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ABSTRACT
An increasing number of socio-technical systems embedding Ar-
tificial Intelligence (AI) technologies are deployed, and questions
arise about the possible impact of such systems onto humans. We
propose a hybrid multi-agent Reinforcement Learning framework
consists of learning agents that learn a task-oriented behaviour
defined by a set of symbolic moral judging agents to ensure they
respect moral values. This framework is applied on the problem of
responsible energy distribution for smart grids.

CCS CONCEPTS
• Computing methodologies → Multi-agent reinforcement
learning.

KEYWORDS
Argumentation; Reinforcement Learning; Machine Ethics; Hybrid
Neural-Symbolic Learning; Ethical Judgment; ArtificialMoral Agent

ACM Reference Format:
Benoît Alcaraz, Olivier Boissier, Rémy Chaput, and Christopher Leturc. 2023.
AJAR: An Argumentation-based Judging Agents Framework for Ethical
Reinforcement Learning: ExtendedAbstract. In Proc. of the 22nd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023),
London, United Kingdom, May 29 – June 2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION
With the deployment of more and more Artificial Intelligence (AI)
systems in real-life contexts, questions arise about the ability of
such systems to not only achieve their assigned goal, but to have a
beneficial impact onto humans (daily life, society as a whole, etc.).
These impacts involve several ethical considerations, making such
agents what Moor calls “ethical impact agents” [13]. Scholars pro-
pose the integration of various concerns into these systems, such
as: transparency, justice, fairness and privacy [10]. However, most
of them are no mere technical requirements, and it is unclear how
they should be implemented and conflicts resolved. Many works in
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the Machine Ethics field [3] proposed to implement “ethical princi-
ples”, inspired from moral philosophy, by introducing, e.g., moral
values into the system, represented as multiple criteria that agents
must respect. Proposed implementations are mostly Top-Down
formalization of existing principles, or Bottom-Up learning of new
principles [1], both having advantages and drawbacks. Yet, there
is no consensus on which ethical principle(s) should be used, nor
how should they be implemented [14]. We represent those ethical
considerations as a set of moral values, which are identified by
designers during the conception and made available to agents by
a reward signal. Argumentation can be successfully leveraged to
represent complex judging and decisions structures, in opposition
to numerical functions or simple logical rules. We propose to use
argumentation for judging about the respect of moral values and
separate a reinforcement learning task (agents learn to act ethically)
from an argumentation-based judging task (agents are judged on
their acts). Learning agents need to adapt their behaviour according
to a context and a set of moral values to respect, represented as a
set of multiple criteria to maximize. Thus, our contribution offers
the following advantages: (1) Combines advantages of both Top-
Down and Bottom-Up. (2) Argumentation gives a richer structure
by allowing explicit conflicts. (3) It is easier for the designers to
structure the rules. (4) Argumentation graphs are more readable to
external users or regulators (non-developers) [11]. (5) Arguments
themselves, and their activation context, can be leveraged by ex-
planation methods to understand the learnt behaviour. (6) Reward
hacking can be detected and corrected. We apply it to the use-case
of energy distribution within a Smart Grid, adapted from [7] and
pictured in Figure 1. The agents’ goal is to consume energy to im-
prove the inhabitants’ comfort, whereas the system’s goal is to
make agents learn to respect different moral values adapted from
the literature [5, 8, 12], namely: Security of Supply, Affordability,
Inclusiveness, and Environmental Sustainability.

2 THE AJAR FRAMEWORK
Wemodel our system as aDecentralized Partially ObservableMarkov
Decision Process (DecPOMDP) [4]1, i.e., we have several learning
agents that receive partial observations of the real world states.

1An implementation of AJAR can be found at https://doi.org/10.5281/zenodo.7628903
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Figure 1: The smart grid use-case, adapted from [7].

They take actions that are vectors of (continuous) parameters, and
receive a scalar reward to learn the best action in each situation.
Note that the reward function is the same for each learning agent,
yet they may receive different rewards. Each reward represents the
individual judgment of one RL-agent, based on the aggregation of
the compliance with several criteria, such as moral values, given by
judging agents from the processing of their argumentation graphs.

