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ABSTRACT
In the field of cooperativemulti-agent reinforcement learning (MARL),
the standard paradigm is the use of centralised training and decen-
tralised execution where a central critic conditions the policies of
the cooperative agents based on a central state. It has been shown,
that in cases with large numbers of redundant agents these methods
become less effective. In a more general case, there is likely to be a
larger number of agents in an environment than is required to solve
the task. These redundant agents reduce performance by enlarging
the dimensionality of both the state space and and increasing the
size of the joint policy used to solve the environment. We propose
leveraging layerwise relevance propagation (LRP) to instead sep-
arate the learning of the joint value function and generation of
local reward signals and create a new MARL algorithm: relevance
decomposition network (RDN). We find that although the perfor-
mance of both baselines VDN and Qmix degrades with the number
of redundant agents, RDN is unaffected.
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1 INTRODUCTION
For most multi-agent tasks in a practical setting, we would not
know the precise number of agents required to optimally solve the
problem. In general, there is likely to be a larger number of agents
in an environment than is required to solve the task. As the number
of independent agents increases so would the size of the state space
that most problems require.

In complex environments constructing an accurate ground truth
representation becomes difficult and in practical applications, the
state representation data collected is often noisy or incomplete.
Given the limitations of this space, it is not reliable to assume
that the state space is reliable. When there is a large number of
agents, many of them may be redundant for achieving an optimal
policy. These redundant agents exacerbate the issue of the state
space growth in the multi-agent setting. Therefore it is important
to develop algorithms that can effectively separate agents that are
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essential to solving a task from the agents that are redundant to
allow MARL algorithms to be deployed into more realistic and
eventually real-world challenges.

We consider the idea of a collaborative task with a small margin
of error like the traditional Piano Movers problem [1]. However, we
consider the case where only 𝑛 of𝑚 total agents in the environment
are required to effectively complete the task. In the Piano Movers
problem we therefore consider the case where an arbitrarily large
number of agents are required to re-position the piano with each
agent occupying a fixed amount of space in the environment along
with the piano. Realistically with a large number of agents only
a small subgroup 𝑛 of𝑚 will be required to solve the task under
the joint optimal policy. Ultimately during training, the policy will
update to minimise the reliance on certain agents on the overall
outcome as the joint optimal policy only require that they do not act
in a manner that is destructive to the actions of the smaller group of
required agents. In the Qatten [2] paper the idea is put forward that
both VDN and Qmix exhibit poor performance in environments
with a high number of redundant agents as it is difficult to assign
credit for task completion accurately when a disproportionately
high credit is assigned to only a small number of the agents.

In this paper, we propose a method to resolve this problem, rele-
vance decomposition network (RDN) which makes use of layerwise
relevance propagation (LRP) [3] as an alternative to learned value
decomposition only using local agent observations. By not using
learned decomposition we can separate the learning of the joint
value function from the training of the independent agents and
make full use of the relationships between the local observations
of the agents, their identities and their actions at each timestep to
decompose the relationship between the global and local rewards.

2 RELEVANCE DECOMPOSITION NETWORK
(RDN)

We propose RDN to perform credit assignment between ad-hoc
agents in the cooperative multi-agent setting under the assumption
of a linear relationship between the individual local rewards and
the shared global reward. However, unlike most central training
decentralised execution (CTDE) methods which use learned decom-
position as an end-to-end system, RDN separates the learning of
the global reward function from the local Q-values of the agents
[4].

The main motivation for RDN is that in difficult settings, where
agents are not all similarly responsible for the total reward, Qmix
and VDN see decreased performance [5][6]. In these cases to achieve
accurate reward assignment, some agents must be weighted much
higher than others when performing value decomposition [2]. In the
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case of many redundant agents, Qmix and VDN have difficulties de-
composing the relationship between the high and low-value agents
[7]. Due to this, the decomposed rewards have high variance during
training which makes discovering stable policies difficult. LRP is
more effective at determining this relationship, which stabilises the
training process.

For RDN our independent agents are modelled as Deep Q Net-
works (DQNs) [8]. These DQNs gather data where 𝑄𝑖 (𝑜𝑡,𝑖,.) is
the 𝑄 value of independent agent 𝑖 at timestep 𝑡 , ℎ𝑖𝑡 is the hid-
den state of agent 𝑖 at timestep 𝑡 , 𝑜𝑡,𝑖,. is the local observation of
agent 𝑖 at timestep 𝑡 ,𝑎𝑡,𝑖 is the action taken by agent 𝑖 at timestep
𝑡 and 𝜋𝑖 (𝑄𝑖 (𝑜𝑡,𝑖,.), 𝜖 (𝑒)) is the policy 𝜋 of agent 𝑖 dictated by a
Q value function and an 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 exploration strategy. We use
the critic network to calculate the expected total Q value at each
timestep parameterised by 𝜃𝑐 and a target Q value using a tar-
get critic parameterised by 𝜃𝑐 whose parameters are copied over
from the critic at fixed intervals. The critic network is updated us-
ing loss 𝐿(𝜃𝑐 ) = 𝐸 #»𝑜 , #»𝑎 ,𝑟, #»𝑜 ′ [(𝑄𝜃𝑐

