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ABSTRACT
Designing autonomous agents that can interact effectively with
other agents without prior coordination is an important problem in
multi-agent systems. Type-based reasoning methods achieve this by
maintaining a belief over a set of potential behaviours for the other
agents. However, current methods are limited in that they assume
full observability of the environment or do not scale efficiently to
larger problems with longer planning horizons. Addressing these
limitations, we propose Bayes-Adaptive Partially Observable Sto-
chastic Game Monte-Carlo Planning (BAPOSGMCP) – a scalable
online planner for Type-based reasoning in partially observable
environments – which combines Monte-Carlo Tree Search with a
novel meta-policy for selecting the best policy to guide search dur-
ing planning. Through comprehensive evaluations we demonstrate
that BAPOSGMCP is able to effectively adapt online to diverse sets
of agents in large cooperative, competitive and mixed environments
with up to 1014 states and 108 observations.
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1 INTRODUCTION
A core research area in multi-agent systems is the design of agents
that can interact effectively with other agents without prior coordi-
nation [2, 8, 21]. Type-based reasoning methods give agents this
ability by maintaining a belief over a set types for the other agents
[1, 4, 6, 7]. Each type is a mapping from the agent’s interaction
history to a probability distribution over actions, and completely
specifies the agent’s behaviour. If the set of types is sufficiently
representative, type-based reasoning can lead to fast adaptation
and effective interaction without prior coordination [3, 6].

Unfortunately, type-based reasoning introduces significant com-
plexity into the decision making problem and finding scalable and
efficient solution methods remains a key challenge. This is espe-
cially true in partially observable environments where the planning
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agent must reason about the type of the other agent, their inter-
action history, and the state of the environment, all at the same
time. Several online planning methods based on Monte-Carlo Tree
Search (MCTS) have shown promising performance in non-trivial
partially observable problems [9, 12, 17]. However, so far these
methods have only been demonstrated in settings where the other
agent’s type is known and in settings requiring relatively short
planning horizons.

In this work we propose Bayes-Adaptive Partially Observable
Stochastic Game Monte-Carlo Planning (BAPOSGMCP), an online
planning algorithm for type-based reasoning in partially observable
environments. BAPOSGMCP extends the PUCT algorithm [19], that
uses a search-policy for guiding search, to the partially observable
setting. For the search-policy, we introduce a novel meta-policy
which is robust to the set of types of the other agents and is efficient
to compute. We evaluate the proposed method on large competitive,
cooperative, and mixed partially observable environments - the
largest of which has four agents and on the order of 1014 states
and 108 observations - and demonstrate that it is able to rapidly
adapt and interact effectively without explicit prior coordination in
complex environments.

2 BAPOSGMCP
We model the problem of type-based reasoning as a Partially Ob-
servable Stochastic Game (POSG) [11] where 𝑁 agents act simulta-
neously in an environment. Each agent 𝑖 ∈ 1, ..., 𝑁 acts according
to their policy 𝜋𝑖 , which is a mapping from their history ℎ𝑖 to a
probability distribution over their actions 𝑎𝑖 , and is equivalent to
an agent’s type. We are interested in finding a policy for the plan-
ning agent, denoted 𝑖 , that maximizes it’s expected sum of rewards,
assuming that all other agents, collectively denoted −𝑖 , are using
policies from a known fixed set of policies Π according to a distri-
bution over this set 𝜌 .

Our goal in this work is to find a scalable and efficient planning
algorithm for our problem setting. To this end we present BAPOS-
GMCP. Like existing planners [9, 12, 17], BAPOSGMCP uses MCTS
to calculate the planning agent’s best action from its current belief
𝑏𝑖 . However, it offers several important improvements over existing
algorithms. Firstly, it incorporates the PUCT algorithm [19] for
selecting actions during search, which can significantly improve
planning efficiency by biasing search towards the most relevant
actions according a search policy. This makes it possible to plan
for longer horizons, as well as offers improved integration of the
search-policy’s value function for leaf node evaluation. To address
the limitation of PUCT, namely that it relies on access to a good
search-policy, the second improvement offered by BAPOSGMCP is
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Figure 1: Mean episode return of BAPOSGMCP and baseline
methods. Shaded areas show the 95% CI.

the use of a novel meta-policy as the search-policy. Our proposed
meta-policy has the advantage that it can be efficiently generated
from the policy set Π, and offers a robust prior since it considers
performance across the entire set of other agent policies.

