 1D: Equilibria and Complexities of Games
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

241

https://openreview.net/forum?id=rrMK6hYNSx
https://openreview.net/forum?id=uHaWaNhCvZD
https://openreview.net/forum?id=uHaWaNhCvZD
https://doi.org/10.24963/ijcai.2018/55
https://openreview.net/forum?id=RczPtvlaXPH

	Abstract
	1 Introduction
	2 Related Work
	3 Game Theory Preliminaries
	4 Learning Framework
	5 Theoretical Learnability Results
	5.1 Lipschitz Property of Nash Approximation
	5.2 Generalization Bound
	5.3 Agnostic PAC Learnable

	6 Experiments and Application
	6.1 Experimental Setup
	6.2 Generalization and Efficiency
	6.3 Application: Warm-Start Classical Solvers

	7 Conclusion
	Acknowledgments
	References



