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ABSTRACT
Given an agentwith limited sensing capabilities, we analyzewhether

it is possible to deploy a new agent in the operational space of the

preexisting agent in a safe manner. One approach for modeling the

interaction of the introduced agent with its environment, which

contains the preexisting agent, is through a two-player game of im-

perfect information. However, the computational cost of solving this

game is prohibitive. Restricting the preexisting agent’s strategy to

just memoryless strategies and assuming that the introduced agent

has perfect information alleviates the computational cost while still

modeling realistic environments. The proposed algorithm for solv-

ing the game finds a winning strategy for the introduced agent by

solving a quantified Boolean formula (QBF) for the game. We justify

this approach by establishing a matching PSPACE lower bound. We

also show that this result holds even when the preexisting agent

uses bounded history to condition its play.
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1 INTRODUCTION
Two-player games on graphs model agent interactions with their

operational environment, which may include other agents. Most

results about two-player games on graphs hypothesize that the

agent has perfect information. Imperfect-information games in

which an imperfect-information player plays against a perfect-

information player relax the perfect-information hypothesis in an

attempt to model scenarios in which agents rely on sensors to make

the control decisions. The imperfect information player models

a robotic agent, and the perfect-information player models the

environment. To date, these games are well-understood from the

agent players’ perspective but lack semantics from the perspective

of the environment.

Motivating Example. Consider a storage warehouse in which a re-

stocking robot 𝑃 initially located at (0, 0) uses directional markers

(i.e., observational strategies) to navigate a warehouse in order to

restock one of red, blue or yellow shelves (figure 1). We assume
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Figure 1: (Left) A restocking robot 𝐹 (at (0, 4)) uses directional
markers to navigate a warehouse with a preexisting agent 𝑃
(at (0, 0)). (Right) A possible forgetful strategy for the drone
(blue and yellow respectively).

that this robot 𝑃 does not have the capability to distinguish dy-

namic obstacles. These directional markers do not fix the policy for

this robot 𝑃 . We introduce a new robot 𝐹 with perfect information,

meaning it knows (1) the observation function of 𝑃 , (2) the objective

of 𝑃 , and (3) current state of 𝑃 . We are particularly interested in

analyzing whether an introduced robot 𝐹 can satisfy a reachability
objective without violating the safety property of colliding with

the old restocking robot 𝑃 as it operates in the same warehouse.

Due to the assumption that the old robot 𝑃 cannot distinguish dy-

namic obstacles, it has imperfect information in the joint-operation

scenario. Therefore, the onus is on the newly deployed robot 𝐹

to avoid colliding with the old robot while navigating the shared

environment.

The fundamental insight is that while the existing agent 𝑃 is not

cooperative concerning agent 𝐹 , it is also not a true adversary to 𝐹 .

Agent 𝑃 may coincidentally block agent 𝐹 , but it is not the objective

of agent 𝑃 to interfere with the agent’s 𝐹 path.

2 MEMORYLESS IMPERFECT-INFORMATION
PLAYER

The analysis of the game from the perspective of memoryless adver-

saries is motivated by preexisting agents that are restricted to ob-

servational strategies. Formally, the imperfect-information player

is restricted to using strategies of the form 𝑆𝑃 : 𝑉 public → Σ𝑃 .

Therefore, the number of strategies for 𝑃 is𝑚 = |𝑉 public | |Σ𝑃 | . In
the naive approach, 𝐹 maintains a subset of all the possible strate-

gies that are consistent with the play (so far). Agent 𝐹 now simply

plays in a manner such that it addresses all the remaining strate-

gies. Intuitively, 𝐹 learns the strategy (rules of the strategies) of

the imperfect-information player. However, the use of a subset

construction on the possible strategies of 𝑃 leads to a prohibitive
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Algorithm 1: Strategy synthesis against bounded 𝑃 .

Input: Game 𝐺 on arena 𝐴,

objective𝜓 , and

length of history 𝑘 .

Output: Strategy tree 𝑇 for player 𝐹 .

𝑛 ←
��𝑉 public

��𝑘
𝑚 ← 𝑛

(
𝑛
��𝑉 private

�� + 1) ▷ bound on number of rounds for 𝐹

𝑇 ← solve-qbf(𝜓𝐴forgetful ) ▷ construct QBF (theorem 2.2)
if 𝑇 ≠ ∅ then

return (𝑇,⊤)
end
return ⊥

computational cost (2-EXPTIME). But, this is not the true complex-

ity of this problem.

Solving the game by encoding it as a QBF
When playing against an agent with limited memory, player 𝐹

has more ways to defeat it. However, finding a winning strategy is

computationally harder. We bound the maximum number of rounds

needed by the perfect-information player 𝐹 to hit a winning loop.