The proposed meta-policy 𝜎𝑖 is a mapping from the set of other
agent joint policies to a distribution over the set of valid policies
for the planning agent 𝜎𝑖 : Π → Δ(Π𝑖 ), so that 𝜎𝑖 (𝜋𝑖,𝑘 |𝜋−𝑖,𝑚) =
𝑃𝑟 (𝜋𝑖,𝑘 |𝜋−𝑖,𝑚) for 𝜋𝑖,𝑘 ∈ Π𝑖 , 𝜋−𝑖,𝑚 ∈ Π. Where the set Π𝑖 is the
set of all individual policies for any of the other agents from the
set Π. To generate the meta-policy we use an empirical game [13,
22, 23], which efficiently constructs an estimate of each policy’s
performance against each other policy in the set of policies Π.
The meta-policy selects the policy from the set Π𝑖 that maximizes
performance against a given policy for the other agent, according
to the empirical game’s estimate.

We incorporate the meta-policy into MCTS to create BAPOS-
GMCP, which extends the POMCP [20] algorithm to planning with
beliefs over history-policy-states and uses PUCT [16, 19] and the
meta-policy for selecting actions from each belief during search. in
BAPOSGMCP each belief is a distribution over the other agents’

histories ℎ−𝑖 , their policies 𝜋−𝑖 ∈ Π, and the environment state
𝑠 . This transforms the problem into a type of POMDP [10], and
allows us to apply MCTS based belief-tree planning to the problem.
We improve the efficiency of planning by using the meta-policy
to guide search via the PUCT algorithm. The meta-policy selects
the policy to guide planning 𝜋𝑖 ∈ Π𝑖 based on the planning agent’s
belief about the other agent’s policy 𝜋−𝑖 .

3 EXPERIMENTS
We evaluated BAPOSGMCP against baseline methods on one coop-
erative (Predator-Prey (PP) [15]), one competitive (Pursuit-Evasion
(PE)[17, 18]), and twomixed (Driving [14], and Level-Based-Foraging
(LBF) [3, 5]) environments. These environments add additional com-
plexities to existing benchmarks [9, 12] and were chosen in order
to assess BAPOSGMCP’s ability across a range of domains that
required both planning over many steps and reasoning about the
other agent’s behaviour. For each environment, we created a di-
verse set of policies Π which was used for the other agent policies
during evaluations and also for the meta-policy 𝜎𝑖 and policy prior
𝜌 . We compared BAPOSGMCP against a number of baselines, two
of which are indicative of upper and lower bounds on the perfor-
mance of BAPOSGMCP, while the other two test the benefits of
different components of our approach.

We found that for all environments the performance of BAPOS-
GMCP improved with the number of simulations and given enough
simulations BAPOSGMCP equaled or outperformed all non-upper
bound baselines across all environments (Figure 1). Furthermore, in
the Driving and PE (Evader) problems the performance converged
towards the Best-Response upper-bound, suggesting BAPOSGMCP
converges towards Bayes-optimal performance as the number of
simulations increased. The importance of the different aspects of
BAPOSGMCP- beliefs, search, and search tree - varied by environ-
ment, however using all three lead to overall best performance
given enough planning time. The most significant improvements
over the baselines were found in the PE (Evader) problem, which is
the problem that required the longest horizon planning. Indicating
the benefit of our approach for problems requiring longer planning
look-ahead.

4 CONCLUSION
In this work we presented a scalable planning method for type-
based reasoning in large partially observable environments. Our
algorithm, BAPOSGMCP, offers two key contributions over ex-
isting planners. The first is the use of PUCT for action selection
during search. The second is a new meta-policy which is used to
guide the search. Through extensive evaluations we demonstrate
BAPOSGMCP’s ability to effectively adapt online to diverse sets of
agents in large cooperative, competitive and mixed environments.
Multiple avenues for future research exist, including extending BA-
POSGMCP to handle continuous actions and observations, along
with exploring alternative constructions of the meta-policy [13].

Code and Paper
The full paper and code are available at https://github.com/Jjschwartz/
ba-posgmcp.

Poster Session I
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2356

https://github.com/Jjschwartz/ba-posgmcp
https://github.com/Jjschwartz/ba-posgmcp


ACKNOWLEDGMENTS
This work is supported by an AGRTP Scholarship and the ANU
Futures Scheme.

REFERENCES
[1] Stefano V. Albrecht, Jacob W. Crandall, and Subramanian Ramamoorthy. 2016.

Belief and Truth in Hypothesised Behaviours. Artificial Intelligence 235 (2016),
63–94.

