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ABSTRACT
Reinforcement Learning (RL) is crucial for data-driven decision-
making but suffers from sample inefficiency. This poses a risk to
system safety and can be costly in real-world environments with
physical interactions. This paper proposes a human-inspired frame-
work to improve the sample efficiency of RL algorithms, which
gradually provides the learning agent with simpler but similar
tasks that progress toward the main task. The proposed method
does not require pre-training and can be applied to any goal, envi-
ronment, and RL algorithm, including value-based and policy-based
methods, as well as tabular and deep-RL methods. The framework
is evaluated on a Random Walk and optimal control problem with
constraint, showing good performance in improving the sample
efficiency of RL-learning algorithms.
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1 INTRODUCTION
RL needs many samples to learn good decision policies, hindering
its potential in many areas [26, 28, 32, 34]. Agents need expensive
interactions with the environment to learn, especially in real-world
settings such as cyber-physical, medical, and robotic systems, where
slow learning can be dangerous [2, 7, 31]. Efficient exploration and
learning are crucial for RL to overcome this challenge.

RL exploration has been well studied, with many efforts fo-
cused on high-probability state visitation for successful, sample-
efficient learning. Two fundamental questions arise in this setting:
what should agents look for in the absence of rewards, and when
should they stop exploring and start acting greedily? Research in
this area can be divided into two categories: single-environment
approaches (e.g., visitation counts [6, 25], optimism [3, 4, 14], cu-
riosity [12, 20, 23, 24], and reward shaping [8, 10, 16]) and multi-
environment approaches (e.g., transfer learning [1, 15, 19, 30, 33],
continual learning [13], meta-learning [9], and curriculum learning
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[17, 18]). These approaches are discussed and contrasted with our
contributions in the full version of this paper [5].

Human learning and exploration in new environments differ fun-
damentally from RL agents. Humans approach difficult and nested
tasks by breaking them down into step-by-step learning of short-
term, aligned auxiliary goals [11]. Similarly, before tackling the
main goal, RL agents can benefit from solving simpler, related tasks
that gradually increase in difficulty and progress towards it. This
paper aims to provide a human-inspired framework for Teacher-
Assisted exploration in RL, facilitating learning by gradually provid-
ing simpler auxiliary goals that converge to the main goal, indepen-
dent of the algorithm used. Auxiliary goals are achieved by defining
an assistant reward (not many and not following from a particu-
lar distribution) , the target reward, and an annealing function to
sequence the associated Markov decision processes (MDPs). The
approach eliminates the need for defining many separate MDPs.
The agent shifts between the auxiliary goals, learning each of them
for one iteration (without having 𝜖-accuracy with 𝛿 probability as-
sumption) , and uses that knowledge when learning the main task.
The effectiveness of the approach is demonstrated through experi-
ments with tabular algorithm and deep RL algorithm on a real-world
problem, which indicates that it speeds up learning without increas-
ing computational complexity. The experiments’ code is publicly
available at https://github.com/AliBeikmohammadi/TA-Explore.

2 OUR FRAMEWORK: TA-EXPLORE
Formally, a MDP is characterized by a 5-tuple (𝑆,𝐴, 𝑃, 𝑅𝑇 , 𝛾) where
𝑆 denotes the set of states;𝐴 denotes the set of actions; 𝑃 : 𝑆 ×𝐴 →
Δ(𝑆) denotes the transition probability from state 𝑠 ∈ 𝑆 to state
𝑠′ ∈ 𝑆 when the action 𝑎 ∈ 𝐴 is taken; 𝑅𝑇 : 𝑆 × 𝐴 × 𝑆 → R is
the immediate reward received by the agent after transitioning
from (𝑠, 𝑎) to 𝑠′; 𝛾 ∈ [0, 1) is the discount factor . The agent makes
decision by following a parameterized policy 𝜋 : 𝑆 × Θ → Δ(𝐴) .
In particular, we have 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ;\ ) where \ ∈ Θ is an adjustable
parameter. The goal of the agent is to find the policy 𝜋 (·|𝑠𝑡 ;\ ) by
tuning the parameter \ that optimizes the cumulative reward

Main Goal:𝑀 (\ ) := E
[ 𝐻∑︁
𝑡=0

𝛾𝑡𝑅𝑇 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
���𝑎𝑡 ∼ 𝜋 (.|𝑠𝑡 , \ ), 𝑠0 ∼ `

]
.

Just like with human learning, we may consider some auxil-

iary goal 𝐴(\ ) = E
[ ∑𝐻

𝑡=0 𝛾
𝑡𝑅𝐴 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)

���𝑎𝑡 ∼ 𝜋 (.|𝑠𝑡 , \ ), 𝑠0 ∼ `

]
,

where 𝑅𝐴 is an assistant reward. Ideally, we should choose 𝑅𝐴 in
a way that a) it results in a simple RL problem that can be solved
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(a) (b) 5 states (c) 33 states (d)

Figure 1: (a) RandomWalk example [27], where (top) describes how to receive 𝑅𝑇 and (bottom) illustrates how to acquire 𝑅𝐴; (b)
and (c) the main goal learning curves in RandomWalk for different _ values and the different number of states; (d) average
performance on optimal temperate control with constraints (i.e, data center cooling task [21]).

fast, and b) solving it is a side-step towards the main goal. The
goal of the agent is not to learn the auxiliary goal, but rather to
use it to facilitate learning. Thus it is important that the agent can
gradually put more effort into the main goal 𝑀 (\ ). To that end, let
𝛽 (𝑒) denote the parameter that controls how quickly the agents
progress towards the main goal, where 𝑒 ∈ N is the episode in-
dex. Then, during episode 𝑒 , the agent uses the immediate reward
𝑅𝑒 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)=𝛽 (𝑒)𝑅𝐴 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)+(1−𝛽 (𝑒))𝑅𝑇 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) .

