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1 INTRODUCTION
The Stochastic Shortest Path (SSP) problem models probabilistic

sequential-decision problems where an agent must pursue a goal

while minimizing a cost function. Because of the probabilistic dy-

namics, it is desired to have a cost function that considers risk.

Conditional Value at Risk (CVaR) is a coherent risk measure [7] cri-

terion that allows modeling an arbitrary level of risk by considering

the expectation of a fraction 𝛼 of worse trajectories [1, 4, 8].

Although an optimal policy is non-Markovian, solutions of CVaR-

SSP can be found approximately with Value Iteration based algo-

rithms such as CVaR Value Iteration with Linear Interpolation

(CVaRVILI) [4] and CVaR Value Iteration via Quantile Represen-

tation (CVaRVIQ) [8]. These type of solutions depends on the al-

gorithm’s parameters such as the number of atoms and 𝛼0 (the

minimum 𝛼). To compare the policies returned by these algorithms,

we need a way to exactly evaluate the stationary policies of CVaR-

SSPs. Although there is an algorithm that evaluates these policies,

this only works on problems with uniform costs [6].

In this work, we propose a new algorithm, Forward-PECVaR

(ForPECVaR), that evaluates exactly stationary policies of CVaR-

SSPs with non-uniform costs. We evaluate empirically CVaR Value

Iteration algorithms that found solutions approximately regarding

their quality compared with the exact solution, and the influence

of the algorithm parameters in the quality and scalability of the

solutions. Experiments in two domains show that it is important

to use an 𝛼0 smaller than the 𝛼 target and an adequate number of

atoms to obtain a good approximation. The full paper is available

at https://arxiv.org/abs/2303.00672.
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2 BACKGROUND
A Stochastic Shortest Path Problem [3] is described by a tuple

M = ⟨S,A, 𝑃, 𝑐,G⟩ where: S is a finite set of states; A is a finite

set of actions; 𝑃 : S × A × S → [0, 1] is a transition function

that represents the probability that 𝑠′ ∈ S is reached after the

agent executes an action 𝑎 ∈ A in a state 𝑠 ∈ S, i.e., Pr(𝑠𝑡+1 =

𝑠′ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) = 𝑃 (𝑠, 𝑎, 𝑠′); 𝑐 : S × A → R+
is a positive cost

function that represents the cost of executing an action 𝑎 ∈ A in

a state 𝑠 ∈ S, i.e., 𝑐𝑡 = 𝑐 (𝑠𝑡 , 𝑎𝑡 ); and G is a non-empty set of goal

states that are absorbing, i.e., 𝑃 (𝑠𝑡+1 ∈ G|𝑠𝑡 ∈ G, 𝑎𝑡 = 𝑎) = 1 and

𝑐 (𝑠𝑡 ∈ G, 𝑎𝑡 = 𝑎) = 0 for all 𝑎 ∈ A.

The solution to an SSP is a policy 𝜋 that could be stationary

(𝜋 : S → A) or non-Markovian (history-dependent). Let the ran-

dom variable 𝑍𝑀 =

𝑀∑︁
𝑡=0

𝑐
(
𝑠𝑡 , 𝜋 (𝑠𝑡 )

)
be the accumulated cost from

time 0 up to time 𝑀 . The value function of a policy 𝜋 is defined

by the total expected cost of reaching the goal from 𝑠0: 𝑉
𝜋 (𝑠) =

lim

𝑀→∞
E [𝑍𝑀 | 𝜋, 𝑠0 = 𝑠] . The optimal value 𝑉 ∗ (𝑠) = min

𝜋
𝑉 𝜋 (𝑠) can

be computed by solving the Bellman equation:

𝑉 ∗ (𝑠) =


0 , if 𝑠 ∈ G

min

𝑎∈A

[
𝑐 (𝑠, 𝑎) +

∑︁
𝑠′∈S

𝑇 (𝑠, 𝑎, 𝑠′)𝑉 ∗ (𝑠′)
]

, otherwise.

(1)

The VaR (Value at Risk) and CVaR (Conditional-Value-at-Risk)
metrics are widely used for portfoliomanagement of financial assets.

VaR measures the worst expected loss within a given 𝛼 confidence

level, where 𝛼 ∈ (0, 1). The CVaR with a confidence level 𝛼 ∈ (0, 1)
measures the expected value of the 𝛼% of the worst expected losses.

