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ABSTRACT
The challenging task of Vision-and-Language Navigation (VLN)
requires embodied agents to follow natural language instructions
to reach a goal location or object (e.g. ‘walk down the hallway and
turn left at the piano’). For agents to complete this task successfully,
they must be able to ground objects referenced into the instruc-
tion (e.g.‘piano’) into the visual scene as well as ground directional
phrases (e.g.‘turn left’) into actions. In this work we ask the follow-
ing question – to what degree are spatial and directional language
cues informing the navigation model’s decisions? We propose a se-
ries of simple masking experiments to inspect the model’s reliance
on different parts of the instruction. Surprisingly we uncover that
certain top performing models rely only on the noun tokens of the
instructions.
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1 INTRODUCTION
Vision Language Navigation (VLN) is the task of having a robot
navigate a visual 3D environment via following human generated
natural language instructions such as ‘Leave the bathroom and
walk to the right’. VLN is a popular task with multiple benchmark
datasets [2, 4, 8, 12, 14] which are largely conducted in simulated
indoor environments such as Matterport3D (MP3D) [3] and contain
thousands of human annotated instructions. MP3D is constructed
of a set panoramic nodes connected via navigational ability to form
a navigation graph. The task is challenging as it requires accurate
visual grounding of objects and visual descriptions provided in
the instructions into the environment. Furthermore it requires the
model to understand spatial language to ground instructions such
as ‘walk to the right’ into actions. The action space at a given time
step for the navigating agent is to move to a neighboring node or
to cease navigation.

Solutions to the VLN task can be divided into two distinct set-
tings: a discriminative path-ranking setting and a generative path
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selection setting. In the path-ranking setting, using beam search
from the given starting location, up to 30 [5, 10] possible paths
are generated and a path is selected using a discriminative path
selection model. In the generative setting the agent is placed at the
starting location and the model sequentially selects the next node
to navigate to, until the model selects the stop action.

Both sequential and path-ranking settings have seen large suc-
cess in modeling by using multi-modal transformer models which
leverage large-scale pre-training [5, 7, 10]. The data used to pre-
train these models consists of large scale web data [6, 9, 11, 13]
containing image-text pairs to learn visual grounding as well as
large text corpora [15] to learn linguistic semantics.

In many instances the episode’s instructions refer to the spatial
layout of objects in the environment and the agents position to
these objects. In this paper we seek to understand to what degree
the model is learning spatial and directional words and how these
words impact the performance of the model. To this end we outline
a simple method via token masking to understand how different
types of part of speech and object vs direction tokens are used
by path-ranking models. The experiments uncover path-ranking
models rely almost exclusively on nouns and object tokens to make
navigation decisions, while disregarding direction tokens and other
parts of speech. This is a large limitation as the models are not uti-
lizing large amounts of the available information to inform action
prediction.
This abstract aims to provide answers to the following questions:

(1) Are there a specific set of linguistic cues in the instructions
which more heavily inform navigational decisions?

(2) Can we measure the degree to which instruction following
agents attend to the spatial and directional cues present in
the instructions?

2 MASKING EXPERIMENTS
2.1 Methods
Ablation Experiment Design.
To answer these questions, we create a set of ablation experiments
over the navigation instructions and evaluate on standard trained
SOTA VLN models. Specifically we modify the navigational instruc-
tions by removing (via masking) or replacing tokens of a specific
linguistic cue set which fall into a particular part of speech (POS)
or if they are a object/spatial/numeric token.

By testing the models performance while it doesn’t have access
to a specific type of token, we gain insight into the degree to which
that type of token informs the model’s predictions. We examine
5 different masking criterion: nouns, verbs, adjectives, left-right,
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POS Tagging

Tokenization

Mask Directions CLS

Turn left then go out

VB VBN RB VB RP

to the balcony using

IN DT NN VBG

Mask Nouns

the door on the right

DT NN IN DT NN

Turn MASK then go MASK to the balcony using the door on the MASK SEP

CLS Turn left then go out to the MASK using the MASK on the MASK SEP

Instruction

Mask Directions

Walk straight to the bar with the chairs. Turn left and go straight until you get to 3 tables with chairs. Turn left and wait at the couch.

Mask Nouns

Walk [MASK] to the bar with the chairs. Turn [MASK] and go [MASK] until you get to 3 tables with chairs. Turn [MASK] and wait at the couch.

Walk straight to the [MASK] with the [MASK]. Turn left and go straight until you get to 3 [MASK] with chairs. [MASK] left and [MASK] at the [MASK].

Masked VLN Experiments

Mask Objects

Mask Numbers

Walk straight to the bar with the [MASK]. Turn left and go straight until you get to 3 [MASK] with [MASK]. Turn left and wait at the [MASK].

Walk straight to the bar with the chairs. Turn left and go straight until you get to [MASK] tables with chairs. Turn left and wait at the couch.

Swap Walk straight to the bar with the chairs. Turn right and go straight until you get to 3 tables with chairs. Turn left and wait at the couch.

Figure 1: Masking experiment visualization. Input tokens are masked out according to their cue set per ablation.

spatial, object, numerical. Via qualitative analysis over the instruc-
tions contained in the standard VLN benchmarks we select the
following set of tokens as spatial cues: [right, left, straight, toward,
around, near, front, above, through, down, up, between, past]. Note in
the left-right masking experiment the tokens in the set [left, right]
are masked out. We add an additional experiment called swap in
which tokens in the set [left, right] are replaced by their antonym.
Masking experiments are illustrated in Figure 1.
Selected Models.
We focus our investigation on four SOTAVLNmodels: VLN-BERT [10],
AirBert [5], Recurrent-VLN-BERT [7], PREVALENT [6]. We take
the models, trained in their standard practice, and evaluate them
using the ablation experiments described above. VLN-BERT and
AirBert use the path-ranking approach while Recurrent-VLN-BERT
and PREVALENT use the discriminative approach. All four models
employ multi-modal transformer architectures and utilize large-
scale pre-training and data augmentation techniques. We measure
VLN performance in terms of Success Rate (SR) which measures
the percentage of selected paths that stop within 3m of the goal [1].
We perform the ablation experiments on the chosen VLN models
over the val-unseen split of the R2R dataset. Results are shown in
in Figure 2.

