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ABSTRACT
High-frequency multi-market making is a liquidity-providing strat-
egy that exercises cross-market latency arbitrage in order to simul-
taneously post multiple bids and asks in a fragmented market for a
security or co- related securities, while maintaining a relatively low
net position. By exploiting price discrepancies betweenmarkets, the
strategy earns profit from the bid-ask spread for every trade against
the risk of inventory, liquidity and adverse selection. We develop a
multi-market simulation framework built over empirically verified
heterogeneous agents, with a realistic market design and matching
engine. We use it to design high-frequency market making agents
based on deep attention recurrent Q-network architecture a with
spatial and temporal attention module, to efficiently capture the
non-linear features of the order book. We train heterogeneous mar-
ket making agents, trading in the presence of other agents, with a
simulation framework that employs independent Q-learning in a
multi-agent deep reinforcement learning setting. We demonstrate
the effectiveness of our agents in relation to traditional deep archi-
tecture and benchmark strategies using Deep Hawkes processes.
We investigate the effect of latency and different market ecology
on the market quality.
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1 INTRODUCTION
The proliferation of technological innovations in the financial mar-
ket has led to a significant transformation in which conventional,
human- driven floor trading is giving way to fragmented electronic
exchanges. Furthermore, consequential changes in the microstruc-
ture of exchanges have contributed to exponential growth in the use
of high-frequency trading (HFT, or high-frequency traders). Among
the generalised trading strategies frequently utilised by HFT firms,
high-frequency market making accounts for more than 60% of over-
all HFT volume [27]. The strategy exploits latency to earn profit
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in the form of the bid-ask spread, liquidity rebates and mid-quote
changes. The rapidly growing literature following the Flash Crash
of 6 May 2010 has polarised the discussion on high-frequency mar-
ket making’s effect on market quality, liquidity and price efficiency
[1, 2, 12, 17, 18, 23]. However, there has been relatively little fo-
cus on the inherent characteristics of market making – namely
multi-market effect, latency arbitrage and agents’ profitability.

Agent-based models are acclaimed framework for studying mar-
ket making problems in a single or multiple market setting [3, 4,
6, 13, 20, 21, 31–34]. They provide a framework within which to
connect the behaviour of market makers to fragmented or sin-
gle markets. This framework is then used to study the effect of
market design (e.g. fragmented market, market integration, etc.)
on market microstructure (e.g. liquidity, efficiency etc.). Deep rein-
forcement learning (DRL) approaches are a contemporary paradigm
within which to investigate market making strategies [7, 9, 10, 19,
22, 29, 30]. The success of DRL led to DRL being integrated into
multi-agent systems (MADRL). The agents trading in fragmented
exchanges often have incomplete and noisy realization of the state
of the market following partial observability. To address the earlier
issue, Deep Recurrent Q-Network (DRQN) [15], Deep Attention
Recurrent Q-Network (DARQN) [28], deep distributed recurrent Q-
network (DDRQN), curriculum learning [11], deep recurrent policy
inference Q-network (DRPIQN) [16], and Bayesian action decoder
(BAD)[24] was introduced. Another widely used approach, inde-
pendent Q-learning (IQL), which entails multi-agent fingerprints
[8], was proposed in MADRL.

To the best of our knowledge, this paper is the first to study
heterogeneous high-frequency market making strategies across
fragmented markets in multi-agent deep reinforcement learning
frameworks. High-frequency market making agents exploiting la-
tency arbitrage strategies are trained using DARQN with priori-
tised experience replay [26] and double q-learning [14]. The train-
ing of multiple heterogeneous agents is implemented by IQL with
multi-agent fingerprints to mitigate non-stationarity effects and
effectively incorporate experience replay [8]. The development,
training, validation and testing is done on a realistic simulation
framework built over fragmented market design, latency enabled
interface kernels, matching engine and the Financial Information
eXchange (FIX) protocol [25]. We evaluate price, liquidity, volatility
and the agents’ profitability across markets from simulated order
book event streams, by removing one agent at a time from the
market ecology. The investigation contributes to the growing liter-
ature on interaction between agents trading on single or multiple
markets. This is the first step toward capturing the essence of the
trade web in the equity market, i.e. who feeds whom – the financial
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equivalent of the food web. We also evaluate the effect of latency
on the agent’s profitability and market quality.

