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ABSTRACT
In multi-agent reinforcement learning (MARL) with communica-
tion, coordination information (ordinal) is often required in addition
to referential info about one’s observations. The information bot-
tleneck defines a trade-off between complexity and utility, which
loses structure of latent information when compressed solely for
utility. Thus, in this work, we use information theory to introduce
information-rich, variational compositional communication to ade-
quately embed referential information and to provide a contrastive
objective to ground communication in intent-specific features with-
out relying on reward. Each message is composed of a set of emer-
gent concepts, which we show span the observations and intents.
Messages are naturally compressed to the least number of bits.
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1 INTRODUCTION
Emergent communication studies the creation of artificial language.
Often phrased as a Lewis game, speakers and listeners learn a set
of tokens to communicate complex observations [13]. However,
in multi-agent reinforcement learning (MARL), agents suffer from
partial observability and non-stationarity (due to unaligned value
functions) [17], which aims to be solved with decentralized learning
through communication. In the MARL setup, agents, as speakers
and listeners, learn a set of tokens to communicate observations,
intentions, coordination or other experiences which help facilitate
solving tasks [8, 9, 22]. Agents learn to communicate effectively
through a backpropagation signal from their task performance [5,
6, 12, 15, 19, 20]. This has been found useful for applications in
human-agent teaming [9–11, 16], multi-robot navigation [6], and
coordination in complex games such as StarCraft II [18].

Traditionally, inMARLwith communication, the communication
system is learned in an unsupervised manner from a gradient signal
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Figure 1: With emergent compositional concept communica-
tion, a multi-agent team compresses their observation and
intent to communicate learned white-box messages. Here,
agents communicate with compositional messages of at most
three in length. Each token within the message represents a
discrete emergent concept.

based on the actions taken for the task. However, choosing the cor-
rect action requires a sufficient communication protocol, creating
non-stationarity. This work aims to ground the communication
to more accurately represent the intent through goal-grounded
contrastive learning. Contrastive learning [4], which builds on the
MaxEnt reinforcement learning objective [3], aims to build cur-
rent representations which are closer to future states than random
states. Information theory objectives have been used in conjunction
with contrastive learning to invoke independently principled sub-
spaces [1], or, in our context, concepts. We introduce compositional
emergent communication grounded in task-specific information
through contrastive learning.

This work enables a compositional emergent communication
paradigm, which exhibits clustering and informativeness properties.
We show theoretically and through empirical results that compo-
sitional language enables independence properties among tokens
with respect to referential information. When combined with con-
trastive learning, our method outperforms competing methods that
only ground communication on referential information. Finally, we
show that contrastive learning acts as an optimal critic for communi-
cation, reducing sample complexity for the unsupervised emergent
communication objective. In addition to the more human-like for-
mat, compositional communication is able to create variable-length
messages, meaning that our method does not generate unneces-
sarily large messages with little information. We show the utility
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of our method in multi-agent settings, with a focus on teams of
agents and high-dimensional pixel data. Please refer to our evolved
paper [7] for full derivations, methodology, and experiments.

2 COMPOSITIONAL COMMUNICATION
In our scenario, the information bottleneck is a trade-off between
the complexity of information 𝐼 (𝐻 𝑖 ;𝑀𝑖 ) (representing the encoded
information exactly) and representing the relevant information
𝐼 (𝑀 𝑗≠𝑖 ;𝑌 𝑖 ), which is signaled from our contrastive objective. In
our setup, the relevant information flows from other agents through
communication, signaling a combination of the information bot-
tleneck and a Lewis game. We additionally promote complexity
through our compositional independence objective,
𝐼 (𝑀𝑖

1; . . . ;𝑀
𝑖
𝐿
|𝐻 𝑖 ). This is formulated by the following Lagrangian,

L( 𝑝 (𝑚𝑖 |ℎ𝑖 ) ) = 𝛽𝐼 (𝑀 𝑗≠𝑖 ;𝑌 𝑖 ) − 𝛽𝐼 (𝐻 𝑖 ;𝑀𝑖 )
− 𝛽𝐼 (𝑀𝑖

1; . . . ;𝑀
𝑖
𝐿 |𝐻

𝑖 )

where the bounds on mutual information 𝐼 are defined in equa-
tions 1, 2, and 3. Overall, our objective is,