A CVaR SSP [4] is defined by the tupleM𝐶𝑉𝑎𝑅 = ⟨M, 𝛼⟩ where
M is an SSP and 𝛼 ∈ (0, 1] is the confidence level. Let Π𝐻 be the

set of all history-dependent policies. The objective in CVaR SSPs is

to find ` ∈ Π𝐻 [4]:

min

`∈Π𝐻

𝐶𝑉𝑎𝑅𝛼

( ∞∑︁
𝑡=0

𝑐 (𝑠𝑡 , 𝑎𝑡 ) |𝑠0 = 𝑠, `

)
, (2)

where ` = {`0, `1, ...} is the policy sequence that depends on the

history with actions 𝑎𝑡 = `𝑡 (ℎ𝑡 ) for 𝑡 ∈ {0, 1, ...}.
A dynamic programming formulation for the CVaR SSP problem

was proposed by Chow et al. [4] by defining the CVaR value function

𝑉 over an augmented state space S × 𝑌 , where 𝑌 = (0, 1] is a
continuous confidence level. Among the algorithms that solve CVaR
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SSPs are CVaRVILI and CVaRVIQ. CVaRVILI makes a discretization

of 𝑌 by generating a set of interpolation points (atoms) and then

interpolating the value function across these points. CVaRVIQ is

inspired by the use of the distributional approach of Bellemare

et al. [2]. The connection between the function 𝑦𝐶𝑉𝑎𝑅𝑦 and the

quantile function (𝑉𝑎𝑅𝑦 ) of the distribution of 𝑍 that is a result of

the convexity and piecewise linear properties of 𝑦𝐶𝑉𝑎𝑅𝑦 function

are used to make faster computations than CVaRVILI.

3 FORPECVAR ALGORITHM
Theorem 1 shows how the CVaR value of a policy 𝜋 can be expressed

in a forward approach, instead of a backup operator. In Theorem 1,

𝑃𝑋,𝜋 (𝑠) is the probability of reaching a goal state paying at most

𝑋 when following policy 𝜋 . Intuitively, Theorem 1 indicates that

the CVaR value of a policy 𝜋 for 𝛼 = 1 − 𝑃𝑋,𝜋 (𝑠) can be calculated

by the difference between the mean value (E[𝑍 |𝑠0 = 𝑠, 𝜋]) and the

expected value of the best cases with cost at most 𝑋 divided by the

probability of not reaching a goal state paying at most 𝑋 . 𝑋 plays

the role of 𝑉𝑎𝑅𝛼=1−𝑃𝑋,𝜋 (𝑠 ) , as it will divide the Z distribution into

𝑃𝑋,𝜋 (𝑠) best cases and 1 − 𝑃𝑋,𝜋 (𝑠) worst cases.

Theorem 1. Let the random variable 𝑍 = lim

𝑇→∞

𝑇∑︁
𝑡=0

𝑐𝑡 be the accu-

mulated cost and 𝜋 be a proper policy. Let X𝜋 (𝑠) = {𝑋 ∈ R| Pr(𝑍 =

𝑋 |𝑠0 = 𝑠, 𝜋) > 0} be the set of accumulated cost with nonzero proba-
bility. For an SSP, X𝜋 (𝑠) is countable . For all 𝑋 ∈ X𝜋 (𝑠), we define:
𝑦 (𝑋 ) = 1 − 𝑃𝑋,𝜋 (𝑠) . The CVaR value of a policy 𝜋 of the augmented

state
(
𝑠,𝑦 (𝑋 )

)
can be computed by:

𝑉 𝜋 (
𝑠,𝑦 (𝑋 )

)
=
E[𝑍 |𝑠0 = 𝑠, 𝜋] − E [𝑍 |𝑍 ≤ 𝑋, 𝑠0 = 𝑠, 𝜋] 𝑃𝑋,𝜋 (𝑠)

1 − 𝑃𝑋,𝜋 (𝑠)
.

The ForPECVaR algorithm makes use of Theorem 1 to compute

CVaR values 𝑉 𝜋 (𝑠0, 𝛼) for a proper policy 𝜋 and an initial state 𝑠0
considering a target 𝛼 . The ForPECVaR algorithm constructs a tree

from the initial augmented state (𝑠0, 𝛼) and expands leaves until a

goal state is reached. Leaves with the smallest accumulated cost are

expanded first so that the minimum cost trajectory is founded first.

