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ABSTRACT
This work focuses on a robust learning methodology in a collab-

orative filtering context. We wish to predict preferences between

alternatives characterized by binary attributes, where each attribute

represents the opinion of a reference user on the alternative. The

model whose parameters we learn is general enough to be compat-

ible with any strict weak order on the attribute vectors, thanks to

the consideration of opinion synergies. Moreover, we accept not to

predict some preferences if the data collected are not compatible

with a reliable prediction. A predicted preference will be consid-

ered reliable if all the simplest models explaining the training data

agree on it. Following the robust ordinal regression methodology,

our predictions are based on an ordinal dominance relation be-

tween alternatives introduced by Fishburn and LaValle [11] which

relies on an uncertainty set encompassing the possible values of

the parameters of the multi-attribute utility function.
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1 CF MEETS ROR
Collaborative Filtering (CF) aims at producing recommendations

on items (movies, products, books, etc.) to a user by relying on the

matrix of ratings provided by the users on subsets of items, without

exogenous information about users or items [15]. CF methods are

often partitioned into two categories: the neighborhood methods,

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

which make recommendations based on similarity measures com-

puted from the rating matrix, and the latent-factor models that

build a representation of users and items in a common factor space

to explain the ratings and make recommendations.

Differently, we characterize each item (also called alternative)

by a vector of positive or negative opinions (also called attributes)

of reference users on it. We denote by U the set of reference users,

by A the set of alternatives, and by F = {𝑎1, 𝑎2, . . . , 𝑎𝑛} the set

of binary attributes. Each attribute 𝑎𝑖 corresponds to a reference

user𝑈𝑖 and 𝑎𝑖 equals 1 (resp. 0) if 𝑈𝑖 has a positive (resp. negative)

opinion on it. An alternative 𝐴 is characterized by its attribute

vector in {0, 1}𝑛 and can be viewed, by abuse of notation, as a

subset of attributes. To predict the preferences of a (non-reference)

user, we learn aMulti-Attribute Utility (MAU) function 𝑓 [6, 8, 9, 14]

defined on A, with 𝑓 (𝐴)> 𝑓 (𝐵) iff 𝐴 is strictly preferred to 𝐵.

Following Fishburn and Lavalle [11], we consider a function 𝑓

where the value 𝑓 (𝑆) of a set 𝑆 of attributes is an additive com-

bination of parameters, one per subset 𝐴 of 𝑆 : 𝑓 (𝑆) = ∑
𝐴⊆𝑆 𝑣𝐴 .

Similarly to the closery related Choquet integral [1, 4, 16], this

model is general enough to model positive or negative synergies

between attributes [13]. Moreover, it makes it possible to model any

strict weak ordering on the subsets of attributes. Yet, it is intractable

as there is a combinatorial set of parameters 𝑣𝐴 . Similarly to the

𝑘-additive variant of this model which only considers 𝑣𝐴 for |𝐴| ≤𝑘 ,
we only consider a restricted family \ ⊆ 2

F
of subsets 𝐴 to keep

a tractable set. Formally, 𝑓 (𝑆) =∑𝐴∈\ 𝐼𝐴 (𝑆)𝑣𝐴 , where 𝐼𝐴 (𝑆) = 1 if
𝑆 ⊆𝐴 and 0 otherwise. We call this model the \ -additive model and
we may also use the notation 𝑓\,𝑣 (𝐴) instead of 𝑓 (𝐴).

Example 1. Let F = {𝑎1, 𝑎2, 𝑎3, 𝑎4}, A = {0, 1}4 and the user’s
preferences be the strict weak order≻ given by: (0, 1, 1, 1) ≻ (1, 0, 1, 1) ≻
(1, 1, 0, 1) ≻ (0, 0, 1, 1) ≻ (0, 1, 0, 1) ≻ (0, 1, 1, 0) ≻ (1, 0, 0, 1) ≻
(1, 0, 1, 0) ≻ (1, 1, 0, 0) ≻ (0, 0, 0, 1) ≻ (0, 0, 1, 0) ≻ (0, 1, 0, 0) ≻
(1, 0, 0, 0) ≻ (1, 1, 1, 1) ∼ (0, 0, 0, 0) ≻ (1, 1, 1, 0) with 𝐴 ∼ 𝐵 iff
¬(𝐴 ≻ 𝐵) and ¬(𝐵 ≻ 𝐴). These preferences can be explained by a
negative synergy when 𝑎1 =𝑎2 =𝑎3 = 1 (bold vectors). Interestingly,
instead of using a 3-additive model with 14 parameters, one can use
the \ -additive model with \ = {{𝑎1}, {𝑎2}, {𝑎3}, {𝑎4}, {𝑎1, 𝑎2, 𝑎3}}
and 𝑣 {𝑎1 } = 1, 𝑣 {𝑎2 } = 2, 𝑣 {𝑎3 } = 3, 𝑣 {𝑎4 } = 4, 𝑣 {𝑎1,𝑎2,𝑎3 } = −10.
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We use the framework of Robust Ordinal Regression (ROR) [see