2.2 Results and Analysis

Figure 2: This figure displays the results of the masking ex-
periments. The lines depict performance of each model and
each column refers a different ablation experiment.

Path-Ranking models rely almost only on noun tokens.
Surprisingly in Figure 2, we observe that the performance of path-
ranking models only suffers in the case that noun or object tokens

are masked. Performance drops less than 2% for all other types of
token masking. In fact we even observe an increase in performance
for VLN-BERT by up to .0034% when the ‘right’ and ‘left’ tokens
are swapped to their antonym, see the swap experiment. These
results indicate the models heavily focus on object information
while making navigation decisions and seem to ignore directional
information. The disregard for spatial words is concerning as they
are an integral components of the navigational instructions and
replacements (swaps) in directional words should result in very
different paths being taken by the agent.
Effects on Sequential Models.
In contrast to the path-ranking methodology, we find that VLN
models trained and tested with the sequential procedures take into
consideration multiple types of token sets. In Figure 2 we observe
that the success rate of the Recurrent-VLN-BERT and PREVALENT
model suffers under all masking conditions.
Path-Ranking procedure not sufficiently challenging.
We posit the difference between the path-ranking and sequential
inference procedures is the key factor in the difference in results.
The inference procedure in path-ranking VLN models allows ac-
cess to entire navigation paths when predicting alignment with
the navigation instruction. We hypothesize that this framework
allows the model to do pattern matching across objects in the path
and disregard extraneous information such as positional panoramic
information of the path. In contrast the inference procedure in
sequential VLN models is that the agents only have access to the
immediate neighboring environment. This makes the sequential
models more susceptible to cascading errors which will compound
any drops in performance. Additionally as they are unable to see
ahead in the path, they cannot use information about objects the
instruction references that they have not seen yet to make naviga-
tional decision.

Note that this difference in task set up inherently puts sequential
models at a disadvantage (in terms of success rate) compared to
path-ranking models. For this reason the two types of models have
rarely been compared in terms of accuracy or ablations. This novel
comparison exposes shortcuts taken by path-ranking models which
might suggest this procedure may need to be treated as a separate
task, with a dataset tailored to be more challenging for this task.
Based on the results observed in this study we posit that within
the current instruction following datasets, especially those built
upon the Matterport3D dataset like the one used in this study –
the path-ranking VLN procedure is reducing the complexity of the
task to such a degree that models can disregard most tokens in the
instruction while still achieving a high success rate.

Poster Session I
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2416



REFERENCES
[1] Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy,

Saurabh Gupta, Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi,
Manolis Savva, et al. 2018. On evaluation of embodied navigation agents. arXiv
preprint arXiv:1807.06757 (2018).

[2] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünder-
hauf, Ian Reid, Stephen Gould, and Anton Van Den Hengel. 2018. Vision-and-
language navigation: Interpreting visually-grounded navigation instructions in
real environments. CVPR (2018).

[3] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner,
Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. 2017. Matterport3d:
Learning from rgb-d data in indoor environments. arXiv preprint arXiv:1709.06158
(2017).

[4] Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. 2019.
Touchdown: Natural language navigation and spatial reasoning in visual street
environments. CVPR (2019).

[5] Pierre-Louis Guhur, Makarand Tapaswi, Shizhe Chen, Ivan Laptev, and Cordelia
Schmid. 2021. Airbert: In-domain pretraining for vision-and-language navigation.
ICCV (2021).

[6] Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, and Jianfeng Gao. 2020.
Towards learning a generic agent for vision-and-language navigation via pre-
training. CVPR (2020).

[7] Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould.
2021. Vln bert: A recurrent vision-and-language bert for navigation. CVPR

(2021).
[8] Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. 2020.

Room-across-room: Multilingual vision-and-language navigation with dense
spatiotemporal grounding. arXiv preprint arXiv:2010.07954 (2020).

[9] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019. Vilbert: Pretrain-
ing task-agnostic visiolinguistic representations for vision-and-language tasks.
NeurIPS (2019).

[10] Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh,
and Dhruv Batra. 2020. Improving vision-and-language navigation with image-
text pairs from the web. ECCV (2020).

[11] Vishvak Murahari, Dhruv Batra, Devi Parikh, and Abhishek Das. 2020. Large-
scale pretraining for visual dialog: A simple state-of-the-art baseline. In Computer
Vision–ECCV 2020: 16th European Conference. Springer, Glasgow, UK, 336–352.

[12] Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang Wang, Chunhua
Shen, andAnton van denHengel. 2020. Reverie: Remote embodied visual referring
expression in real indoor environments. CVPR (2020).

[13] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. 2018. Con-
ceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic
image captioning. ACL (2018).

[14] Jesse Thomason, Michael Murray, Maya Cakmak, and Luke Zettlemoyer. 2019.
Vision-and-Dialog Navigation. CoRL (2019).

[15] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. ICCV
(2015), 19–27.

Poster Session I
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2417


	Abstract
	1 Introduction
	2 Masking Experiments
	2.1 Methods
	2.2 Results and Analysis

	References