Each judging agent judges the behaviour of RL-agents, w.r.t. their
own specific moral value. Indeed, separating them allows more flex-
ibility, i.e., it facilitates the addition or removal of moral values into
the system. Judging agents require multiple types of arguments to
express whether the RL-agent’s last decision is moral, immoral, or
neutral, w.r.t. its own moral value. This corresponds to a notion
of pros- and cons-arguments. We adapt the model of Amgoud and
Prade [2] and call An Argumentation Framework for Judging a De-

cision (AFJD) a tuple 𝐴𝐹 =

(
𝐴𝐹 [A𝑟𝑔𝑠 ] , 𝐴𝐹 [A𝑡𝑡 ] , 𝐴𝐹 [F𝑓 ] , 𝐴𝐹 [F𝑐 ]

)
where A𝑟𝑔𝑠 is a non-empty set of arguments, A𝑡𝑡 is a binary re-
lation called attack relation, F𝑓 ∈ 2A𝑟𝑔𝑠 is the set of arguments
which indicates that the RL-agent’s last decision is moral, w.r.t.
the moral value considered by the judging agent, F𝑐 ∈ 2A𝑟𝑔𝑠 is
the set of arguments which indicates that the RL-agent’s last de-
cision is immoral. The set of all possible sub-AFJD for 𝐴𝐹 , i.e.,
all AFJD which arguments are a subset of 𝐴𝐹 [A𝑟𝑔𝑠 ] , is denoted
as: P(𝐴𝐹 ) := {(A𝑟𝑔𝑠 ′,A𝑡𝑡 ′, F ′

𝑓
, F ′

𝑐 ) : A𝑟𝑔𝑠 ′ ⊆ 𝐴𝐹 [A𝑟𝑔𝑠 ] ,A𝑡𝑡 ′ ⊆
A𝑟𝑔𝑠 ′2∩𝐴𝐹 [A𝑡𝑡 ] , F ′

𝑓
⊆ A𝑟𝑔𝑠 ′∩𝐴𝐹 [F𝑓 ] , F

′
𝑐 ⊆ A𝑟𝑔𝑠 ′∩𝐴𝐹 [F𝑐 ] }. A

judging agent is defined as an agent which reasons about decisions
using an AFJD. This argumentation model, embedded into a judging
agent, reflects a pre-reasoning by the software designers who may
have applied some ethical principles to design these arguments.
Designers may introduce deontological or consequentialist argu-
ments. It is possible for another argument to attack the previous
argument, making it unacceptable. To describe this “acceptability”,
scholars consider the notion of admissibility. It characterizes which
arguments are relevant to the judging agent, to compute the com-
pliance with a moral value. Formally, it corresponds to all sets of
arguments which are conflict-free and acceptable [9]. Admissible
sets of arguments are also called extensions. We use the grounded
extension, since a very efficient algorithm has been proposed in [15]
and its uniqueness [6]. Finally, the judging agent gives its judgment
as a reward value between [0, 1].
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Figure 2: Representation of the AJAR framework.

We define A Judging Agents-based RL-framework (AJAR) as a
RL-framework where we consider learning agents N𝑙 , and judg-
ing agents M 𝑗𝑢𝑑𝑔𝑒𝑠 with their embedded AFJD, noted as 𝐴𝐹 . Each
judging agent 𝑗 builds its own argumentation graph 𝐴𝐹 𝑗 according
to the observations it gets about the judged RL-agent 𝑖 , using a func-
tion 𝜖 𝑗 . Thus, the argumentation graph may differ from one state
to another state. They perform judgments through their function
J𝑗 , which takes an argumentation graph and returns a real number
that corresponds to the compliance of the RL-agent behaviour with
the moral value. The reward given to a RL-agent comes from the
aggregation function 𝑔𝑎𝑔𝑟 applied on all judgments.

