Poster Session |

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Intention Progression with Maintenance Goals
Extended Abstract

Di Wu
Zhejiang University of Technology
Hangzhou, China
wudi@zjut.edu.cn

Brian Logan
Utrecht University
Utrecht, The Netherlands
University of Aberdeen
Aberdeen, United Kindom
b.s.logan@uu.nl

KEYWORDS

BDI Agents; Intention Progression Problem; Maintenance Goals

ACM Reference Format:
Di Wu, Yuan Yao, Natasha Alechina, Brian Logan, and John Thangarajah.
2023. Intention Progression with Maintenance Goals: Extended Abstract.
In Proc. of the 22nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 — June
2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION

One of the key advantages of Belief-Desire-Intention (BDI) agents
[7] is their ability to pursue multiple goals in parallel. When multi-
ple goals are pursued at the same time, an agent has to decide which
of its intentions should be progressed, and if the next step of the
selected intention is a subgoal, the agent also has to decide which
plan should be used. These two choices together form the intention
progression problem [5]. Previous work on the intention progression
problem is limited to scheduling achievement goals [8-13, 16]. In
addition to achieving certain states, in many applications agents
must also maintain particular states of the environment, e.g., not
running out of power, avoiding collisions, etc. Such goals are termed
maintenance goals, as they specify a state of the environment an
agent should maintain, and maintenance goals are supported by
many BDI systems, including Jadex [6] and JAM[4]. Previous ap-
proaches to [2] proactively reasoning about maintenance goals are
based on summary-information [9]. However, the approach in [2]
assumes that preventive measures to maintain a goal do not interact
with the agent’s other intentions.

In this paper, we present SAys, a new approach to intention
progression for BDI agents with both achievement and mainte-
nance goals which extends SA scheduler [15]. We compare the
performance of our approach to that of [2]. The results suggest our
approach significantly improves the performance of agents with
maintenance goals.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 — June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Yuan Yao
University of Nottingham
Ningbo, China
yuan.yao@nottingham.edu.cn

2400

Natasha Alechina
Utrecht University
Utrecht, The Netherlands
n.a.alechina@uu.nl

John Thangarajah
RMIT University
Melbourne, Australia
john.thangarajah@rmit.edu.au

2 SCHEDULING MAINTENANCE GOALS

We consider agents with two types of goals: achievement goals and
maintenance goals. An achievement goal represents the state of the
environment an agent is trying to bring about, A maintenance goal
specifies a state of the environment the agent should maintain for a
period of time [3], and is defined as follows: (G, Cm, Pls, t), where
Gy is the name of the goal, Cy, is the maintenance condition, Pls
are the plans that can be used to re-establish Cy,,, and ¢ is the time
after which Gy, should be dropped. Unlike achievement goals which
simply require the successful execution of a plan, maintenance goals
may be implemented in different ways, depending on whether the
violation of Cp, can be predicted.

If violation of Cy, can be reliably predicted given the agent’s
other intentions, the agent can adopt a plan in Pls proactively,
i.e., before the violation occurs. For example, if we can predict the
battery consumption resulting from the agent’s intentions, we can
specify as a maintenance condition that the battery level should
always be greater than zero. On the other hand, if violation of Cp,
cannot be reliably predicted, the agent must adopt a plan in Pls
reactively, i.e., after the violation of Cy, occurs. In this case, the
maintenance condition Cy, typically needs to be more “conserva-
tive”. For example, if we cannot predict the battery consumption
resulting from the agent’s intentions, the maintenance condition
may specify a minimum battery level, e.g., 20%, that ensures that
the agent is always able to return to a recharging point from the
location at which the maintenance condition is violated.

3 SAp SCHEDULER

SApr extends the SA scheduler [15] in explicitly taking account
of the agent’s reactive and proactive maintenance goals. SAy is
based on Monte-Carlo Tree Search (MCTS) [1] which uses pseudo-
random simulations to guide the expansion of the search tree. Edges
in the search tree represent a choice of which action to execute in
one of the agent’s intentions. Each node represents the state of the
agent and its environment following the execution of the action.
Starting from the root node representing the current state of the
agent’s intentions I and state of the environment E, SAy iteratively
builds a search tree until a pre-defined computational budget is
reached. The scheduler then halts and the best action is returned.
The agent’s intentions I are represented by a tuple (T, S), where

https://orcid.org/0000-0002-4541-3218
https://orcid.org/0000-0002-2705-6245
https://orcid.org/0000-0003-3306-9891
https://orcid.org/0000-0003-0648-7107
https://orcid.org/0000-0002-7699-6444

Poster Session |

T ={t1,....tn} is a set of goal-plan trees [8, 9, 14] corresponding to
the agent’s top-level goals and S = {s1, ..., sp} is a set of pointers
to the current step of each goal-plan tree in T. As with MCTS and
SA, each iteration of SA)s consists of four main phases: selection,
expansion, simulation, and back-propagation.