Lemma 2.1. If the perfect-information player can win, then in

O
((��𝑉 private�����𝑉 public

��� + 1) ���𝑉 public
���)

rounds she can force a loop whose minimal parity is the parity of the
perfect-information player.

It is possible to encode perfect-information reachability (safety)

games that end after a fixed number of rounds as a QBF with the

number of quantifier alternations equal to the number of rounds [1].

We exploit that player 𝑃 is forced to use memoryless strategies to

construct a similar QBF encoding for parity objectives.

Theorem 2.2. If player 𝑃 is memoryless, then WIN𝐹 is contained
in PSPACE.

In the scenario where the imperfect-information player 𝑃 can use

histories to condition its next action, we propose a new arena𝐴
forgetful

derived from a given arena 𝐴 where 𝑘 moves are explicitly wasted

before making the new move. Consequently, we derive a new upper

bound on the number of rounds.

3 EVALUATION OF SYNTHESIS WITH
IMPERFECT INFORMATION GAMES

Under a limit on the opponent’s ability to condition on the history,

we can use a bound on the game’s length to symbolically encode

the game into a QBF. Our use of QBFs is partially supported by

the recently investigated efficacy of QBFs for solving problems in

model-checking, synthesis, and planning [13]. The result of solving

the QBF encoding for the game (theorem 2.2) is a decision tree that

serves as a strategy (extensive form) for the full information player

(algorithm 1).

We used our algorithm to find the winning strategy for the newly

introduced drone (figure 1) to reach a cell in {(2, 1), (2, 2), (2, 3)}
without colliding with 𝑃 . The strategy obtained by solving the

Table 1: Evaluation of approach on a 10x10 grid against a
memoryless 𝑃 .

distinct

observations

size of arena

due to subset

construction

bound on

number of

rounds

synthesis

time (sec)

4 10
4

16 159

5 10
10

25 234

6 10
19

36 333

7 10
38

49 359

8 10
77

64 468

9 10
154

81 602

10 ∞ 100 −

QBF requires 𝐹 to move to (3, 1) and wait for a turn; if 𝑃 comes

back to (2, 1), 𝐹 moves along column 0 to reach the objective (2, 3).
Otherwise, 𝐹 moves to (2, 1).
More generally, in a square grid world like the one depicted in

figure 1, there are static obstacles in the middle rows that create

narrow corridors. At any time, the existing agent 𝑃 can move to a

neighboring cell if the directional markers allow it. On the other

hand, the newly introduced drone 𝐹 can move to an adjacent cell

if it is unblocked. Let

(
𝑥𝑃 , 𝑦𝑃

)
and

(
𝑥𝐹 , 𝑦𝐹

)
denote the current

positions of the agents 𝑃 and 𝐹 , respectively. Further, let 𝑆𝑂 =

{(𝑥1, 𝑦1) , · · · (𝑥𝑠 , 𝑦𝑠 )} denote the locations of the static obstacles.
The drone 𝐹 must satisfy the following two objectives a) collision

avoidance 𝜙1: The agent 𝐹 must avoid collision with 𝑃 and other

static obstacles, specified as 𝜙1 = 𝜙𝑆𝑂 ∧ 𝜙𝑃 , where

𝜙𝑆𝑂 =
∨

(𝑥𝑜 ,𝑦𝑜 ) ∈𝑆𝑂
□
(
¬
(
(𝑥𝐹 = 𝑥𝑜 ) ∧ (𝑦𝐹 = 𝑦𝑜 )

))
and

𝜙𝑃 = □
(
¬
(
(𝑥𝐹 = 𝑥𝑃 ) ∧ (𝑦𝐹 = 𝑦𝑃 )

))
.

and b) reachability 𝜙2: Agent 𝐹 must reach objective state 𝑅 =

(𝑥𝑅, 𝑦𝑅), specified as 𝜙2 = ♢
((
(𝑥𝐹 = 𝑥𝑅) ∧ (𝑦𝐹 = 𝑦𝑅)

))
.

The hardness of solving QBFs increases with the number of al-

ternations in the formula. Experiments (table 1) show that the

proposed symbolic approach works when the inferred bound on

the number of rounds is less than 100. Even for problems where

the number of rounds is small, the size of the game arena is huge,

making the problem intractable (if solved by solving the perfect

information game). The experiments are performed on an Intel core

i7 2.4 GHz machine with 16 GB memory.

4 CONCLUSION
Our work explores a new type of information asymmetry between

the two players of a game: the preexisting player has limited infor-

mation on the game’s current state. The introduced player needs to

learn from the environment’s (preexisting agent) behavior while
avoiding situations in which the unknown behavior of the envi-

ronment player could cause undesired interactions (e.g., colliding

with the preexisting robot) leading to the loss of the game [5]. As

such, we believe that our work prepares the ground for more formal

approaches to the design of self-adaptive systems.
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