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ABSTRACT
Fair allocation of indivisible goods is a well-explored problem. Tra-

ditionally, research focused on individual fairness — are individual

agents satisfied with their allotted share? — and group fairness — are

groups of agents treated fairly? In this paper, we explore the coexis-

tence of individual envy-freeness (𝑖-EF) and its group counterpart,

group weighted envy-freeness (𝑔-WEF), in the allocation of indi-

visible goods. We propose several polynomial-time algorithms that

provably achieve 𝑖-EF and𝑔-WEF simultaneously in various degrees

of approximation under three different conditions: (i) when agents

have identical additive valuation functions, 𝑖-EFX and 𝑔-WEF1 can

be achieved simultaneously; (ii) when agents within a group share a

common valuation function, an allocation satisfying both 𝑖-EF1 and

𝑔-WEF1 exists; and (iii) when agents’ valuations for goods within a

group differ, we show that while maintaining 𝑖-EF1, we can achieve

a
1

3
-approximation to a notion termed ex-ante 𝑔-WEF1. Our results

thus provide a first step towards connecting individual and group

fairness in the allocation of indivisible goods, in the hopes of its use-

ful application to domains requiring the reconciliation of diversity

with individual demands.
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1 INTRODUCTION
Fairly allocating indivisible goods is a fundamental problem at the

intersection of computer science and economics [6, 13, 32, 36]. For

instance, a classic problem in fair allocation involves the allocation

of courses to students [15, 16, 27]. Courses have limited capacity,

and slots are often allocated via a centralized mechanism. More

broadly, analogous problems also surface in numerous areas of

social concern, such as the distribution of vaccines to hospitals [35],

the allocation of educational resources, and access to infrastructure

such as transport, water, and electricity [17, 39].
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Several recent works have explored a variety of distributive justice
criteria. These broadly fall into two categories – individual (e.g.,
that individual students are not envious of their peers), and group
(e.g. that students of certain ethnic, gender or professional groups

are treated fairly overall). While both individual and group fairness

have been studied extensively in recent works, to our knowledge,

there have been no works proposing algorithms that ensure both

concurrently in the setting of indivisible goods with fixed groups.

In this work, we explore

efficient algorithms that concurrently ensure approxi-
mate individual and group fairness, for certain classes
of agent valuation functions.

The tension between individual and group fairness exists in a

variety of allocation scenarios studied in the literature; for example,

when allocating public resources (such as housing, slots in public

schools, or scheduling problems in general) [1–4, 10, 24, 34, 38] — it

is important to maintain fairness towards individual recipients, as

well as groups (such as ethnic or socioeconomic groups). Another

example is the allocation of reviewers (who, in this metaphor, are

the goods) to papers [22, 37], it is important to balance the individual

papers’ satisfaction with their allotted reviewers, and the overall

quality of reviewers assigned to tracks (e.g. ensuring that the overall

reviewer quality for the Game Theory track is commensurate with

that of reviewers for the Machine Learning track).

In this paper, we address the question of whether individually

envy-free and group weighted envy-free allocations can co-exist

when allocating indivisible goods. We present algorithms that com-

pute approximately individually envy-free (EF) and group weighted

envy-free (WEF) allocations, where the approximation quality de-

pends on the class of agents’ valuation functions.

1.1 Our Contributions
We design algorithms that (approximately) reconcile individual

and group envy-freeness in the allocation of indivisible goods. The

strength of our results naturally depends on the generality of the

valuation classes we consider, with more general valuation classes

yielding worse approximation guarantees.

We show that when agents have identical valuation functions,

individual envy-freeness up to any good (𝑖-EFX) can be achieved in

conjunction with group weighted envy-freeness up to one good (𝑔-

WEF1). Additionally, when agents within each group have common

valuation functions, then envy-freeness up to one good (𝑖-EF1)

can be satisfied together with 𝑔-WEF1. Finally, when valuation

functions are distinct, we show that together with 𝑖-EF1, we can
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obtain a constant factor
1

3
approximation to a notion termed 𝑔-

WEF1 ex-ante (see Definition 3).

