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ABSTRACT
Many multiagent systems, such as search and rescue or underwater
exploration, rely on generalizable teamwork abilities to achieve
complex tasks. Though many ad-hoc teaming algorithms focus on
finding an agent’s best fit with static team members, domains with
high degrees of uncertainty and dynamic teammates require an
agent to cooperate with arbitrary teams. Prior work views this as
an issue of uninformative rewards, providing high-quality but po-
tentially expensive evaluation methods to isolate an agent’s contri-
bution. In this work, we provide a local-evaluation-based approach
that leverages state trajectories of agents to better identify their
impact across multiple teams. The key insight that enables this
approach is that agent trajectories and previous experiences carry
sufficient information to map agent abilities to team performance.
As a result, we are able to train multiple agents to cooperate across
arbitrary teams as well as, if not better than, current methods,
while only using local information and significantly fewer team
evaluations.
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1 INTRODUCTION
Learning to cooperate with a variety of team members is vital to
the success of many multiagent systems, especially those where
the structure of the team is uncertain or dynamic. Domains such as
robot soccer [1, 6, 9], poker [4, 5], and robust multi-robot systems
[2, 8, 10] all require interaction across varying groups of agents.
Working with multiple teams compounds the difficulties of credit
assignment as agents must not just learn to cooperate with a single
team, but adapt to team variety.

This problem is exemplified by autonomous search and rescue,
where multiple robots need to form multiple different teams at
different times to efficiently search multiple areas. Agents must
learn general teamwork from an uninformative feedback signal
describing the success of the team as a whole. Recent work frames
this as a reward-shaping issue, providing a global and local eval-
uation method to train agents to cooperate across teams [7]. The
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local evaluation method provides the highest quality learning sig-
nal through the evaluation of counterfactual states. However, this
signal requires a significant number of team evaluations, which can
be prohibitively expensive or even impossible to calculate in many
domains.

In this work, we present Multi-Team Fitness Critics (MTFC)
that learn a mapping from local state information to an agent’s
contribution to multiple teams. This method trains local models of
each agent’s contribution to the global objective based solely on the
states the agents visit. Evaluating an agent in each team using this
model, agents receive a learning signal that describes their impact
on the performance of multiple teams. Agents that optimize this
signal will complete the team objective effectively across a variety
of teams.

The contribution of this work is a method of learning local re-
wards to train agents to cooperate with multiple teams. Experi-
mental results in a simulated multiagent exploration domain show
that these learned reward functions train agents to cooperate in
teams as effectively or even better than previous methods while
requiring fewer team evaluations to train. Further results show that
MTFC effectively learns a dense, agent-specific signal representing
an agent’s contribution to multiple teams.

2 MULTI-TEAM FITNESS CRITICS
We present Multi-Team Fitness Critics (MTFC) to train multiple
agents that cooperate with numerous teams through learned local
objective functions. We concurrently train critics to map local states
to team performance, and the agents using the fitness critics. We
define the MTFC function as follows:

𝑀𝑇𝐹𝐶𝑖 (𝑍1, 𝑍2, ..., 𝑍𝑛) =
𝑛∑︁
𝑗=1

max
∀𝑧∈𝑍 𝑗

𝐹𝑖 (𝑧𝑖 ) (1)

Here, MTFC evaluates joint-state trajectories (𝑍1, 𝑍2, ..., 𝑍𝑛) for
𝑛 teams. To evaluate agent 𝑖 , we use the fitness critic of agent i (𝐹𝑖 )
evaluate the agent’s local states in each team. The final fitness of
the agent is the sum of the highest fitness critic scores in each team.
This provides an agent with the sum of their optimistic contribution
to a variety of teams.

To train each fitness critic, we train a neural network as a re-
gression model that maps a state to the global objective. As the
agents interact with the environment, we store tuples of local states
along with the global reward received at the end of the episode. By
training the critic on these samples, the model learns to map local
information to global performance.

To generate teams, we first create a larger number of learning
agents than the number of physical agents in the system. We gener-
ate subsets of these agents to form teams, where the size of the team
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Figure 1: Using MTFC we trained five agents in teams of four. An example run is shown where MTFC was able to train agents to
move towards the two highest valued POIs in every team, exhibiting effective teamwork across multiple teams. Agents 0, 2, and
3 demonstrate robust teamwork as they move toward the different POIs needed by each team.

is the number of robots in the system. Each team is one combination
of the superset of agents. We iterate through each combination to
form the full set of training teams.

3 RESULTS
We evaluate MTFC on the Rover Domain, a two-dimensional ex-
ploration domain [3]. Here agents must move around an area and
observe Points Of Interest (POI). These POI contain different values
and the agents must observe the higher-valued POI to achieve the
maximal reward. The difficulty of the task is increased by requiring
two agents to view the POI simultaneously.

In our experiments, we trained five agents in teams of four for a
total of five teams. Here the agents start in the center and must form
two sub-teams at the two highest valued POIs, located in the top
right and the bottom left. Figure 1 shows the behaviors of agents
trained using MTFC in each of the five teams. Here we can see
the agents learn to effectively cooperate across a variety of teams
and even change their behavior to meet the needs of the team. For
example, in team one, agent two moves to the bottom left POI, but
in team three, the agent two moves to the top right POI.

We compare MTFC to the previous state-of-the-art learning
signal for robust teaming, 𝐷Σ [7]. This signal uses counterfactual
state evaluations to form an agent’s approximate contribution to
multiple teams. We present the findings of this comparison in figure
2. These results represent 12 statistical trials with the shaded regions
indicating standard error.

In figure 2, agents trained usingMTFC outperforms those trained
from 𝐷Σ. Unlike 𝐷Σ, which uses counterfactual global evaluations
of the entire joint-state, MTFC only uses local state information to
reward agents.

One attribute of MTFC that allows it to perform this well despite
using local information is that MTFC learns a dense approximate
of the sparse global objective. In this domain, agents only receive
a reward if multiple agents are within the observation radius of a
POI. However, the critic learns that states closer to the POIs lead
to higher rewards. As a result, the fitness critic is able to reward
agents that become close to a POI, providing a gradient-like learning
signal. Another factor that contributes to MTFC’s success is that it
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Figure 2: We compare agents trained using MTFC, to another
shaped reward, 𝐷Σ, across five teams. Despite using local
information, MTFC trains the best teaming agents.

evaluates only local states. As a result, this function is less sensitive
to the actions of the other agents in the system, alleviating a large
portion of the credit assignment problem.

Overall, MTFC is able to more effectively train agents to cooper-
ate across a variety of teams. Unlike 𝐷Σ, MTFC does not require
access to the global evaluation function or additional team eval-
uation, instead leveraging local information carried by the local
states.
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