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1 INTRODUCTION
The future of industrial automation is hinged on the ability of the
industrial robots to precisely finish the tasks designated for them
[5]. These tasks are usually specified in terms of a state the robot is
required to reach (i.e., a goal state). Goal-conditioned reinforcement
learning [7, 8] is an emerging sub-field that trains policies with goal
inputs. This enables the agent to generalize to new unseen goals,
learn multiple complex tasks and acquire new skills along the way.

Training a goal conditioned reinforcement learning (RL) agent
in sparse-reward environments that could generalize well to other
unseen goals has been a long lasting challenge (owing to factors
like catastrophic forgetting and poor credit assignment). While
several exploration based methods are proposed [1, 2, 4], they all
try to optimize for a specific objective (e.g, information theoretic
based reward, intrinsic reward, count-based reward, etc.). It remains
unclear whether these align with the actual objective of the goal-
conditioned agent and if the same algorithm can work on a wide
range of environments.

In this work, we propose a novel algorithm to generate an auto-
matic curriculum of increasingly challenging goals set by one or
more teachers that act in the environment for a goal-conditioned
student agent. The intuition behind our proposed algorithm is that
multiple teachers would cover larger parts of the state-space, thus
leading to better approximation of the goal distribution and sug-
gesting diverse goals.
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2 MULTI-TEACHER CURRICULUM LEARNING
We train two types of agents — teacher(s) and a student. Similar to
Asymmetric Self Play (ASP) [6, 9], in each teacher-student interac-
tion, we sample a starting state 𝑠0 ∈ S. From this state, the teacher’s
policy 𝜋𝑇 (𝑎 | 𝑠) selects actions over time and eventually reaches
its final state, 𝑔 ∈ S. Starting from the same state 𝑠0, the student,
with its goal conditioned policy 𝜋𝑆 (𝑎 | 𝑠, 𝑔), interacts with the en-
vironment and tries to reach the goal state set by the teacher, 𝑔𝑡 .
This entire course of interaction is referred to as a teacher-student
rollout

2.1 Problem setup
Given: A single student agent S and a set of teacher agents
{𝑇1,𝑇2, · · · ,𝑇𝑁 }
Objective: Train the student agent S so that it learns an optimal
goal-conditioned policy that generalizes to unseen goals
Assumptions: Our method does not assume the teachers have any
expertise and must learn to propose goals on the fly, influenced by
the student’s learning performance or acquired skill. All the agents
in our proposed approach are learning agents starting from scratch
(without any pre-training).

2.2 Algorithm and methodology
The multi-teacher ASP algorithm (MT-ASP) is detailed in Algo-
rithm 1. We denote the 𝑛 teacher agents as 𝑇1, 𝑇2,... 𝑇𝑁 and the
student agent as 𝑆 . Consequently we represent the parameters of
actor and critic networks of teacher agents with 𝜃𝑇1 , · · · , 𝜃𝑇𝑁 and
that of the student agent with 𝜃𝑆 . An episode consists of (𝑁 ·𝑚)
student-teacher rollouts. In every episode, we do a rollout of a single
teacher agent𝑚 times wherein the teacher agent interacts with the
environment to set a goal (line 5) followed by a rollout of the stu-
dent agent, where the student attempts to reach the goal set by the
previous teacher (line 7). After (𝑁 ×𝑚) student-teacher rollouts, we
update the parameters of each teacher agent 𝜃𝑇𝑖 based on the actor
and critic loss functions and parameters of the student agent 𝜃𝑆 is
updated with both a behavior cloning loss and the standard RL loss
as described later. ( lines 10-11). Every teacher and student agent
uses its own rollout data (experience) to update their respective
parameters.
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Figure 1: Success rate and cumulative % of states visited for Fetch Reach domain