Globally, the ForPECVaR algorithm keeps the expected value of

the best cases with cost at most 𝑋 , i.e., E [𝑍 |𝑍 ≤ 𝑋, 𝑠0 = 𝑠, 𝜋], and
𝑃𝑋,𝜋 (𝑠0, 𝑠′).

4 EXPERIMENTS
We compared CVaRVILI [4] and CVaRVIQ [8] in terms of execu-

tion time and quality of the solution. Both algorithms return the

policy and the CVaR value function (approximate value) for all
augmented states (𝑠,𝑦) ∈ S × 𝑌 . The quality of the policy is evalu-

ated exactly with ForPECVaR, whose value is referred to as exact
value. With the experiments, we want to answer the following

questions: (1) What are the differences between the CVaRVILI and

CVaRVIQ algorithms in terms of the approximate value, exact value,

and execution time?; and (2) What is the influence of CVaRVIQ

parameters (number of atoms |𝑌 | and 𝛼0) on the approximate and

exact values? Are there some insights about how to choose these

parameter values for a problem?

We used a desktop machine running with 6 processors at 2.90

GHz and 24 GB of memory DDR4. We executed the experiments

in the Gridworld domain used in [4] and [8] (with grids of 5 × 5,

8 × 9, and 14 × 16), and the River domain [5] (with grids of 10 × 3,

16 × 6, and 30 × 10) . We set 𝜖 = 0.001 as the residual error. The

parameters values used in the experiments are |𝑌 | ∈ {7, 13, 25},
where |𝑌 | = 𝑁 (𝑠),∀𝑠 ∈ S, and 𝛼0 ∈ {10−3, 10−2, 10−1}.

Approximate and exact values of CVaRVILI and CVaRVIQ.
The results show that the difference between the approximate val-

ues obtained by CVaRVILI and CVaRVIQ was less than 10
−6

in all

the points, and the difference between the exact values of both

algorithms was less than 0.1 in all points. Additionally, CVaRVIQ

was up to two orders of magnitude faster than CVaRVILI. For these

algorithms, the number of atoms is more significant than the value

of 𝛼0 in the execution time.

Values of CVaRVIQ varying |𝑌 | and 𝛼0. The results show

that as more atoms are used while varying |𝑌 | with a fixed 𝛼0, the

difference between the approximate and exact values decreases.

However, we observed a limitation in points closer to 𝛼0, where

the distance between the approximate and exact values was greater

compared to points closer to 1, even when a high number of atoms

were used. In the other experiment, varying 𝛼0 with a fixed |𝑌 |,
we found that using an 𝛼0 value smaller than the 𝛼𝑡𝑎𝑟𝑔𝑒𝑡 can re-

sult in better approximations, provided that a sufficient number of

atoms are used. In summary, to achieve a good approximation for

a problem with a target value of 𝛼𝑡𝑎𝑟𝑔𝑒𝑡 , we need to first select an

appropriate number of atoms and then choose an 𝛼0 value that is

smaller than 𝛼𝑡𝑎𝑟𝑔𝑒𝑡 .

Execution time of ForPECVaR. For a fixed |𝑌 |, the lower the
𝛼0 value, the longer it takes to evaluate the policy because it is

necessary to reach the goal state with a higher probability. When

fixing 𝛼0, we see that with more atoms, the execution time is longer,

because with more atoms, the policy is better, and the policy will

tend to take safer actions, which will take more time to reach

the goal state. We also compared the ForPECVaR with a Monte

Carlo simulation (MC) using the same amount of time spent to

run the algorithms in one problem of each domain. The evaluation

difference exceeded 0.45 on average over 5 MC runs, which suggests

that MC can not get accurate evaluations of the performance of the

policies considering the same time spent by ForPECVaR.

5 CONCLUSION
Given the existence of many algorithms with approximation to

solve CVaR MDPs problems, it is important to have exact algo-

rithms to evaluate them and the influence of their parameters. In

this work, we have presented ForPECVaR, an exact algorithm to

evaluate any CVaR policy with a forward approach. In addition to

the CVaR value, ForPECVaR also calculates the exact VaR value of

the policies. Our experimental evaluation has demonstrated that

the approximate algorithms CVaRVILI and CVaRVIQ return similar

policies and values, but the second has a better execution time. The

exact evaluation of the CVaRVIQ policy shows a limitation of the

algorithms analyzed in relation to the approximation of the values

and policies closest to the minimum confidence level 𝛼 . We also

showed that the simple approach of MC can not get accurate evalu-

ations of policies considering the same time used by ForPECVaR.
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