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ABSTRACT
Multi-agent task allocation in physical environments with spatial
and temporal constraints are hard problems relevant to many realis-
tic applications. A task allocation algorithm based on Fisher market
clearing (FMC_TA), which can be performed centrally or distribu-
tively, has been shown to produce high quality allocations com-
pared to the centralized and distributed state of the art incomplete
optimization algorithms. However, the algorithm is synchronous
and thus depends on perfect communication between agents. We
propose FMC_ATA, an asynchronous version of FMC_TA, which is
robust to message latency and message loss. In contrast to the for-
mer version of the algorithm, FMC_ATA allows agents to identify
events and initiate the generation of an updated allocation. Thus, it
is more compatible with dynamic environments.
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1 INTRODUCTION
Task allocation is a major challenge in realistic scenarios, e.g., disas-
ter response, where rescue units need to coordinate in order to save
as many lives as possible [5, 11, 15]. Such coordination is extremely
challenging since, in such scenarios, the communication among
agents is expected to be severely degraded and unreliable [1, 6, 12].
Moreover, such scenarios are highly dynamic due to the appearance
of new events or the change of the status of handled events [16].
Identification of dynamic events would most likely be by the agents
performing in the environment. Thus, we expect the agents to be
able to reinitialize the solving process when necessary [3, 4].

Fisher Market Clearing Task Allocation (FMC_TA) [8, 9] is an
algorithm that was proposed for solving problems where a team of
heterogeneous agents needs to cooperate in an environment that
includes multiple tasks, which require ad-hoc coalitions of agents
with different skills in order to properly handle them. The algorithm
is composed of two phases. In the first, the problem is reduced to
a Fisher market, having task performing agents as buyers in the
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market and tasks as goods. Then, the corresponding Fisher market
clearing allocation is found. When the allocation resulted in tasks
that are shared among a number of agents, an ad-hoc coalition
was generated, which included the agents that received a share
of the task. In the second phase, a distributed ordering heuristic
is performed for agents to decide on the schedule in which they
perform tasks. The Fisher market clearing outcome is guaranteed
to be envy free and Pareto optimal [2, 14]. This unique combination
results in an allocation where agents share important and complex
tasks efficiently. FMC_TA was shown to dominate the state of the
art centralized and distributed task allocation algorithms.

However, FMC_TA is a synchronous algorithm in which, in
each iteration, agents perform calculations only after they receive
all messages that they expect to be sent to them by their neigh-
bors [7, 18, 20]. Unfortunately, such a synchronous algorithmic
design incurs a number of drawbacks. If a message is delayed, the
iteration starts late. If a message is lost, the agents are in a deadlock.

Motivated by the need to adjust this algorithm, which has shown
high quality performance in multi-agent task allocation scenarios,
to realistic dynamic settings in which communication is imper-
fect, we propose FMC_ATA, an asynchronous version of FMC_TA.
It allows agents to perform computation and generate messages
whenever they receive a message. FMC_ATA performs a single
phase in which the allocation of tasks to agents, the ad-hoc coali-
tions that share tasks, and the schedule for each agent is produced.
We compared the performance of FMC_ATA and FMC_TA. Our
results indicate that the solution quality of FMC_ATA is similar to
the solution quality of FMC_TA, even in the presence of extreme
communication disturbances.

2 FISHER MARKET CLEARING
ASYNCHRONOUS TASK ALLOCATION

The asynchronous version of FMC_TA (FMC_ATA) was designed
to be (and evidently is) robust both to message latency and message
loss. The three major aspects that differentiate it from FMC_TA are:
1) In FMC_ATA, agents do not wait for messages to arrive from
all their neighbors in order for a computation step to begin. On
the contrary, each message received triggers such a computation
step. 2) In FMC_ATA the two phases of FMC_TA are merged into a
single step and performed simultaneously. 3) In FMC_TA (both in
the centralized and in the distributed version), it is assumed that
there is a central entity that is aware of the location and importance
of all tasks and that it propagates this information to the agents.
In FMC_ATA, agents dynamically discover tasks and propagate
the relevant information to their peers. FMC_ATA is a distributed
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asynchronous algorithm that includes two types of entities: active
agents and task agents. In practice, the role of a task agent is per-
formed by one of the active agents, e.g., the first to identify the task.
The communication graph is bipartite, i.e., the neighbors of each
active agent are only task agents and vice versa.

