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ABSTRACT
An ensemble classifier considers several base classifiers to make its

predictions. It is generally seen as a black-box which, in addition,

overlooks conflicts that may exist between base classifiers’ rules.

This paper proposes two novel ensemble classifiers that bridge

the above gaps. They consider 𝑘 base classifiers, each of which is

a set of classification rules called theory, and a theory of domain

knowledge. They build an argumentation system over the 𝑘 + 1

theories for identifying and solving possible conflicts between clas-

sification rules, and use the winning rules for making predictions.

We show that the two classifiers guarantee some desirable proper-

ties including explainability, compliance to knowledge, and a global

compatibility of the rules they use for making predictions.
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1 INTRODUCTION
Ensemble classification methods are based on the idea of combining

predictions of several base classifiers [6, 7, 14]. The most efficient

algorithms are seen as black-boxes which lack transparency; this

opacity hampers their relevance in critical domains like healthcare,

where decision systems are becoming very popular for making di-

agnoses and recommending treatments. Moreover, their prediction

for an instance is obtained by selecting via a voting rule one of

the predictions made by the base classifiers for the instance. This

approach may lead to incorrect predictions since the classification

rules intra- (resp. inter-) base classifiers may be incompatible. Fi-

nally, exiting models do not integrate available domain knowledge,

which may be useful for improving the quality of predictions. Such

knowledge exist for instance in the healthcare domain, and may

even contradict classification rules of base classifiers.

This paper proposes two novel ensemble classifiers (sceptical

and credulous) that bridge the above gaps. They consider 𝑘 base
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classifiers, each of which is represented by a set, called theory, of
classification rules that are extracted from the classifier using well-

known algorithms (eg., [2, 3, 10, 11, 13, 15, 18]), and an additional

theory containing domain knowledge. They use argumentation

theory, and more precisely structured argumentation (eg., [1, 9])

for solving possible conflicts between rules. It is worth mentioning

that argumentation is a powerful approach for reasoning about

conflicting information (see [4, 12, 16] for more on argumentation

and its applications). The two classifiers build an argumentation

system over the 𝑘 + 1 theories for identifying and solving possible

conflicts between rules, and use the winning rules for making pre-

dictions. We show that the two classifiers guarantee some desirable

properties including explainability, compliance to knowledge and a

global compatibility of the rules they use for making predictions.

2 LOGICAL LANGUAGE
Throughout the paper, we assume a finite and non-empty set A =

{𝑎1, . . . , 𝑎𝑛} of attributes describing input data (eg., age, gender)

and a function D which returns the domain of every 𝑎 ∈ A. In what

follows, L is a first order language whose variables and constants

include the elements of A and D respectively. We call instance
(or input data) an assignment of values to all attributes, i.e., a set

{𝑎1 = 𝑣1, . . . , 𝑎𝑛 = 𝑣𝑛} where 𝑣𝑖 ∈ D(𝑎𝑖 ), and denote the set of

all such instances by I. Let c denote the feature to learn (eg., the

diagnosis of a patient) and C be the set of its possible values. L′

is a set of atomic formulas of the form c = 𝑣 with 𝑣 ∈ C, and
L ∩ L′ = ∅. L′′

is a set of constants 𝑟, 𝑟1, 𝑟2, . . . used for naming
rules and L′′ ∩ (L ∪ L′) = ∅. The function Rule(𝑟𝑖 ) returns the
rule whose name is 𝑟𝑖 . We distinguish three kinds of information:

Facts that are elements of L,

Defeasible rules 𝑥1, . . ., 𝑥𝑛 { 𝑥 s.t. 𝑥1, . . ., 𝑥𝑛 ∈ L, 𝑥 ∈ L′
,

Strict rules 𝑥1, . . ., 𝑥𝑛 → 𝑥 s.t. 𝑥1, . . ., 𝑥𝑛 ∈ L and 𝑥 ∈ L′
or

𝑥 ∈ L′′
and Rule(𝑥) is defeasible.

The body (𝑥1, . . . , 𝑥𝑛) of both types of rules is assumed to be con-

sistent. Facts are information about instances and domain knowl-

edge. A defeasible rule𝑥1, . . . , 𝑥𝑛 { 𝑥 is read as follows: if𝑥1, . . . , 𝑥𝑛
hold, then generally 𝑥 holds as well. A strict rule 𝑥1, . . . , 𝑥𝑛 → 𝑥

means if 𝑥1, . . . , 𝑥𝑛 hold, then 𝑥 always holds. We call classifica-
tion rule any strict or defeasible rule whose head is an element of

