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1 INTRODUCTION

One of the key advantages of Belief-Desire-Intention (BDI) agents
[7] is their ability to pursue multiple goals in parallel. When multi-
ple goals are pursued at the same time, an agent has to decide which
of its intentions should be progressed, and if the next step of the
selected intention is a subgoal, the agent also has to decide which
plan should be used. These two choices together form the intention
progression problem [5]. Previous work on the intention progression
problem is limited to scheduling achievement goals [8-13, 16]. In
addition to achieving certain states, in many applications agents
must also maintain particular states of the environment, e.g., not
running out of power, avoiding collisions, etc. Such goals are termed
maintenance goals, as they specify a state of the environment an
agent should maintain, and maintenance goals are supported by
many BDI systems, including Jadex [6] and JAM[4]. Previous ap-
proaches to [2] proactively reasoning about maintenance goals are
based on summary-information [9]. However, the approach in [2]
assumes that preventive measures to maintain a goal do not interact
with the agent’s other intentions.

In this paper, we present SAys, a new approach to intention
progression for BDI agents with both achievement and mainte-
nance goals which extends SA scheduler [15]. We compare the
performance of our approach to that of [2]. The results suggest our
approach significantly improves the performance of agents with
maintenance goals.
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2 SCHEDULING MAINTENANCE GOALS

We consider agents with two types of goals: achievement goals and
maintenance goals. An achievement goal represents the state of the
environment an agent is trying to bring about, A maintenance goal
specifies a state of the environment the agent should maintain for a
period of time [3], and is defined as follows: (G, Cm, Pls, t), where
Gy is the name of the goal, Cy, is the maintenance condition, Pls
are the plans that can be used to re-establish Cy,,, and ¢ is the time
after which Gy, should be dropped. Unlike achievement goals which
simply require the successful execution of a plan, maintenance goals
may be implemented in different ways, depending on whether the
violation of Cp, can be predicted.

If violation of Cy, can be reliably predicted given the agent’s
other intentions, the agent can adopt a plan in Pls proactively,
i.e., before the violation occurs. For example, if we can predict the
battery consumption resulting from the agent’s intentions, we can
specify as a maintenance condition that the battery level should
always be greater than zero. On the other hand, if violation of Cp,
cannot be reliably predicted, the agent must adopt a plan in Pls
reactively, i.e., after the violation of Cy, occurs. In this case, the
maintenance condition Cy, typically needs to be more “conserva-
tive”. For example, if we cannot predict the battery consumption
resulting from the agent’s intentions, the maintenance condition
may specify a minimum battery level, e.g., 20%, that ensures that
the agent is always able to return to a recharging point from the
location at which the maintenance condition is violated.

3 SAp SCHEDULER

SApr extends the SA scheduler [15] in explicitly taking account
of the agent’s reactive and proactive maintenance goals. SAy is
based on Monte-Carlo Tree Search (MCTS) [1] which uses pseudo-
random simulations to guide the expansion of the search tree. Edges
in the search tree represent a choice of which action to execute in
one of the agent’s intentions. Each node represents the state of the
agent and its environment following the execution of the action.
Starting from the root node representing the current state of the
agent’s intentions I and state of the environment E, SAy iteratively
builds a search tree until a pre-defined computational budget is
reached. The scheduler then halts and the best action is returned.
The agent’s intentions I are represented by a tuple (T, S), where
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T ={t1,....tn} is a set of goal-plan trees [8, 9, 14] corresponding to
the agent’s top-level goals and S = {s1, ..., sp} is a set of pointers
to the current step of each goal-plan tree in T. As with MCTS and
SA, each iteration of SA)s consists of four main phases: selection,
expansion, simulation, and back-propagation.

