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ABSTRACT
Multi-agent pickup and delivery, a variant of the multi-agent path
finding problem, aims to find collision-free paths for a set of agents
performing a continuous stream of pickup and delivery tasks. Ow-
ing to the service guarantee nature of applications, these agents
often need to execute the tasks within their stipulated deadlines.
When failure to meet task deadlines is unavoidable, there is a need
to minimise the tardiness experienced by the tasks. To address this
problem, we propose a cost-based integrated task assignment and
path planning algorithm to assign tasks to the agents.
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1 INTRODUCTION
Multi-agent systems are predominantly found in automated ware-
house management, airport towing and etc [9, 12]. Several studies
have been carried out to address the multi-agent pickup and deliv-
ery (MAPD) problem [1, 2, 4–7, 10, 11]. It involves task assignment
to agents and collision-free path planning for agents using tech-
niques such as A∗ search [3]. MAPD tasks are traditionally not
associated with task deadlines in the literature. However, in reality,
most of these tasks need to be completed by a specific deadline.
That is, an agent has to pick up the task (e.g. an inventory item)
from its pickup location and deliver it to the delivery location by
its deadline for further processing. For instance, in a warehouse
setting, this could be translated to a standard delivery request with
a normal deadline or a priority request (e.g. VIP customer/urgent
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consignment) with an earlier deadline. This entails the need for a
deadline-aware scheduling algorithm for the MAPD problem.

Motivated by scenarios such as emergency evacuation, a com-
mon deadline for all tasks is considered in [8]. A more practical
model with individual task deadlines is studied in [11] with the
objective of maximising the number of tasks completed by their
deadlines. Although prior studies address the schedulability perfor-
mance, the tardiness (i.e., completion time minus the deadline) of
MAPD tasks is unexplored. Hence, we study the problem of allocat-
ing MAPD tasks to agents such that the total tardiness experienced
by the tasks is minimised while maintaining a high success rate.

2 PROBLEM DEFINITION
We model the MAPD environment as an undirected connected
graph G = (𝑉 , 𝐸) where the nodes in 𝑉 denote the locations and
the edges in 𝐸 denote the connections between locations through
which an agent can move. Consider there are a set of𝑀 agentsA =

{𝑎1, . . . , 𝑎𝑀 } to perform a set of 𝑁 delivery tasks T = {𝜏1, . . . , 𝜏𝑁 }.
Each agent 𝑎𝑖 has a unit carrying capacity and is allocated a

dedicated parking location 𝑠𝑖 ∈ 𝑉 where it initially stays and return
to upon completion of all the tasks. It is assumed that between any
two consecutive timesteps, an agent can either stay at its current
location or move to an adjacent location. When a task 𝜏 𝑗 is assigned
to 𝑎𝑖 , the agent moves from 𝑠𝑖 to the pickup location 𝑠 𝑗 (to pickup
the inventory) and delivers it to the delivery location 𝑔 𝑗 without
colliding with any other agents. Generally, collisions are avoided
by imposing constraints during path planning which include: (i)
no two agents can occupy the same node at the same timestep; (ii)
no two agents can traverse the same edge (in opposite directions)
between the same two consecutive timesteps. Finding the optimal
subsets of tasks and collision-free paths is known to be an NP-Hard
problem. Hence, we focus on developing heuristic solutions.

The tardiness of a task 𝜏 𝑗 is given by 𝛿 𝑗 = max(0, 𝑐 𝑗 −𝑑 𝑗 ), where
𝑑 𝑗 and 𝑐 𝑗 denotes the deadline and completion time of the task 𝜏 𝑗 .
Our aim is to assign the tasks 𝜏 𝑗 ∈ T to agents such that either
they can be completed before their deadlines 𝑑 𝑗 or the cumulative
tardiness

∑
𝑗 𝛿 𝑗 is minimised.
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3 TASK ASSIGNMENT AND PATH PLANNING
We propose a cost-based joint task assignment and path planning
algorithm to assign MAPD tasks with individual release times and
deadlines to agents.

Let 𝑡𝑖 denote the timesteps taken to complete the sequence of
tasks assigned to an agent 𝑎𝑖 according to its planned path. That is,
the agent becomes available for executing the next task at timestep
𝑡𝑖 . Let 𝜖𝑖, 𝑗 denote the cost of executing an unassigned task 𝜏 𝑗 by an
agent 𝑎𝑖 using an optimal path. An optimal path here refers to the
shortest-time path to execute the task 𝜏 𝑗 starting from timestep 𝑡𝑖 ,
which can be computed using A∗ search [3]. The execution cost is
given by the completion time 𝑐𝑖, 𝑗 of the task (including the wait
time of the agent for the task release) minus the completion time
of the previously assigned task, i.e.,

𝜖𝑖, 𝑗 = 𝑐𝑖, 𝑗 − 𝑡𝑖 . (1)