L′
, i.e., an atomic formula of the form c = 𝑣 . It gives conditions

for assigning the class 𝑣 . A blocking rule is a strict rule whose

head is 𝑥 ∈ L′′
, i.e., the name of a defeasible rule. Its body pro-

vides circumstances in which the rule cannot be triggered. For

𝑟 = 𝑥1, . . . , 𝑥𝑛 → /{ 𝑥 , Head(𝑟 ) = 𝑥 and Body(𝑟 ) = {𝑥1, . . . , 𝑥𝑛}.
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Definition 1. Two classification rules 𝑟, 𝑟 ′ are compatible iff: If
Body(𝑟 ) ∪ Body(𝑟 ′) is consistent, then {Head(𝑟 ), Head(𝑟 ′)} is consis-
tent. They are incompatible otherwise.

Definition 2. A theory is a triple T = (F ,S,D) where F ⊆ L,
S = {𝑟 ∈ L′′ | 𝑟 is strict}, D = {(𝑟,𝑤) | 𝑟 ∈ L′′, 𝑟 is defeasible and
𝑤 ∈ [0, 1]}. For any (𝑟,𝑤) ∈ D, Sc(𝑟 ) = 𝑤 .

Definition 3. Let T = (F ,S,D) be a theory. The set of conse-
quences of T is CN(T ) = {𝑥 | F ⊢ 𝑥} ∪ {Head(𝑟 ) ∩ L′′ | 𝑟 ∈ S, F ⊢
𝑥,∀𝑥 ∈ Body(𝑟 )}.

Definition 4. A theory T = (F ,S,D) is consistent iff CN(T )
is consistent. It is coherent iff CN(T ) ∩ D = ∅.

3 ENSEMBLE CLASSIFICATION MODELS
We define two ensemble classification models M𝑠 and M𝑐 , each of

which is a function mapping every instance in I to a class from the

set C. They consider 𝑘 ≥ 1 base classifiersM1, . . . ,M𝑘 . EachM𝑖 is

represented by a theory T𝑖 = ⟨F𝑖 ,S𝑖 ,D𝑖 ⟩ where F𝑖 = S𝑖 = ∅ and

D𝑖 is the set of rules extracted from M𝑖 using existing algorithms

(see [5, 17]). The weight associated to a defeasible rule represents

the certainty degree with which the classifier has extracted it. Note

that the same classification rule may appear in several theories

and with may be different scores. The modelsM𝑠 andM𝑐 take as

input another theory T∗ = ⟨F∗,S∗,D∗⟩ where D∗ = ∅, containing
domain knowledge. This theory is assumed to be consistent as it
contains only certain information. It is also consistent with any

instance in I as the latter are feasible.
The two models start first by analysing the rules of the classifiers.

This amounts to comparing them with the domain knowledge,

solving possible conflicts, and identifying winning classification

rules. In a second step, they query the winning rules for predicting

the class of any instance. The approach is thus global and not

instance-dependent like that followed by existing classifiers. It is

based on argumentation theory, which generates a set Arg(T𝑥 ) of
arguments from every theory T𝑥 = ⟨F𝑥 ,S𝑥 ,D𝑥 ⟩, 𝑥 ∈ {1, . . . , 𝑘, ∗}.

Definition 5. An argument is a tuple 𝐴 = ⟨𝐻,ℎ, 𝑥⟩ verifying
any of the following conditions:

• 𝐻 ⊆ F𝑥 , ℎ ∈ L and 𝐻 is a minimal (for set inclusion) consis-
tent subset of F𝑥 s.t. 𝐻 ⊢ ℎ.

• 𝐻 = {𝑟 } and ℎ = 𝑟 with 𝑟 ∈ S𝑥 ∪ D𝑥 and Head(𝑟 ) ∈ L′.
• 𝐻 = {𝑥1, . . ., 𝑥 𝑗 , 𝑟 }, ℎ ∈ L′′, ∀𝑖 = 1, . . . , 𝑗 , F𝑥 ⊢ 𝑥𝑖 , 𝑟 ∈ S𝑥 ,
Body(𝑟 ) = {𝑥1, . . . , 𝑥 𝑗 } and Head(𝑟 ) = ℎ.

Hence, we get 𝑘 + 1 sets of arguments (Arg(T∗), Arg(T1), . . .,
Arg(T𝑘 ). Each set of the 𝑘 classifiers contains only arguments of

type ⟨{𝑟 }, 𝑟 , 𝑖⟩, where 𝑟 is a classification rule, while Arg(T∗) may

include the three types of arguments. Every argument has a basic

weight from the unit interval [0, 1] defined as follows.