𝐽 (𝜃 ) = max
𝜋
E

[∑︁
𝑡 ∈𝑇

∑︁
𝑖∈𝑁

𝛾𝑡R(𝑠𝑡 , 𝑎𝑡 ) + L( 𝑝 (𝑚𝑡 |ℎ𝑡 ) )
]

s.t.(𝑎𝑡 ,𝑚𝑡 , ℎ𝑡 ) ∼ 𝜋𝑖 , 𝑠𝑡 ∼ T (𝑠𝑡−1)
Since we want the mutual information to be minimized in our

objective, we minimize,

𝐼 (𝑚1; . . . ;𝑚𝐿 |ℎ) =

Eℎ∼𝑝 (ℎ)
[
𝐷𝐾𝐿

(
𝑞(𝑚̂ |ℎ) | |𝜋𝑖𝑚 (𝑚1 |ℎ) ⊗ · · · ⊗ 𝜋𝑖𝑚 (𝑚𝐿 |ℎ)

)] (1)

To induce complexity in the compositional messages, we addi-
tionally want to minimize the mutual information 𝐼 (𝐻 ;𝑀) between
the composed message 𝑚̂ and the encoded information ℎ. For the
mutual information between the composed message and encoded
information, the following upper bound holds,

𝐼 (𝐻 ;𝑀) ≤ 𝐼 (𝐻 𝑖 , 𝑀𝑖 ) =
𝐿∑︁
𝑙

Eℎ∼𝑝 (ℎ) [𝐷𝐾𝐿 (𝑞(𝑚𝑙 |ℎ) | |𝑧 (𝑚𝑙 )))] (2)

First, note that our Markov Network is as follows: 𝐻 𝑗 → 𝑀 𝑗 →
𝑌 𝑖 ← 𝐻 𝑖 . Continue to denote 𝑖 as the agent identification and 𝑗 as
the agent ID such that 𝑗 ≠ 𝑖 . We aim to satisfy the utility objective
of the information bottleneck, 𝐼 (𝑀 𝑗 ;𝑌 𝑖 ), through a contrastive
learning objective,

𝐼 (𝑀 𝑗 , 𝑌 𝑖 ) = log
(
𝜎 (𝑓 (𝑠,𝑚, 𝑠+

𝑓
))
)
+ log

(
1 − 𝜎 (𝑓 (𝑠,𝑚, 𝑠−

𝑓
))
)

(3)

which lower bounds the mutual information, 𝐼 (𝑀 𝑗 , 𝑌 𝑖 ) ≥ 𝐼 (𝑀 𝑗 , 𝑌 𝑖 ).

3 EXPERIMENTS AND RESULTS
Our method considers conditioning on inputs, especially rich in-
formation, such as pixel data, and task-specific information. When
evaluating an artificial language in MARL, we only are interested
in referential tasks, in which communication is required to com-
plete the task. With regard to intent-grounded communication,
we study ordinal tasks, which require coordination information
between agents to successfully complete. Thus, we consider tasks
with a team of agents to foster messaging with both coordination

Table 1: Beta ablation: Redundancymeasures the capacity for
a bijection between the size of the set of unique tokens and
the enumerated observations and intents. Min redundancy
is 1.0 (a bijection). Lower is better.

𝛽 Success Message Size
in Bits

Redundancy

0.1 1.0 64 1.0
0.01 .996 69.52 1.06
0.001 .986 121.66 2.06
0 .976 147.96 2.31
non-
compositional

.822 512 587

Figure 2: Left: Pascal VOC Game. Middle: Comparison with
baselines in Traffic Junction. Right Top: Success, contrastive,
and complexity losses for ourmethod. Right Bottom: Success,
autoencoder loss for ae-comm with supervised pretraining.

information and observations. The blind traffic junction environ-
ment [19] requires multiple agents to navigate a junction without
observing other agents and must coordinate with communication
to traverse through the lanes without colliding with agents. We
further evaluate the complexity of compositional communication
with a referential Pascal VOC [2] game. We evaluate each scenario
over 10 seeds against baselines [14, 19, 21].

Our 𝛽 ablation in table 1 yields a bijection between each token
in the vocabulary and the possible emergent concepts, i.e., the
enumerated observations and intents. Thus for 𝛽 = 0.1, there is no
redundancy. Despite a trivially small amount of mutual information
between tokens, our compositional method is able to reduce the
message size in bits by 2.3x using our derived regularization, for
a total of an 8x reduction in message size over non-compositional
methods such as ae-comm.

Overall, figure 2 shows that our compositional, contrastivemethod
outperforms all methods focused on solely input-oriented commu-
nication grounding. In the blind traffic junction, our method yields a
higher average task success rate and is able to achieve it with a lower
sample complexity. Training with the contrastive update tends to
spike to high success but not converge, often many episodes before
convergence, which leaves area for training improvement. That is,
the contrastive update begins to find aligned latent spaces early in
training, but it cannot adapt the methodology quickly enough to
converge. The exploratory randomness of most of the early online
data prevents exploitation of the high utility 𝑓 + examples. This
leaves further room for improvement for an adaptive contrastive
loss term.
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