2 EXPERIMENTS AND RESULTS
The high-frequency market makers (DARQN, DRQN, DQN) are
trained against benchmark high-frequency market makers (DHP),
High Frequency Traders (HFT), Opportunistic Traders (OT), Fun-
damental Buyers/Sellers (FB/FS) and Small Traders (ST). Figure 1a,
1b and 1c illustrate the agents’ performance. Next, We analyse the
impact of latency on the agents’ profitability and market quality,
using our simulation framework, based on a two-market setup that
features refined agent ecology. We reduce the latency of the original
experimental setup by 10%, 20%, 30% and 40% to investigate changes
in market quality and agents’ profitability. For each latency con-
figuration, we take only the test data of 500 trading days without
changing the agents’ ecology. Figure 1d, 1e and 1f illustrate the
performance of the agents in different latency settings. Figure 1g,
1h and 1i shows market quality over a multiple latency configura-
tion. Depth(X) [5], a measure of liquidity, varies significantly when
latency is reduced.
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Figure 1: Agents’ performance and market quality for differ-
ent latency configuration.

To investigate the trading profitability of different agents inter-
acting with each other in our simulation framework, we knock out
groups of agents from the base market ecology, one at a time. The
analysis is based on the analogy of the "food web", i.e. who eats
whom in an ecological community. Here, we might call it a "trade
web", who feeds whom in a financial market. Figure 2 uses a box
plot to show the agents’ variance performance in different market
ecologies. To understand market quality in presence of different
market ecologies, we calculateDepth(X), realised volatility and auto-
correlation in mid-quote returns as market quality measures, aver-
aged over 500 test days. Table 1 demonstrates liquidity, volatility
and price efficiency in different market taxonomies.
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Figure 2: Agents’ performance on a random day from the
test set for different market ecology configurations. ME (B)
represents the basemarket ecology, comprisingMM,HFT, OT,
FB, FS and ST. Groups of agents are knocked out one at a time
to create different market ecologies. For example, ME (MM)
represents a market ecology in which MM has been knocked
out. The agents shown are median agents, and performance
is reported in 105 unit currency.

Table 1: Market quality for different agent ecology config-
urations. Depth(X) represents liquidity, realised volatility
represents volatility, and auto-correlation in mid-quote re-
turns represents price efficiency. The values are reported as
Market 1 (Market 2) in the unit specified.

ME(B) ME (MM) ME (HFT) ME (OT) ME (FT) ME (ST)

Liquidity 3.9(1.9) 2.6(1.4) 2.2(1.2) 3.3(1.5) 3.4(1.5) 3.9(1.9)

Volatility 4.2(3.7) 5.1(4.6) 7.1(6.2) 5.4(6.6) 5.3(7.6) 4.2(3.7)

Price Efficiency 0.13(0.12) 0.17(0.07) 0.16(0.10) 0.40(0.35) 0.70(0.62) 0.17(0.13)

3 CONCLUSIONS
This paper is the first to adapt the MADRL framework to multi-
market making using a realistic simulation framework in frag-
mented markets. We model high-frequency maker making agents
that exploit latency arbitrage using DARQN network architecture
with spatial and temporal attention modules. The high-frequency
market making agents interact with the simulation framework in
an empirically verified market ecology and are trained using IQL
with multi-agent fingerprints. Due to efficient learning ability, the
DARQN agents outperform the other agents, in particular DRQN,
DQN and DHP. We contribute to the growing literature on the
effect of latency on the market quality. Our analysis finds that a
reduction in latency improves liquidity and price efficiency, and
reduces volatility. The investigation into the interaction of algorith-
mic trading strategies suggests that HFT and MM feed on orders
from OT, FT and ST, the presence of which is presence is essential
for improving market quality. However, when they compete among
themselves, it has a detrimental effect on the market.
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