The high-level idea of our approach is as follows. We assign
tasks such that agents do not wait (idle) for future task releases
while there are already released tasks pending to be executed in
the system. All tasks are sorted in the earliest deadline first order
to facilitate tardiness minimisation. Then, the completion time
𝑐𝑖, 𝑗 and the execution cost 𝜖𝑖, 𝑗 of the task 𝜏 𝑗 by each agent are
computed. We check if there exists an agent that can complete
this task within its deadline. Prioritising agents that can meet task
deadlines increases the success rate of the system. If at least one
such agent exists, among these agents, the agent 𝑎𝑖∗ with the least
execution cost is chosen for assignment. If no such agent exists,
we select the agent 𝑎𝑖∗ with the least execution cost among all
agents. Intuitively, selecting an agent with the least execution cost
increases the utilisation of the agents. The agent 𝑎𝑖∗ is given by

𝑎𝑖∗ =

{
argmin{𝑎𝑖 |𝑐𝑖,𝑗 ≤𝑑 𝑗 } 𝜖𝑖, 𝑗 if ∃(𝑐𝑖, 𝑗 ≤ 𝑑 𝑗 ),
argmin𝑎𝑖 ∈A 𝜖𝑖, 𝑗 otherwise.

(2)

Before assignment, we check if 𝑎𝑖∗ is the least cost agent for
any other task with a pickup time earlier than 𝜏 𝑗 . If no such task
exists, we assign task 𝜏 𝑗 to 𝑎𝑖∗ . Otherwise, we proceed with the next
unassigned task. We use the multi-label A∗ algorithm [3] to plan
the optimal path for an agent to execute the task. The node and
edge access constraints imposed by the paths already planned for
the previously assigned tasks are enforced while performing the A∗

search.We use the dummy path techniques in [5] to avoid deadlocks.
Once all the task assignment process is completed, we plan a path
for each agent to return to its respective parking location.

4 EXPERIMENTAL RESULTS
We evaluate the performance of our algorithm through simulation
experiments and compare with several baseline approaches. We
vary the number of agents𝑀 ∈ {10, 20, 30, 40, 50} for a small ware-
house environment [5]. The number of tasks is set to 𝑁𝑎 ×𝑀 where
𝑁𝑎 ∈ {5, 10} represents the number of tasks to be executed by
an agent on average. We derive default task deadlines such that
the deadlines are quite tight while feasible. That is, there exists an
assignment of task sequences to agents such that all tasks can be
completed by their default deadlines without considering conflicts
among agents. We compare two task selection orders: (i) EDF - Ear-
liest Deadline First and (ii) LFF - Least Flexibility First (flexibility is

Table 1: Average success rate

Small Warehouse

Algorithm Number of Agents
10 20 30 40 50

Proposed 0.838 0.781 0.723 0.693 0.670
EDF-C-R 0.524 0.372 0.257 0.198 0.179
EDF-R-R 0.469 0.330 0.226 0.194 0.173
EDF-R-C 0.745 0.709 0.652 0.636 0.629
LFF-C-C 0.722 0.608 0.522 0.494 0.484
LFF-C-R 0.159 0.05 0.021 0.010 0.008
LFF-R-R 0.500 0.311 0.233 0.188 0.159
LFF-R-C 0.615 0.554 0.492 0.461 0.451

Table 2: Average cumulative tardiness

Small Warehouse

Algorithm Number of Agents
10 20 30 40 50

Proposed 225.6 666.0 1776.6 3593.7 5945.1
EDF-C-R 291.3 1019.9 2447.7 4298.3 6725.7
EDF-R-R 352.3 1159.2 2726.9 4431.3 6965.7
EDF-R-C 411.8 1085.2 2633.8 5146.8 7659.1
LFF-C-C 418.4 1602.2 3838.1 6940 10683.8
LFF-C-R 937.6 3101.7 5885 9775.8 13829.6
LFF-R-R 293.7 1233.2 2456.7 4492.5 6817.6
LFF-R-C 725.3 2159.7 4274.9 7354 11891.4

defined as the completion time minus the deadline) [11]. For the
agent selection, we choose the agent with (i) the least execution
cost (C in short) or (ii) the least response time (R in short) for the
task (i.e., the agent that can complete the task earliest). Same as our
algorithm, the baselines also assign tasks to agents in a two-stage
manner. Agents that can meet task deadlines are prioritised over
agents that cannot; with both stages using particular metrics as
the deciding parameters. They are named in the form of [EDF or
LFF]-[C or R]-[C or R]. Thus, we end up with 8 different algorithms
to compare including the proposed algorithm (i.e., EDF-C-C).

Tables 1 and 2 show the average success rate and average cumu-
lative tardiness of individual algorithms, respectively. The success
rate of using the execution cost metric in both stages of agent se-
lection dominates the remaining options for both EDF and LFF
task selection orders. As seen, the EDF based approaches tend to
perform better compared to their LFF based counterparts. As the
number of agents increases, it gives rise to a potentially larger
number of conflicts, resulting in a decrease in schedulability per-
formance across all algorithms. The cumulative tardiness increases
significantly with an increasing number of agents. As seen, the
proposed algorithm dominates all the other options. Due to the
good success rate, only a limited number of tasks are unable to
meet their deadlines, resulting in a lower cumulative tardiness.
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