[2] Stefano V. Albrecht, Somchaya Liemhetcharat, and Peter Stone. 2017. Special
Issue on Multiagent Interaction without Prior Coordination: Guest Editorial.
AAMAS 31, 4 (2017), 765–766.

[3] Stefano V. Albrecht and Subramanian Ramamoorthy. 2013. A Game-Theoretic
Model and Best-Response Learning Method for Ad Hoc Coordination in Multia-
gent Systems. In AAMAS. 1155–1156.

[4] Stefano V. Albrecht and Subramanian Ramamoorthy. 2014. On Convergence and
Optimality of Best-Response Learning with Policy Types in Multiagent Systems.
In UAI. 12–21.

[5] Stefano V. Albrecht and Peter Stone. 2017. Reasoning about Hypothetical Agent
Behaviours and Their Parameters. In AAMAS. 547–555.

[6] Samuel Barrett and Peter Stone. 2015. Cooperating with Unknown Teammates in
Complex Domains: A Robot Soccer Case Study of Ad Hoc Teamwork. In AAAI,
Vol. 29.

[7] Samuel Barrett, Peter Stone, and Sarit Kraus. 2011. Empirical Evaluation of Ad
Hoc Teamwork in the Pursuit Domain. In AAMAS. 567–574.

[8] Michael Bowling and Peter McCracken. 2005. Coordination and Adaptation in
Impromptu Teams. In AAAI, Vol. 5. 53–58.

[9] Adam Eck, Maulik Shah, Prashant Doshi, and Leen-Kiat Soh. 2020. Scalable
Decision-Theoretic Planning in Open and Typed Multiagent Systems. In AAAI,
Vol. 34. 7127–7134.

[10] Piotr J. Gmytrasiewicz and Prashant Doshi. 2005. A Framework for Sequential
Planning in Multi-Agent Settings. JAIR 24 (2005), 49–79.

[11] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. 2004. Dynamic
Programming for Partially Observable Stochastic Games. In AAAI. 709–715.

[12] Anirudh Kakarlapudi, Gayathri Anil, Adam Eck, Prashant Doshi, and Leen-Kiat
Soh. 2022. Decision-Theoretic Planning with Communication in OpenMultiagent
Systems. In UAI. 938–948.

[13] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl
Tuyls, Julien Pérolat, David Silver, and Thore Graepel. 2017. A Unified Game-
Theoretic Approach to Multiagent Reinforcement Learning. NeurIPS 30 (2017).

[14] Adam Lerer and Alexander Peysakhovich. 2019. Learning Existing Social Con-
ventions via Observationally Augmented Self-Play. In AAAI/ACM Conference on
AI, Ethics, and Society. 107–114.

[15] Ryan Lowe, Yi I. Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. 2017. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments. NeurIPS 30 (2017).

[16] Christopher D. Rosin. 2011. Multi-Armed Bandits with Episode Context. Annals
of Mathematics and Artificial Intelligence 61, 3 (2011), 203–230.

[17] Jonathon Schwartz, Ruijia Zhou, and Hanna Kurniawati. 2022. Online Planning
for Interactive-POMDPs Using Nested Monte Carlo Tree Search. In IROS. 8770–
8777.

[18] Iris Rubi Seaman, Jan-Willem van de Meent, and David Wingate. 2018. Nested
Reasoning About Autonomous Agents Using Probabilistic Programs. arXiv
preprint arXiv:1812.01569 (2018). arXiv:1812.01569

[19] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, and Thore
Graepel. 2018. A General Reinforcement Learning Algorithm That Masters Chess,
Shogi, and Go through Self-Play. Science 362, 6419 (2018), 1140–1144.

[20] David Silver and Joel Veness. 2010. Monte-Carlo Planning in Large POMDPs.
NeurIPS 23 (2010), 2164–2172.

[21] Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein. 2010. Ad
Hoc Autonomous Agent Teams: Collaboration without Pre-Coordination. In
AAAI, Vol. 24. 1504–1509.

[22] William E. Walsh, Rajarshi Das, Gerald Tesauro, and Jeffrey O. Kephart. 2002.
Analyzing Complex Strategic Interactions in Multi-Agent Systems. In AAAI
Workshop on Game-Theoretic and Decision-Theoretic Agents. 109–118.

[23] Michael P. Wellman. 2006. Methods for Empirical Game-Theoretic Analysis. In
AAAI. 1552–1556.

Poster Session I
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2357

https://arxiv.org/abs/1812.01569

	Abstract
	1 Introduction
	2 BAPOSGMCP
	3 Experiments
	4 Conclusion
	Acknowledgments
	References