An active agent 𝑎𝑎𝑖 and a task agent 𝑡𝑎 𝑗 perform steps of com-
putation asynchronously as a reaction to messages they receive.
In a such step of the algorithm, task agent 𝑡𝑎 𝑗 updates its local
view according to the message received (i.e, bids and arrival times).
The price 𝑝𝑘 ∈ ®𝑝 for a skill (sub-task) 𝑘 is calculated as follows
𝑝𝑘 =

∑
𝑖∈𝐴 𝑏𝑖𝑘 , where 𝑏𝑖𝑘 is the bid received from 𝑎𝑎𝑖 correspond-

ing to sub-task 𝑣 𝑗𝑘 . The resulting allocations of the sub-task related
to skill 𝑘 are determined by 𝑥𝑖𝑘 =

𝑏𝑖𝑘
𝑝𝑘

. Then, 𝑡𝑎 𝑗 proceeds to the
scheduling process, which is integrated into the same step of com-
putation (in contrast to FMC_TA, where the scheduling phase was
performed in a separate step). According to the arrival time re-
ported by the active agents, the earliest time in which all active
agents that were allocated to perform the sub-task can arrive and
start performing the sub-task concurrently is calculated. Finally,
messages are sent to each of 𝑡𝑎′

𝑗
𝑠 neighbors with the up-to-date

allocations and the calculated starting times.
The active agent discovers a task she starts representing it, and

it sends a "handshake" message to all relevant active agents con-
taining the required information regarding the new task. This type
of message allows tasks to be detected synchronously and added to
the tasks included in the algorithm.

An active agent 𝑎𝑎𝑖 in FMC_ATA distinguishes between the two
types of messages and reacts accordingly. If the message type is a
"handshake", a new task 𝑣 𝑗 is added to the set tasks 𝑎𝑎𝑖 is aware
of. Next, its personal utility is calculated for each of the skills that
𝑎𝑎𝑖 has and 𝑣 𝑗 requires. If the message type is a standard message
(i.e., 𝑎𝑎𝑖 is familiar with the corresponding task 𝑣 𝑗 ), 𝑎𝑎𝑖 updates its
allocation and the earliest shared execution time.

Following the update of the active agent’s local view, it pro-
ceeds to re-calculate its bids based on the allocation it received
(following [17]). For a new sub-task 𝑘 (i.e., received by a handshake
message), the agent initiates its current allocation as 𝑥 𝑗𝑘 = 1, i.e., it
assumes it performs the sub-task alone.

The following steps of the active agent’s algorithm are equiva-
lent to the second phase in FMC_TA. It generates an initial schedule
of the tasks allocated to it according to their Bang per Buck [8] and
calculates the arrival time for each of the tasks accordingly. Then,
the agent tries to promote tasks that are not shared, without chang-
ing the arrival time of shared tasks. Each such message includes a
bid and an initial arrival time for every relevant sub-task.

3 EXPERIMENTAL EVALUATION
To analyze the performance of 𝐹𝑀𝐶_𝐴𝑇𝐴, we used a distributed
asynchronous simulator, where agents were implemented as Python
threads. That allows for examining imperfect communication by en-
abling patterns of message delays and probability for message loss.
Imperfect communication was simulated according to the method
suggested in [13, 19]. The delay was selected in terms of the number
of Non-Concurrent Logic Operations (NCLO), an independent mea-
sure for evaluating the performance of algorithms in asynchronous
distributed settings [10, 19]. The simulator’s code is public and

Figure 1: Team utility as a function of NCLOs. Message de-
lays sampled from a Uniform and Poisson distributions and
probability of 90% for message loss.

available1. In each experiment, we randomly generated 50 in differ-
ent instances. The results presented in the graphs are an average of
those 50 runs. Each scenario in an experiment included two types
of agents, active agents, and task agents. A random geographic
location (coordinates 𝑥 and 𝑦) was selected uniformly between 0
and 106. Each problem instance included active agents with a set
of three unique skills.

Figure 1 presents the results of the convergence process of the
algorithms in the presence of imperfect communication. The aver-
age team utility as a result of the schedule that would have been
produced by each algorithm every 1000 NCLOs, is presented. Each
instance has a set of 25 random tasks. We examined how the algo-
rithms scale by evaluating their performance on problems with dif-
ferent amounts of active agents (e.g., 20, 40, and 60). The curves cor-
respond to different versions of the algorithm. We considered two
versions of the proposed FMC_ATA algorithm in our experiments.
In FMC_ATA_task_aware, active agents are initially informed of
all tasks included in the problem. In contrast, in FMC_ATA, agents
discover tasks during execution. We compared those algorithms
with synchronous FMC_TA [8]In addition, we examined the per-
formance of FMC_TA with perfect communication (PC).

Each sub-graph presents a different communication pattern. De-
lays were taken from a uniform and a Poisson distribution depen-
dent on a normalized value of the distance between entities. For
Message loss, we present a scenario where the probability of a mes-
sage being lost is constant and is set to 0.9. Notice that FMC_TA
was not included in the experiments that included message loss
since it deadlocks in such scenarios.

In all the experiments, the algorithm converges to solutions with
similar quality. This indicates that FMC_ATA converges to the same
market-clearing solution, and it preserves the solution properties of
FMC_TA. Moreover, FMC_ATA has an improved convergence rate
in scenarios with 60 active agents. This happens despite the fact
that FMC_TA agents are informed of active tasks by a central entity.
This demonstrates the vulnerability of the synchronous algorithm
to message latency.

1https://github.com/benrachmut/Simulation_For_Research
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