To support intention progression with maintenance goals, we
modified the expansion and the simulation phases of the SA sched-
uler. In particular, we include a mechanism that decides when recov-
ery plans should be considered and how they should be executed.
For reactive maintenance goals, recovery plans can only be applied
when the corrsponding maintenance condition is violated. That
is, the agent can choose either to continue achieving its top-level
goals as before, or to execute recovery plans to re-establish the
violated maintenance condition. For reactive maintenance goals,
recovery plans can only be executed if the corresponding main-
tenance goals are triggered. However, for proactive maintenance
goals, SA)r assumes maintenance goals are always active, i.e., it is
always possible to execute a recovery plan for a maintenance goal
Gm, even if there is no existing intention to recover Gp,.

The recovery plans for maintenance goals may be interleaved
with other intentions so as to avoid conflicts or to exploit synergies
as in [15, 16]. In the special case when an agent does not have any
achievement goals and none of the maintenance conditions are
violated, no further action will be taken by the agent. That is, if the
agent is not pursuing any goals, then waiting is the best way to
maintain the current state.

In SAyy, a terminal state is reached when any of the following
situations occur: 1) all achievement goals are achieved and no main-
tenance condition is violated; 2) all the remaining achievement
goals cannot be achieved in the current state; or 3) a maintenance
condition cannot be re-established.

The above modifications are used when SAjs expands new nodes
in the expansion phase and when randomly simulating the execu-
tion of the agent in the simulation phase.

4 EVALUATION

We evaluate the performance of SAy; in the Mars rover scenario
from [2]. In the scenario, the environment is a grid of 20 X 20 cells.
The rover can move up, down, left and right, and has achievement
goal(s) to visit different locations in the grid. Each movement action
consumes 1 unit of battery power, and the rover can return to the
depot in the centre of the environment to recharge its battery. In
the experiments reported below, we assume the Mars rover starts
in the depot cell, all its goals (i.e., where to visit) are randomly
generated, and the battery capacity of the rover is 40.

We compare the performance of SAy; for reactive maintenance
goals (RMCTS) and proactive maintenance goals (PMCTS), with
the reactive (RMG) and proactive (PMG) approaches from [2] for an
increasing number of achievement goals. Both RMCTS and PMCTS
use SAys to schedule the progression of the agent’s intentions. In
RMCTS the maintenance goals are implemented reactively and in
PMCTS proactively. In the case of RMG, when the reactive main-
tenance goal is triggered, the rover must first head to the depot
to recharge its battery before attempting to achieve other goals.
On the other hand, with PMG, the maintenance condition is pre-
dicted by using summary information. The reactive maintenance

2401

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

condition for RMG and RMCTS is set to be batteryLevel > 20. For
PGM and PMCTS, the condition is set to be that the batteryLevel is
greater than the minimal number of moves required for the agent
to return to the charging station from its current position. As all
approaches can achieve all the achievement goals, we evaluate their
performance on the amount of battery consumed.

In the experiments, the SAys scheduler is configured to perform
100 iterations in each deliberation cycle and 10 simulations per
iteration, and we report the average performance in 100 runs. The
results are shown in Figure 1.

250 T T T T T T T T

—a— RMG _n
e PMG e

2001 |—a— RMCTS - o |
= PMCTS| / "

150

battery

100 A

50

#goals

Figure 1: Battery consumption with battery capacity of 40

As can be seen, for all approaches, as the number of goals in-
creases the amount of battery consumption increases. However the
MCTS-based approaches (PMCTS, and RMCTS) outperform RMG
and PGM, and approaches using proactive maintenance goals have
better performance than those using reactive maintenance goals.
As expected, RMG has the worst performance, i.e., it consumes
more battery power than the other approaches. PMG has better
performance than RMG, as it can estimate the battery consumption
before pursuing an achievement goal: if the agent will trigger the
maintenance goal half way to achieving its next achievement goal,
then it will choose to recharge first. PMCTS and RMCTS have a clear
advantage over PMG, particularly when the number of achievement
goals increases. The reason is that the MCTS-based approach can
predict not only the possible violation of maintenance conditions
during the execution but also possible synergies between different
intentions (i.e., the agent can merge the same actions from different
intentions to save time and resources).

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science
Foundation of China (61906169) and Yongjiang Talent Introduction
Programme (2022A-234-G).