e.g., 5, 7] to learn both the set \ and the parameters 𝑣𝐴 themselves

(for𝐴∈\ ). Based on a set 𝑅 = {(𝐴, 𝐵) ∈A2 |𝐴≻𝐵} of strict pairwise
preferences inferred from the user’s ratings, the idea is to consider

the polyhedron of parameter values of 𝑓 compatible with 𝑅. In our

\ -additive model, this polyhedron is the set 𝑉𝑅
\

defined by:

𝑉𝑅
\

= {𝑣 : \ → R | ∀(𝐴, 𝐵) ∈𝑅, 𝑓\,𝑣 (𝐴) > 𝑓\,𝑣 (𝐵)}.
A preference between 𝐴 and 𝐵 is then predicted if 𝑓 (𝐴)> 𝑓 (𝐵) for
all possible parameters values. We refer to this dominance relation

as the \ -ordinal dominance relation.

Definition 1. For a given \ ∈Θ𝑅 , the \ -ordinal dominance rela-

tion, denoted by ≻𝑅
\
, is defined by:

∀𝐴, 𝐵 ∈ A, 𝐴 ≻𝑅
\
𝐵 ⇔ ∀𝑣 ∈ 𝑉𝑅

\
, 𝑓\,𝑣 (𝐴) > 𝑓\,𝑣 (𝐵) .

This dominance relation can be tested by linear programming

by working on the polyhedron corresponding to 𝑉𝑅
\
.

To avoid an arbitrary choice of the parameter set \ , we consider

an even more general dominance relation. We denote by Θ𝑅 the set

{\ |𝑉𝑅
\
≠∅}, i.e., the \ ’s such that the preferences in 𝑅 are consistent

with a \ -additive function. In our setting, a preference is predicted

if 𝑓 (𝐴) > 𝑓 (𝐵) for all the simplest sets \ ∈Θ𝑅 , and for all possible

values 𝑣𝐴 for 𝐴∈\ . Indeed, following the philosophical principle of
parsimony that the simpler of two explanations is to be preferred

(Occam’s razor [3]), we focus on “simple” sets.

Simplest models are defined by relying on three criteria: First,

we consider subsets \ that minimize the complexity of synergies

between the attributes; through the degree of \ , i.e.,max{|𝑆 | : 𝑆 ∈\ }.
Second, if two different \ have the same degree, we prefer the one
which minimizes the size |\ | [18]. Third, if two different \ have the

same degree and size, we choose the one which minimizes

∑
𝑆 ∈\ |𝑆 |.

These criteria define a lexicographic binary relation on Θ𝑅 , de-

noted by ⊑𝑙𝑒𝑥 . We call the \ ∈Θ𝑅 which are minimal according to

⊑𝑙𝑒𝑥 , the simplest \ of 𝑅, and we denote by Θmin

𝑅
their set. Based

on Θmin

𝑅
, we extend the ordinal dominance relation to define the

notion of robust ordinal dominance relation.

Definition 2. The robust ordinal dominance relation, denoted by

≻𝑅
Θ, is defined as follows:

𝐴 ≻𝑅
Θ 𝐵 ⇐⇒ ∀\ ∈ Θmin

𝑅 , 𝐴 ≻𝑅
\
𝐵.

Before going into details of the computational aspects of our

method, let us mention two studies, close to ours: Domshlak and

Joachims [8] consider a MAU function that is a sum of 4
𝑛
subu-

tilities over subsets of attribute values and develop an efficient

SVM approach ; Bigot et al. [2] study the use of generalised addi-

tively independent decompositions of utility functions [10, 12] and

give a polynomial PAC-learner. Even if we have common points in

the use of utility functions taking into account synergies between

attributes, these two works do not focus on ordinal robustness.

2 COMPUTING THE ROBUST ORDINAL
DOMINANCE RELATION

To compute the robust ordinal dominance relation, one could com-

pute all the elements inΘmin

𝑅
. Unfortunately, as the size ofΘmin

𝑅
can

be exponentially large, this methodology reveals computationally

cumbersome. We show in this section how to bypass this difficulty

by using the following proposition:

Proposition 1. Given a set 𝑅 of strict pairwise comparisons, and
\ ∈Θ𝑅 , if 𝑅′⊆𝑅, then we have: (i) \ ∈Θ𝑅′ ; (ii) 𝐴≻𝑅′

\
𝐵⇒𝐴≻𝑅

\
𝐵; (iii)

𝐴≻𝑅
\
𝐵⇒¬(𝐵 ≻𝑅′

\
𝐴).