Definition 2.1. A Judging Agents-based RL-framework (AJAR)
is a tuple F = ⟨M 𝑗𝑢𝑑𝑔𝑒𝑠 , {𝐴𝐹 𝑗 } 𝑗 ∈M 𝑗𝑢𝑑𝑔𝑒𝑠

,N𝑙 , S, {𝐴𝑐𝑡𝑖 }𝑖∈N𝑙
, T ,

{R𝑖 }𝑖∈N𝑙
, {Ω𝑖 }𝑖∈N𝑙

, {O𝑖 }𝑖∈N𝑙
, 𝛾, {𝜖 𝑗 } 𝑗 ∈M 𝑗𝑢𝑑𝑔𝑒𝑠

, {J𝑗 } 𝑗 ∈M 𝑗𝑢𝑑𝑔𝑒𝑠
,

𝑔𝑎𝑔𝑟 ⟩where ⟨N𝑙 ,S, {𝐴𝑐𝑡𝑖 }𝑖∈N𝑙
,T , {R𝑖 }𝑖∈N𝑙

, {Ω𝑖 }𝑖∈N𝑙
, {O𝑖 }𝑖∈N𝑙

,

𝛾⟩ is a DecPOMDP, ∀𝑗 ∈ M 𝑗𝑢𝑑𝑔𝑒𝑠 , 𝜖 𝑗 : N𝑙 × S → P(𝐴𝐹 𝑗 ) is a
function that from a RL-agent 𝑖 ∈ N𝑙 , and a current state 𝑠𝑡 ∈ S,
assigns the sub-AFJD that the judging agent 𝑗 uses to judge the
agent 𝑖 , ∀𝑗 ∈ M 𝑗𝑢𝑑𝑔𝑒𝑠 , J𝑗 : P(𝐴𝐹 𝑗 ) → R is the judgment function,
𝑔𝑎𝑔𝑟 : R|M 𝑗𝑢𝑑𝑔𝑒𝑠 | → R is an aggregation function, for all RL-agents
𝑖 ∈ N𝑙 and, for all states 𝑠𝑡 ∈ S, R𝑖 is s.t.:

R𝑖 (𝑠𝑡 ) = 𝑔𝑎𝑔𝑟

( ?
𝑗 ∈M 𝑗𝑢𝑑𝑔𝑒𝑠

J𝑗

(
𝜖 𝑗 (𝑖, 𝑠𝑡 ))

) )
Figure 2a shows how a RL-agent 𝑖 is judged, and Figure 2b de-

scribes how a judging agent builds a reward. An example of a judg-
ment function J𝑗

(
𝜖 𝑗 (𝑖, 𝑠𝑡 )

)
is given below. For a learning agent 𝑖

(being judged), and for a current state 𝑠𝑡 , with G𝑟𝑑 (𝜖 𝑗 (𝑖, 𝑠𝑡 )) the
computed grounded extension from 𝜖 𝑗 (𝑖, 𝑠𝑡 ), we define: 𝑝𝑟𝑜𝑠 =���G𝑟𝑑 (𝜖 𝑗 (𝑖, 𝑠𝑡 )) ∩ 𝜖 𝑗 (𝑖, 𝑠𝑡 ) [F𝑓 ] )

���, 𝑐𝑜𝑛𝑠 = ��G𝑟𝑑 (𝜖 𝑗 (𝑖, 𝑠𝑡 )) ∩ 𝜖 𝑗 (𝑖, 𝑠𝑡 ) [F𝑐 ] )
��,

and J𝑗

(
𝜖 𝑗 (𝑖, 𝑠𝑡 )

)
=

𝑝𝑟𝑜𝑠
𝑝𝑟𝑜𝑠+𝑐𝑜𝑛𝑠 , if 𝑝𝑟𝑜𝑠 + 𝑐𝑜𝑛𝑠 ≠ 0, otherwise 1

2 .

3 CONCLUSION
We proposed a framework which allows defining reward functions
based on formal argumentation to judge RL-agents on their ethical
behaviours and justify the rewards given to RL-agents.
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