Poster Session |

REFERENCES

[1] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. 2008. Monte-

Carlo Tree Search: A New Framework for Game Al In Proceedings of the Fourth
Artificial Intelligence and Interactive Digital Entertainment Conference, Christian
Darken and Michael Mateas (Eds.). The AAAI Press, Stanford, California, USA.
Simon Duff, James Harland, and John Thangarajah. 2006. On proactivity and
maintenance goals. In 5th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2006), Hakodate, Japan, May 8-12, 2006. ACM,
1033-1040. https://doi.org/10.1145/1160633.1160817

Simon Duff, John Thangarajah, and James Harland. 2014. Maintenance Goals in
Intelligent Agents. Comput. Intell. 30, 1 (2014), 71-114. https://doi.org/10.1111/
coin.12000

Marcus J. Huber. 1999. JAM: A BDI-Theoretic Mobile Agent Architecture. In
Proceedings of the Third Annual Conference on Autonomous Agents, AGENTS 1999,
Seattle, WA, USA, May 1-5, 1999. ACM, 236-243. https://doi.org/10.1145/301136.
301202

Brian Logan, John Thangarajah, and Neil Yorke-Smith. 2017. Progressing Inten-
tion Progresson: A Call for a Goal-Plan Tree Contest. In Proceedings of the 16th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2017),, S. Das, E. Durfee, K. Larson, and M. Winikoff (Eds.). IFAAMAS, IFAAMAS,
Sao Paulo, Brazil, 768-772.

Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. 2005. Jadex: A
BDI Reasoning Engine. In Multi-Agent Programming, RafaelH. Bordini, Mehdi
Dastani, Jirgen Dix, and Amal El Fallah Seghrouchni (Eds.). Multiagent Systems,
Artificial Societies, and Simulated Organizations, Vol. 15. Springer US, 149-174.
https://doi.org/10.1007/0-387-26350-0_6

A. S.Rao and M. P. Georgeff. 1992. An abstract architecture for rational agents.
In Proceedings of Knowledge Representation and Reasoning (KR&R-92), C. Rich,
W. Swartout, and B. Nebel (Eds.). 439-449.

John Thangarajah and Lin Padgham. 2011. Computationally Effective Reasoning
About Goal Interactions. Journal of Automated Reasoning 47, 1 (2011), 17-56.

2402

[o

[10

[11

[13

[14

[16

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

John Thangarajah, Lin Padgham, and Michael Winikoff. 2003. Detecting &
Avoiding Interference Between Goals in Intelligent Agents. In Proceedings of
the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03),
Georg Gottlob and Toby Walsh (Eds.). Morgan Kaufmann, Acapulco, Mexico,
721-726.

John Thangarajah, Lin Padgham, and Michael Winikoff. 2003. Detecting & ex-
ploiting positive goal interaction inintelligent agents. In The Second International
Joint Conference on Autonomous Agents & Multiagent Systems, AAMAS 2003. ACM,
Melbourne, Victoria, Australia, 401-408.

John Thangarajah, Michael Winikoff, Lin Padgham, and Klaus Fischer. 2002.
Avoiding Resource Conflicts in Intelligent Agents. In Proceedings of the 15th
Eureopean Conference on Artificial Intelligence. I0S Press, Lyon, France, 18-22.
Max Waters, Lin Padgham, and Sebastian Sardina. 2014. Evaluating Coverage
Based Intention Selection. In Proceedings of the 13th International Conference
on Autonomous Agents and Multi-agent Systems (AAMAS 2014) (Paris, France),
Alessio Lomuscio, Paul Scerri, Ana Bazzan, and Michael Huhns (Eds.). [IFAAMAS,
957-964. http://dl.acm.org/citation.cfm?id=2617388.2617398

Max Waters, Lin Padgham, and Sebastian Sardifia. 2015. Improving domain-
independent intention selection in BDI systems. Autonomous Agents and Multi-
Agent Systems 29, 4 (2015), 683-717. https://doi.org/10.1007/s10458-015-9293-5
Yuan Yao, Lavindra de Silva, and Brian Logan. 2016. Reasoning about the Exe-
cutability of Goal-Plan Trees. In Proceedings of the 4th International Workshop on
Engineering Multi-Agent Systems (EMAS 2016), Matteo Baldoni, Jorg P. Muller,
Ingrid Nunes, and Rym Zalila-Wenkstern (Eds.). Singapore, 181-196.

Yuan Yao and Brian Logan. 2016. Action-Level Intention Selection for BDI Agents.
In 15th International Conference on Autonomous Agents and Multiagent Systems.
IFAAMAS, 1227-1236.

Yuan Yao, Brian Logan, and John Thangarajah. 2016. Robust Execution of BDI
Agent Programs by Exploiting Synergies Between Intentions. In 30th AAAI
Conference on Artificial Intelligence. AAAI Press, 2558-2565.

https://doi.org/10.1145/1160633.1160817
https://doi.org/10.1111/coin.12000
https://doi.org/10.1111/coin.12000
https://doi.org/10.1145/301136.301202
https://doi.org/10.1145/301136.301202
https://doi.org/10.1007/0-387-26350-0_6
http://dl.acm.org/citation.cfm?id=2617388.2617398
https://doi.org/10.1007/s10458-015-9293-5

	1 Introduction
	2 Scheduling Maintenance Goals
	3 SAM Scheduler
	4 Evaluation
	Acknowledgments
	References