To support intention progression with maintenance goals, we
modified the expansion and the simulation phases of the SA sched-
uler. In particular, we include a mechanism that decides when recov-
ery plans should be considered and how they should be executed.
For reactive maintenance goals, recovery plans can only be applied
when the corrsponding maintenance condition is violated. That
is, the agent can choose either to continue achieving its top-level
goals as before, or to execute recovery plans to re-establish the
violated maintenance condition. For reactive maintenance goals,
recovery plans can only be executed if the corresponding main-
tenance goals are triggered. However, for proactive maintenance
goals, SA)r assumes maintenance goals are always active, i.e., it is
always possible to execute a recovery plan for a maintenance goal
Gm, even if there is no existing intention to recover Gp,.

The recovery plans for maintenance goals may be interleaved
with other intentions so as to avoid conflicts or to exploit synergies
as in [15, 16]. In the special case when an agent does not have any
achievement goals and none of the maintenance conditions are
violated, no further action will be taken by the agent. That is, if the
agent is not pursuing any goals, then waiting is the best way to
maintain the current state.

In SAyy, a terminal state is reached when any of the following
situations occur: 1) all achievement goals are achieved and no main-
tenance condition is violated; 2) all the remaining achievement
goals cannot be achieved in the current state; or 3) a maintenance
condition cannot be re-established.

The above modifications are used when SAjs expands new nodes
in the expansion phase and when randomly simulating the execu-
tion of the agent in the simulation phase.

4 EVALUATION

We evaluate the performance of SAy; in the Mars rover scenario
from [2]. In the scenario, the environment is a grid of 20 X 20 cells.
The rover can move up, down, left and right, and has achievement
goal(s) to visit different locations in the grid. Each movement action
consumes 1 unit of battery power, and the rover can return to the
depot in the centre of the environment to recharge its battery. In
the experiments reported below, we assume the Mars rover starts
in the depot cell, all its goals (i.e., where to visit) are randomly
generated, and the battery capacity of the rover is 40.

We compare the performance of SAy; for reactive maintenance
goals (RMCTS) and proactive maintenance goals (PMCTS), with
the reactive (RMG) and proactive (PMG) approaches from [2] for an
increasing number of achievement goals. Both RMCTS and PMCTS
use SAys to schedule the progression of the agent’s intentions. In
RMCTS the maintenance goals are implemented reactively and in
PMCTS proactively. In the case of RMG, when the reactive main-
tenance goal is triggered, the rover must first head to the depot
to recharge its battery before attempting to achieve other goals.
On the other hand, with PMG, the maintenance condition is pre-
dicted by using summary information. The reactive maintenance
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condition for RMG and RMCTS is set to be batteryLevel > 20. For
PGM and PMCTS, the condition is set to be that the batteryLevel is
greater than the minimal number of moves required for the agent
to return to the charging station from its current position. As all
approaches can achieve all the achievement goals, we evaluate their
performance on the amount of battery consumed.

In the experiments, the SAys scheduler is configured to perform
100 iterations in each deliberation cycle and 10 simulations per
iteration, and we report the average performance in 100 runs. The
results are shown in Figure 1.

250 T T T T T T T T

—a— RMG _n
e PMG e

2001 |—a— RMCTS - o |
= PMCTS| / "

150

battery

100 A

50

#goals

Figure 1: Battery consumption with battery capacity of 40

As can be seen, for all approaches, as the number of goals in-
creases the amount of battery consumption increases. However the
MCTS-based approaches (PMCTS, and RMCTS) outperform RMG
and PGM, and approaches using proactive maintenance goals have
better performance than those using reactive maintenance goals.
As expected, RMG has the worst performance, i.e., it consumes
more battery power than the other approaches. PMG has better
performance than RMG, as it can estimate the battery consumption
before pursuing an achievement goal: if the agent will trigger the
maintenance goal half way to achieving its next achievement goal,
then it will choose to recharge first. PMCTS and RMCTS have a clear
advantage over PMG, particularly when the number of achievement
goals increases. The reason is that the MCTS-based approach can
predict not only the possible violation of maintenance conditions
during the execution but also possible synergies between different
intentions (i.e., the agent can merge the same actions from different
intentions to save time and resources).
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