Algorithm 1: Multi Teacher Asymmetric Self-Play

Data: 𝑁,𝑚 ; //Number of teacher agents, multiplier

Data: 𝜃𝑇1 , · · · , 𝜃𝑇𝑁 , 𝜃𝑆 ; //Parameters for the agents

1 for episode = 1, 2, · · · do
2 for trial(i) = 1, 2, · · · , 𝑁 ·𝑚 ; //Rollouts

3 do
4 𝑘 = ⌊𝑖/𝑚⌋;
5 𝑘𝑡ℎ teacher sets goal;
6 if goal is valid then
7 Student tries to achieve the goal;
8 for 𝑖 = 1, 2, · · · , 𝑁 ·𝑚 do
9 𝑘 = ⌊𝑖/𝑚⌋;

10 Update 𝜃𝑇𝑘 ; //TD3 Loss using 𝑇𝑘’s replay

11 Update 𝜃𝑆 ; //TD3 and BC Loss

Reward: We assign rewards to both the teacher and student
agents based on whether the student is able to reach the goal set
by a teacher. If the student reaches the goal set by a teacher, the
particular teacher gets a fixed negative reward and the student gets
a fixed positive reward. Otherwise, when the student does not reach
the goal, the teacher gets a fixed positive reward and the student
gets a reward of 0. Furthermore, the notion of invalid (unwanted)
goals can be added to this reward structure by giving the teacher a
large negative reward for setting an invalid goal. We have tested
the invalid goal hypothesis on the fetch reach environment, and
the results suggest that the student doesn’t need any other training
signal to avoid the invalid states. This reward structure has been
used previously in a single teacher-student setting like ASP [6, 9].

Loss function: To enable student learning, we incorporate a
behavioural cloning loss (L𝐵𝐶 ) for the student, in addition to the
actor and critic loss functions (L𝑅𝐿) used in TD3 [3]. Formally, the
student agent’s loss function L(𝜃𝑆 ) = (1− 𝛿)L𝑅𝐿 + 𝛿L𝐵𝐶 where 𝛿
is a parameter which controls the trade-off between the actor-critic
loss and behaviour cloning loss. The actor-critic loss L𝑅𝐿 can be
any underlying actor-critic algorithm’s (such as TD3) loss function.

The behavior cloning loss is defined as below:

L𝐵𝐶 = E(𝑠𝑡 ,𝑔𝑡 )∼𝐷𝑆

[
∥𝜋𝑆 (𝑎 | 𝑠𝑡 , 𝑔𝑡 ) − 𝜋𝑇 (𝑎 | 𝑠𝑡 )∥2

]
where𝐷𝑆 refers to the student’s minibatch sampled during training.

3 EXPERIMENTAL RESULTS
3.1 Experimental settings
We tested our hypothesis on the Fetch-Reach environment and a
custom driving simulator. We compare our approach against the
most relevant work by OpenAI et al. [6] denoted as ASP in our plots.
In our results, the algorithm corresponding to number of teachers
as 1 refers to this baseline. Each curve in the plot is obtained by
running over 5 different trials with varying seeds and plotting their
mean and standard deviation. To make sure that the students with
different number of teachers see the same number of goals in one
episode, we adjust the multiplier𝑚 accordingly (for example, for
16 teachers, we keep the multiplier 1, and for 1 teacher, we keep
the multiplier 16).

3.2 Results and discussion
Figure 1(a) show the performance of the student agent in terms of
its ability to precisely reach a set of random goals in fetch reach
highlighting the importance of multiple teachers to better general-
ize to random goals. Further, we divide the state space into 5× 5× 5
equal parts and measure the number of parts covered by the goals
generated so far. Our results show that the state-space coverage
increases with an increasing number of teachers as shown in 1(b).

Future work includes investigating the effect of using an explicit
diversity component in teacher objectives and trying different di-
versity metrics. We would also like to decipher what these different
teachers learn, for example in a robotics environment, is it possible
to understand if any of the teachers propose goals specific to a
sub-task?
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