Finding a suitable 𝛽 (𝑒) is clearly an important part of making
the learning progress smooth, which also determines the number
of MDPs. In general, 𝛽 (𝑒) should be decreasing in 𝑒 and should
converge to 0 as 𝑒 increases, to ensure convergence to the main
goal. How fast 𝛽 (𝑒) decreases depends on the task, and hence a
specific and unique formula cannot be stated for it. In general,
how well the main goal and auxiliary goal align can be a good
clue for how to select 𝛽 (𝑒). Specifically, if they are well aligned,
then 𝛽 (𝑒) can be decreased at a slower rate, e.g., linear rate, by
setting 𝛽 (𝑒) = [(𝐸 − 𝑒)𝛽 (0)/𝐸]+. Here 𝛽 (𝑒) starts to gradually
decrease from 𝛽 (0) and reaches zero at episode 𝐸. Conversely, if
the alignment between these two goals is low then it is better to
decrease 𝛽 (𝑒) at a faster rate. For example, in that case we might
have 𝛽 (𝑒) decrease exponentially fast, i.e., 𝛽 (𝑒) = 𝛽 (0)_𝑒 , where
_ ∈ (0, 1). For a more detailed explanation of the method, please
see the full version of this paper [5].

3 EXPERIMENTS
First, we demonstrate the efficiency and simplicity of TA-Explore
by examining a simple Random Walk example (Figure 1a) [27]. The
agent’s main goal is to learn the value of each state through expe-
rience since there are no actions involved. However, this process
is slow because the agent only receives feedback in the form of a
non-zero reward when it reaches the right terminal state.

However, we might facilitate learning by providing the agent
with simpler tasks that provide immediate feedbackmore frequently.
For example, as shown in Figure 1a (bottom), we consider the assis-
tant reward 𝑅𝐴 that provides the immediate reward 0.1 every time
the agent goes to the right except when it reaches the terminal state
on the right then we give 1 as the immediate reward. Also, a sim-
ple but intelligent idea for determining the 𝛽 (𝑒) function could be
𝛽 (𝑒) = 𝛽 (0)_𝑒 , where 𝛽 (0) = 1, and _ ∈ {0.8, 0.9, 0.95}. The agent
could first start to learn goal 𝐴 but focus very quickly on learning
goal𝑀 . We use TD(0) method [29] with a constant step size of 0.1.

So in this example, transfer learning is taking place through value
transfer. This means that the value functions obtained for each task
are used as the initial values of the next task. We report the average
results of 100 times tests. As shown in Figure 1b, if we learn only 𝐴,
it is observed that by around episode 38, the agent is surprisingly
learning𝑀 as well. But then, as the agent tries to learn 𝐴 more, the
error increases. But the speed of learning 𝐴 is faster than learning
𝑀 . Hence if the agent starts learning 𝐴 first, but before over-fitting
on it, starts learning𝑀 , it can get the most out of prior information.
Then, it learns the main goal𝑀 much faster. As the number of states
increases to 33 in Figure 1c, the area enclosed between the baseline
and TA-Explore increases more, which means the superiority of
our proposed method becomes more noticeable.

Next, we illustrate the potential of TA-Explore by applying it
to an optimal control problem with constraints - specifically, the
task of data center cooling [21]. In RL, constraints are commonly
included in the reward (i.e., as the main goal 𝑀), requiring the
agent to learn both constraint satisfaction and reward optimization.
However, constraint satisfaction is easier as the agent has more
action choices leading to it. Thus, we propose utilizing a negative
assistant reward 𝑅𝐴 to make the agent learn to satisfy the constraint
as an auxiliary goal𝐴 in our framework.We define the target reward
𝑅𝑇 and assistant reward 𝑅𝐴 as follows in our framework:

𝑅𝑇 =

{
−10∥𝑎∥2

−10∥𝑎∥2 − 100
𝑅𝐴 =

{
0 if constraint is satisfied
−100 otherwise

The 𝑅𝐴 is part of the target reward 𝑅𝑇 , allowing for high align-
ment between the two rewards, resulting in a 𝛽 (𝑒) function of
𝛽 (𝑒) = [(𝐸 − 𝑒)𝛽 (0)/𝐸]+. To train the agent, we select PPO, a
deep-RL approach, as the backbone [22]. Weights obtained in each
episode for each task are used as the initial weighting of the neural
network for the next task, enabling transfer learning through policy
transfer.

Figure 1d shows that TA-Explore outperforms the baseline PPO
method, demonstrating faster convergence. This is achieved by
learning the assistant reward 𝑅𝐴 in the initial episodes, which pre-
vents confusion for the agent when faced with complex reward
signals that could be due to constraint violations or being far from
the main goal. For further details and discussion about the experi-
ments conducted, as well as additional experiments, please refer to
the full version of the paper [5].
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