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ABSTRACT
Wepropose a novel meta-strategy solver called regularized replicator
dynamics (RRD) for empirical game-theoretic analysis and show
that RRD outperforms existing meta strategy solvers in various
games.
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1 INTRODUCTION
The methodology of empirical game-theoretic analysis (EGTA)
[5, 6] provides a broad toolbox of techniques for game reasoning
with models based on simulation data1. As many multiagent sys-
tems of interest are not easily expressed or tackled analytically,
EGTA offers an alternative approach whereby a space of strategies
is examined through simulation, combined with game model in-
duction and inference. The challenge of efficiently assembling an
effective game model of strategies for EGTA is called the strategy
exploration problem [3].

Strategy exploration in EGTA is most clearly formulated within
an iterative procedure, whereby generation of new strategies is
interleaved with game model estimation and analysis. The Pol-
icy Space Response Oracle (PSRO) algorithm of Lanctot et al. [4]
provides a flexible framework for iterative EGTA, where at each iter-
ation, new strategies are generated through reinforcement learning
(RL). In PSRO, the component that derives the best response target
is called a meta-strategy solver (MSS), as it takes an empirical
game model as input and “solves” it to produce the target profile.

In this study, we adopt an explicit regularization perspective to
the specification and analysis of MSSs. We propose a novel MSS
called regularized replicator dynamics (RRD), which truncates
the NE search process in intermediate game models based on a
regret criterion. As the size of a payoff matrix is exponential in the

1The full version of this paper is available on arxiv: http://arxiv.org/abs/2302.04928.
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number of players, the cost of maintaining completely specified
models over the iterations of PSRO can be prohibitive beyond two
players. To mitigate this issue, we employ a PSRO-compatible pro-
file search method, called backward profile search (BPS), which
finds solution concepts without simulating the whole payoff matrix.

2 REGULARIZATION FOR STRATEGY
EXPLORATION

2.1 Regularized Replicator Dynamics
Our new MSS, called regularized RD (RRD) (Algorithm 1), simply
runs RD on the empirical game, stopping when the regret of the
current profile (w.r.t the empirical game) meets a specified regret
threshold _, or a maximum number of iterations is reached.

Note that RRD supports direct control of the degree of regular-
ization through an explicit parameter: the regret threshold. This
parameter is meaningful across games with different strategy sets,
as long as the utility scales on which regret is measured are compa-
rable.

Algorithm 1 RRD

Input: an empirical game Ĝ𝑆↓𝑋 = ( [𝑁 ], (𝑋𝑖 ), (𝑢𝑖 ))
Parameters: regret threshold _, step size 𝛼 , max iterations𝑀
Initialize RD with 𝜎𝑖 ← Uniform(𝑋𝑖 )
while regret of 𝜎 w.r.t Ĝ𝑆↓𝑋 𝜌 Ĝ𝑆↓𝑋 (𝜎) > _ do

for player 𝑖 ∈ [𝑁 ] do
𝜎𝑖 ← Projection_to_simplex(𝜎𝑖 + 𝛼 𝑑𝜎𝑖

𝑑𝑡
)

end for
end while
Return 𝜎

2.2 Regularized Strategy Exploration in
Multi-Player Games

We provide a simplified version of the profile search for PSRO, called
backward profile search, and combine it with RRD to reduce the
simulation cost. Distinct from the work by Brinkman and Wellman
[1], BPS starts search from the singleton profile constituted by the
newest-added strategies in empirical game at the current PSRO
iteration. Then BPS searches potential deviations back to strategies
from previous PSRO iterations. Once BPS confirms a NE of the
empirical game, we applied RRD to the subgame that contains the
empirical NE rather than the whole empirical game payoff matrix.
In our experiments, we show that the combination of BPS and RRD
can successfully find an effective best-response target in a 3-player
game, without simulating the whole payoff matrix.
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(a) Hex. (b) Connect four. (c) Misere Tic Tac Toe. (d) Go (size=4).

Figure 1 RRD performance compared to FP and DO in four games studied by Czarnecki et al. [2].

3 EXPERIMENTAL RESULTS
3.1 Experimental Results
3.1.1 2-player Leduc Poker. In Figure 2, we test our algorithm on
2-player Leduc poker. We first observe that RRD yields a rapid
convergence to a low-regret value compared to other MSSs.

Figure 2 RRD performance in 2-player Leduc Poker.

3.1.2 Real-World Games. We further evaluate our algorithms in
four of the “real-world games” studied by Czarnecki et al. [2]: Hex,
Connect four, Misere Tic Tac Toe, and Go. We observe that RRD
exhibits faster convergence than FP and DO in all four games.

3.1.3 Multi-Player Games. We apply the combination of BPS and
RRD to 3-player Leduc poker. As shown in Figure 3, although RRD
is only applied to the subgame of the empirical game, learning still
benefits from regularization.

3.1.4 Attack-Graph Games. An attack-graph game is a two-player
general-sum game defined on the attack graph where an attacker
attempts to compromise a sequence of nodes to reach reach goal
nodes and a defender endeavors to protect any node (e.g., deny an
access). From Figure 4, we observe that even though the game of
interest is large and beyond two-player zero-sum, RRD exhibits
faster convergence and less variance than DO and FP.

3.2 A Novel Explanation for RRD Performance
Our key insight is that the performance of strategy exploration is
strongly related to the regret of best-response targets w.r.t the full

Figure 3 RRD performance in 3-player Leduc poker.

Figure 4 RRD outperforms FP and DO in the attack-graph
game.

game. We note that throughout runs of PSRO, the regret of the RRD
solution is much smaller than that of the empirical NE. In other
words, whereas RRD has higher regret than NE in the empirical
game (_ versus zero), it reliably has lower regret in the full game.
Since our ultimate objective is a full-game low-regret solution, this
helps to explain why the regularization imposed by RRD apparently
provides robustly improved performance for strategy exploration.
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