Thanks to this result, we know that, for any pair 𝑋,𝑌 of alter-

natives, Θ𝑅∪{(𝑋,𝑌 ) } and Θ𝑅∪{(𝑌,𝑋 ) } are subsets of Θ𝑅 . Hence, to

evaluate if a robust ordinal dominance relation holds between 𝑋

and 𝑌 , one could proceed by examining the following conditions:

(i) Θmin

𝑅
∩ Θ𝑅∪{(𝑋,𝑌 ) }≠∅, (ii) Θmin

𝑅
∩ Θ𝑅∪{(𝑌,𝑋 ) }≠∅.

If (i) holds but (ii) does not, we know that 𝑋 ≻𝑅
Θ𝑌 as all the \ ∈Θmin

𝑅
can only account for the fact that 𝑋 is preferred to 𝑌 and not the

reverse. If both (i) and (ii) hold, then neither 𝑋 ≻𝑅
Θ𝑌 nor 𝑌 ≻𝑅

Θ𝑋 .

Proposition 2. Given any pair 𝑋,𝑌 of alternatives,
𝑋 ≻𝑅

Θ 𝑌 iff Θmin

𝑅 ∩ Θ𝑅∪{(𝑋,𝑌 ) } ≠ ∅ and Θmin

𝑅 ∩ Θ𝑅∪{(𝑌,𝑋 ) } = ∅.

To determine if Θmin

𝑅
∩ Θ𝑅∪{(𝑋,𝑌 ) } = ∅, we rely on the concept

of unifying model:

Definition 3. The unifying model is defined as \∗
𝑅
=
⋃

\ ∈Θmin

𝑅
\ .

Using this concept, we proceed using the following steps. We

start by computing a superset \̃∗
𝑅
of \∗

𝑅
such thatmax{|𝑆 | :𝑆 ∈ \̃∗

𝑅
} =

max{|𝑆 | : 𝑆 ∈ \∗
𝑅
} and an element

ˆ\ ∈Θmin

𝑅
. This is done by using

a procedure that combines different linear and integer programs.

Then, we test whether Θmin

𝑅
∩ Θ𝑅∪{(𝑋,𝑌 ) } =∅ by determining the

feasibility of the set of constraints 1–4 below. This set of constraints

is feasible iff an element of Θmin

𝑅
makes it possible to represent that

𝑋 ≻𝑌 . Note that \̃∗
𝑅
is useful to reduce the size of this program.∑︁

𝑆 ∈\̃ ∗
𝑅

(𝐼𝐴 (𝑆) − 𝐼𝐵 (𝑆))𝑣𝑆 ≥ 1, ∀(𝐴, 𝐵) ∈ 𝑅 ∪ {(𝑋,𝑌 )} (1)

∑︁
𝑆 ∈\̃ ∗

𝑅

𝑏𝑆 ≤ | ˆ\ | (2)

∑︁
𝑆 ∈\̃ ∗

𝑅

𝑏𝑆 |𝑆 | ≤
∑︁
𝑆 ∈ ˆ\

|𝑆 | (3)

−𝑏𝑆𝑀 ≤ 𝑣𝑆 ≤ 𝑏𝑆𝑀 and 𝑏𝑆 ∈ {0, 1} ∀𝑆 ∈ \̃∗𝑅 (4)

where𝑀 = (2|\̃∗
𝑅
| + |𝑅 | + 1) × (|𝑅 | + 1)2 |𝑅 |+3 is set such that if the

values 𝑣𝑆 can be set to satisfy all the preferences in 𝑅 ∪ {(𝑋,𝑌 )},
then there exist such values in [−𝑀,𝑀] (see [17]). Every instantia-

tion of variables (𝑣𝑆 , 𝑏𝑆 ) (for 𝑆 ∈ \̃∗𝑅 ) that satisfies the constraints
corresponds to an element \ = {𝑆 ∈ \̃∗

𝑅
| 𝑏𝑆 = 1} ∈ Θ𝑅 ∪ {(𝑋,𝑌 )}.

Interestingly, as max{|𝑆 | : 𝑆 ∈ \̃∗
𝑅
}=max{|𝑆 | : 𝑆 ∈ \∗

𝑅
} we are sure

that any such element has minimum degree. Then, the constraints

2 and 3 ensure that such an element \ also belongs to Θmin

𝑅
.

3 CONCLUSION
Our contribution is twofold. First, we have proposed a collaborative

preference learning method that only uses ordinal data, often more

reliable than numerical one. Second, we have developed a multiat-

tribute preference elicitation procedure that is able to learn both a

sparse set of parameters and their values (which ensures explain-

ability). Numerical tests have been carried out on synthetic and real

data to evaluate the richness and reliability of the predictions made,

showing that our robust regression ordinal methodology provides

an interesting compromise between accuracy and prediction rate.
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