Definition 6. The basic weight of an argument is given by the
function 𝜎 :

⋃
𝑖∈{1,...,𝑘,∗}

Arg(T𝑖 ) → [0, 1] s.t. for any 𝐴 ∈ Arg(T𝑥 ),

𝜎 (𝐴) =
{

1 if 𝑥 = ∗
Sc(𝑟 ) if 𝑥 ≠ ∗ and 𝐴 = ⟨{𝑟 }, 𝑟 , 𝑥⟩.

Arguments of the same or distinct classifiers may be conflicting

since their classification rules may be incompatible. Arguments

from the domain knowledge do not attack each other since the

theory T∗ is consistent and does not contain defeasible rules. How-

ever, they may attack arguments of any classifier in three ways:

1) they may use a strict classification rule which is incompatible

with the classifier’s, 2) they may argue in favour of blocking the

classification rule of the classifier, and 3) they may argue that the

preconditions of a classifier’s rule do not hold.

Definition 7. Let 𝐴 = ⟨𝐻,ℎ, 𝑥⟩, 𝐴′ = ⟨𝐻 ′, ℎ′, 𝑥 ′⟩ with 𝐴,𝐴′ ∈⋃
𝑖∈{1,...,𝑘,∗}

Arg(T𝑖 ). 𝐴 attacks 𝐴′ iff one of the following holds:

• 𝐴,𝐴′ ∈ ⋃
𝑖=1,...,𝑘

Arg(T𝑖 ) and ℎ,ℎ′ are incompatible.

• 𝐴 ∈ Arg(T∗), 𝐴′ ∈ ⋃
𝑖=1,...,𝑘

Arg(T𝑖 ) and

– ℎ is a classification rule and ℎ,ℎ′ are incompatible, or
– ℎ = ℎ′, or
– ℎ ≡ ¬𝑆 where 𝑆 ⊆ Body(ℎ′).

We introduce the notion of argumentation system as follows:

Definition 8. An argumentation system (AS) defined over the
theories T∗,T1, . . . ,T𝑘 is a tuple G = (A, 𝜎,R) where:

• A = Arg(T∗) ∪ Arg(T1) ∪ . . . ∪ Arg(T𝑘 ),
• 𝜎 is a mapping from A to [0, 1] (as in Definition 6)
• R ⊆ A×A is a defeat relation defined as follows: for𝐴, 𝐵 ∈ A,
𝐴 defeats 𝐵 iff𝐴 attacks 𝐵 (see Definition 7) and 𝜎 (𝐴) ≥ 𝜎 (𝐵).

Arguments of G are evaluated using the stable semantics [8],
which returns a set Ext(G) of acceptable sets of arguments. Each
set is conflict-free and defeats any argument in A left outside. For

𝑆 ∈ Ext(G), Conc(𝑆) = {𝑟 ∈ L′′ | ∃⟨{𝑟 }, 𝑟 , 𝑥⟩ ∈ 𝑆}, i.e., it returns
the set of classification rules supported by arguments in 𝑆 .

The sceptical classifier M𝑠 uses the classification rules which

are supported by arguments in every extension. When an instance

does not trigger any of the retained rules,M𝑠 returns the symbol

und meaning undecided classification.

Definition 9. A sceptical ensemble classifier defined over the
theories T∗,T1, . . . ,T𝑘 is a function M𝑠 mapping every instance 𝐼 ∈ I
into a class from C such that:

M𝑠 (𝐼 ) =
{

Head(𝑟 ) 𝑟 ∈ ⋂
𝑆𝑖 ∈Ext(G)

Conc(𝑆𝑖 ) and Body(𝑟 ) ⊆ 𝐼

Und otherwise
where G = (A, 𝜎,R) is the AS built over T∗,T1, . . . ,T𝑘 .

The classification rules used byM𝑠 are pairwise compatible. This

property guarantees a global consistency of M𝑠 ’s predictions as

it avoids applying incompatible rules to distinct instances. Fur-

thermore, the set of rules complies with the domain knowledge

since, together with the sets of facts and strict rules of the theory

T∗, it constitutes a consistent and coherent theory. Finally, M𝑠 is

explainable since it provides a prediction and the rule behind it.

Theorem 1. Let G = (A, 𝜎,R) be an AS and T∗ = ⟨F∗,S∗, ∅⟩.
• Rules in

⋂
𝑆𝑖 ∈Ext(G)

Conc(𝑆𝑖 ) are pairwise compatible.

• ⟨F∗,S∗,
⋂

𝑆𝑖 ∈Ext(G)
Conc(𝑆𝑖 )⟩ is both consistent and coherent.

For choosing the winning classification rules, the credulous en-

semble classifierM𝑐 takes into account first the certainty degrees

of rules, and if two incompatible rules have equal score, the model

considers the number of sources providing each rule.
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