1.2 Related Work
Envy-freeness (EF) is a particularly important individual fairness

notion when deciding how to fairly allocate indivisible goods [31,

33]. The existence of approximate EF allocations in conjunction

with other individual fairness notions and welfare measures (such

as proportionality [7], pareto-optimality [18], maximin share [14])

have been studied extensively.

Conitzer et al. [23] and Aziz and Rey [8] introduce the notion

of group fairness (applied to every partition of agents within the

population), with both offering the “up to one good” relaxation of

removing one good per agent. A similar concept was also considered

in the economics literature [11]. Benabbou et al. [9] explore the

relationship between metrics such as utilitarian social welfare in

connection with group-wise fairness via an optimization approach.

Several works also suggest notions of group envy-freeness [5,

25, 28, 38]. We focus on a popular notion called weighted envy-

freeness (WEF) [19–21, 30], which focuses on group fairness with

fixed groups, allowing us to study guarantees with the removal of

a single good per group. This was also raised as an open question

in Conitzer et al. [23].

2 PRELIMINARIES
In the problem of allocating indivisible goods, we are given a set

of agents 𝑁 = {𝑝1, . . . , 𝑝𝑛} and goods 𝐺 = {𝑔1, . . . , 𝑔𝑚}. Subsets of
goods in 𝐺 are referred to as bundles. Agents belong to predefined

groups (or types) T = {𝑇1, . . . ,𝑇ℓ }. We assume that

⋃ℓ
𝑘=1

𝑇𝑘 = 𝑁 ,

and that no two groups intersect. Furthermore, each group 𝑇𝑘 has

a weight 𝑤𝑘 , corresponding to its size, i.e. 𝑤𝑘 = |𝑇𝑘 |. Each agent

𝑝𝑖 ∈ 𝑁 has a non-negative valuation function over bundles of

goods: 𝑣𝑖 : 2
𝐺 → R+. We assume that 𝑣𝑖 is additive, which is a

common assumption in the fair division literature [12, 18, 23], i.e,

that 𝑣𝑖 (𝑆) =
∑
𝑔∈𝑆 𝑣𝑖 ({𝑔}).When all agents have the same valuation,

we denote their common valuation by 𝑣 .

In our framework, we consider the direct allocation of goods

to agents, whilst taking into consideration agents’ group affilia-

tion, and in the process achieving both individual and group envy-

freeness. Thus, the group allocation is not explicitly determined in

the allocation process, but is induced from the individual alloca-

tions A = (𝐴1, ..., 𝐴𝑛) instead. We denote Grp𝑘 (A) = ⋃
𝑖:𝑝𝑖 ∈𝑇𝑘 𝐴𝑖

as the induced group bundle for 𝑇𝑘 . To keep our notations sim-

ple, for any group 𝑇𝑘 ∈ T , we will let 𝐵𝑘 = Grp𝑘 (A) denote
this induced group bundle. We also let the group utility for 𝑇𝑘 be

𝑣𝑇𝑘 (𝐵𝑘 ) =
∑
𝑖:𝑝𝑖 ∈𝑇𝑘 𝑣𝑖 (𝐴𝑖 ).

Envy-freeness was introduced by Foley [26] (see also Brandt

et al. [13], and Lipton et al. [29]). However, complete, envy-free

allocations with indivisible goods cannot always be guaranteed (e.g.

with two agents and one good, the agent who did not get the good

will always envy the other). Thus, we make use of two popular

relaxations of EF as introduced by Lipton et al. [29], Budish [14],

and Caragiannis et al. [18].

An allocation A = (𝐴1, . . . , 𝐴𝑛) is individually envy-free up to
any good (EFX) if, for every pair of agents 𝑝𝑖 , 𝑝𝑖′ ∈ 𝑁 , and for all

goods 𝑔 ∈ 𝐴𝑖′ , 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴𝑖′ \ {𝑔}). Similarly, an allocation A

is individually envy-free up to one good (EF1) if, for every pair of

agents 𝑝𝑖 , 𝑝𝑖′ ∈ 𝑁 , there is some good 𝑔 ∈ 𝐴𝑖′ such that 𝑣𝑖 (𝐴𝑖 ) ≥
𝑣𝑖 (𝐴𝑖′ \ {𝑔}).