𝑡𝑜𝑡 (𝑜1, ..., 𝑜𝑛, 𝑎1, ..., 𝑎𝑛) −𝑦)2] where
𝑦 = 𝑟 +𝛾 (𝑄𝜃 ′𝑐

𝑡𝑜𝑡 (𝑜
′
1, ..., 𝑜

′
𝑛, 𝑎

′
1, ..., 𝑎

′
𝑛)) and 𝜃𝑐 is the critic’s parameters

and 𝜃
′𝑐 is the target critic parameters, which are reset every 𝐶

training epochs. To train the agents, we calculate the Q value at
the current timestep for each independent agent. This is done in
the same manner as standard independent Q-learning where we
calculate 𝑄 (𝑜, 𝑎𝑖 ) for each agent based on their local observations
and actions. We calculate the total target Q-value for the current
timestep 𝑡 using a separate critic network. This critic takes in the
concatenation of local agent observations and actions to predict
the target total Q-value of the global state at the current timestep
then we use LRP to decompose the global reward calculated into
local rewards for each agent. Essentially we assign relevance scores
to all data points in the concatenated observation space and then
separate the scores for each index based on the agent they were
collected or generated from. The concatenated observation space is
a concatenation of the local agent observations and the actions of
each agent at each timestep. The relevance scores for each agent
are then summed per agent and are used as the target Q-values
to train the independent learners as if performing standard inde-
pendent Q learning. Finally, the total expected Q value for each
timestep is decomposed into independent target Q-values 𝜃𝑖 and the
DRQNs [9] which act as the agent networks are trained using the
loss 𝐿(𝜃𝑖 ) = 𝐸 #»𝑜 , #»𝑎 ,𝑟, #»𝑜 ′ [(𝑄𝑖,𝜃𝑖 (𝑜𝑖 , 𝑎𝑖 ) − �̃�𝑖 )2] [10] and �̃�𝑖 =

∑
𝑖 𝑅𝑖𝑛

where �̃�𝑖 is the 𝑄 target for agent 𝑖 and
∑
𝑖 𝑅𝑖𝑛 is the sum of all

relevance values associated with agent 𝑖 .
A characteristic of LRP is it maintains a conservative calculation

between layers of the neural network [3]. As such the relevance
values from later layers are included completely in the calculation
of the relevance values of the layers closer to the input. Essentially
we can assume that the total sum of the relevance values is ap-
proximately the same as the output of the NN when LRP is used.
Therefore we can equate 𝑄𝑡𝑜𝑡 to the sum of relevance scores as
𝑄𝑡𝑜𝑡 ≈ 𝑅𝑖𝑛 .

3 RESULTS
The pre-existing map from the Starcraft Multi-Agent Challenge
(SMAC) we make use of is the bane_vs_bane map. In this map,
each side has 20 zerglings and 4 banelings. The most optimal policy

for this environment has the zerglings move out of the way to not
obstruct the banelings’ movement. We make use of 3 additional
variants of the original map. bane_med which only has 15 zerglings,
bane_small with has 10 zerglings and bane_no_z with has no zer-
glings. We vary the number of redundant agents (the zerglings) to
show the effect of redundancy on performance.

From figure 1 we can see that across all maps RDN outperforms
all baselines although the performance of VDN improves as the
number of redundant agents is reduced. Interestingly QMIX is
outperformed by QMIX_NS which does not use the global state
in bane_med and in bane _no_z indicating that in cases where
there are an intermediate number of redundant agents the central
state already begins to become uninformative making accurate
multi-agent credit assignment difficult.

In the case where all redundant agents are removed VDN per-
forms similarly to RDN however, we also find that when no redun-
dant agents are present at all in the bane _no_z map performance
decreased across all algorithms when compared to bane_small. We
suspect that having a small number of extra agents may aid in
exploration early in the training regime.

Figure 1: Percentage winrates from highest number of re-
dundant agents (left) to least redundant agents (right) for all
tested algorithms

4 CONCLUSION
We show how increasing numbers of redundant agents makes reach-
ing stable convergence to an optimal joint policy difficult for both
monotonic factorisation methods like QMIX and linear factorisa-
tion methods like VDN where only 𝑛 of𝑚 total agents are required
for an environment to be solved. We then propose RDN as a method
that uses LRP to perform more optimal credit assignments in envi-
ronments with high numbers of redundant agents using only local
agent observation. RDN can reach near-optimal convergence on all
environments used with similar overall winrates without the use of
the ground truth state information. With VDN and QMIX we see a
gradual decay in performance and, an increase in variance as the
number of redundant agents increases.
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