Chakraborty et al. [19] recently introduced an extension of the

EF notion to the weighted setting, known as weighted envy-freeness
(WEF). In this setting, we treat each “agent” as a group, where each

group has a fixed weight (representing its size). We use this notion

to capture inter-group envy. Similarly, we consider two relaxed

notions of WEF. The definitions below rely on the assumption

that the groups’ valuations of a bundle are the same regardless

of how goods are internally allocated according to A; this is a

valid assumption if we assume that valuation functions of agents

within a group cannot differ. Definition 3 details an extension of

the WEF notion to deal with the more general case. An allocation

A = (𝐴1, . . . , 𝐴𝑛) is said to be weighted envy-free up to one good
(WEF1) if for every two groups 𝑇𝑘 ,𝑇𝑘 ′ ∈ T , there exists some good

𝑔 ∈ 𝐵𝑘 ′ such that

𝑣𝑇𝑘 (𝐵𝑘 )
𝑤𝑘

≥ 𝑣𝑇𝑘 (𝐵𝑘′ \{𝑔})
𝑤𝑘′

. It is weighted envy-free

up to any good (WEFX) if this inequality holds for any 𝑔 ∈ 𝐵𝑘 ′ .

Note that envy-freeness and weighted envy-freeness are referred

to as EF andWEF respectively in the literature, but we refer to them

as 𝑖-EF and 𝑔-WEF henceforth, to highlight that the former is an

individual fairness concept, and the latter is a group fairness concept.

We begin with an example to illustrate these fairness concepts.

3 RESULTS
Below we state several results regarding the existence of approxi-

mate individual EF (𝑖-EF) and groupWEF (𝑔-WEF) allocations under

three classes of valuation functions. We refer the reader to the full

version of our paper for more details.

Theorem 1. Under all-common, additive valuation functions, an
allocation satisfying 𝑖-EFX and 𝑔-WEF1 can be computed in polyno-
mial time.

Theorem 2. Under group-common, additive valuation functions,
an allocation satisfying 𝑖-EF1 and 𝑔-WEF1 can be computed in poly-
nomial time.

As for general additive valuations, we consider approximate

𝑔-WEF with respect to the bundle values of agents obtained in a

randomized allocation, which we term ex-ante 𝑔-WEF1. Intuitively,

instead of assuming that items are allocated to all agents by some

allocation procedure, we consider what the average utility would

be if we were to allocate each item to a uniformly random agent.

Definition 3 (Ex-ante𝑔-WEF1). An allocationA = (𝐴1, . . . , 𝐴𝑛)
is ex-ante weighted envy-free up to one good (ex-ante 𝑔-WEF1) if, for

every𝑇𝑘 ,𝑇𝑘 ′ ∈ T , there exists some good𝑔 ∈ 𝐵𝑘 ′ such that
𝑣𝑇𝑘 (𝐵𝑘 )

𝑤𝑘
≥

𝑣𝑇𝑘 (𝐵𝑘′ \{𝑔})
𝑤𝑘′

, where 𝑣𝑇𝑘 (𝐵𝑘 ′ ) = 1

𝑤𝑘

∑
𝑖:𝑝𝑖 ∈𝑇𝑘

(∑
𝑔′∈𝐵𝑘′ 𝑣𝑖 (𝑔

′)
)
.

Further relaxing this notion in a standard manner, we say that an

allocation is ex-ante 𝑔-WEF1 up to a factor of 1

𝛾 for some constant

𝛾 when the condition in Definition 3 is replaced by

𝑣𝑇𝑘 (𝐵𝑘 )
𝑤𝑘

≥
1

𝛾 · 𝑣𝑇𝑘 (𝐵𝑘′ \{𝑔})
𝑤𝑘′

. Then, we have the following result.

Theorem 4. Under general, additive valuation, an allocation sat-
isfying 𝑖-EF1 and ex-ante 𝑔-WEF1 up to a factor of 1

3
can be computed

in polynomial time.
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