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ABSTRACT
Machine-learning-as-a-service (MLaaS) dramatically decreases the
barrier of entry to machine learning through accessible, externally
trained model building and deployment. However, numerous stud-
ies have shown that MLaaS models are vulnerable to adversarial
attacks, which can alter input data with small perturbations and
deceive the underlying machine learning algorithms. In this pa-
per, we propose a novel approach for detecting and mitigating
adversarial attacks in MLaaS. Our approach leverages previously
overlooked system-level features in combination with data-driven
methods to detect the generation process of adversarial examples.
To guide the mitigation process, we model the dynamic interactions
between an adaptive adversary, an imperfect anomaly detector, and
a broader defensive system as a non-cooperative strategic game
with imperfect information. We use experimental data from a realis-
tic small-scale MLaaS ecosystem to construct the game components,
such as players’ utilities and detection accuracy. Our experimental
results indicate that an adversarial attack against MLaaS defended
by our method requires up to six times more cloud service accounts
compared to other state-of-the-art frameworks. These promising
results demonstrate the importance of considering realistic system
settings when developing and evaluating adversarial attacks and
defenses.
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1 INTRODUCTION
Machine Learning as a Service (MLaaS) significantly increases the
accessibility of deep learning by obviating the need for acquir-
ing both hardware and human talent. However, the very nature
of MLaaS as a product designed for non-experts presents it as an
enticing target for attackers. Of particular concern are black-box,
query-based mechanisms, in which adversarial examples are con-
structed at inference time. This is achieved through large volumes
of queries, which iteratively elicit a change in the machine learning
model’s behaviour [5, 6]. Such attacks pose significant security and
financial risks to both users and service providers [14, 16]. The task
of detecting and repelling such attacks is complicated, as attackers
often attempt to minimize the detectability of their attacks. In many
contexts, this is represented by minimizing the normed distance
between true and adversarial examples. However, an equally im-
portant practical metric for MLaaS is the number of accounts an
attacker must create on the service to successfully attack the model.

While existing defensive works cover adversarial robustness on
both the model- [13, 17] and sample-levels [6, 12, 15], they often
overlook system-level features, which are an important fingerprint
of attacker behavior. Furthermore, the MLaaS environment also
introduces an inherent need to not only detect attacks, as is the case
in prior works, but also to introduce structures that automatically
mitigate both the existence and impact of attacks.

In this paper, we present a novel approach for detecting and
mitigating adversarial attacks in MLaaS. Our key contributions can
be summarized as follows.

(1) We utilize system-level features for the purpose of adversarial
attack detection as a novel alternative to existing model
input- or structure-focused approaches.

(2) To defend against adaptive adversaries, we design a large-
scale security game to guide the attack mitigation process,
where we model the complex interactions between multiple
parties and consider realistic attack detector characteristics.

(3) Different attacker query behavior is considered for the first
time to replicate the complexity of real-world attacks and
defenses when implementing a query-efficient black-box
adversarial attack [5].

(4) We develop a small-scale MLaaS testbed, which allows us to
monitor realistic system-level features under both benign
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Figure 1: High-level representation of the game, with a subset
of action pathways shown for clarity. Each game stage starts
with the Attacker deciding how aggressive the Hop-Skip-
Jump attack should be or not to attack at all for each of the
available accounts, followed by the detector that provides
the Defender a detection report. Lastly, the Defender decides
on the attack mitigation strategy. The entire game contains
multiple stages and terminates when all of the Attacker’s
pre-created accounts are suspended by the Defender or the
maximum game depth is reached.

and adversarial operating conditions. Our realistic server
setup is powered by the Flask web framework and Docker
containers, with orchestration by way of Kubernetes.

2 SYSTEM-LEVEL ATTACK DETECTION
To detect the generation process of adversarial attacks, we leverage
a set of system-level features, including resource consumption (i.e.,
CPU and memory consumption captured by cAdvisor [7]), system
calls (monitored by Falco [1]), user logs (provided by flask micro
web framework [8]), and communication-related data (e.g., packet
length and inter-arrival time monitored by tShark [2]).

We employ a supervised learning approach to produce an anom-
aly detection model using system features generated both by benign
and malicious clients. Specifically, we train several representative
machine learning models, including deep feed-forward neural net-
works (DNNs), support vector machines, and gradient boosting
techniques. After comparing the performance of these models, we
have selected the DNN model as our final detector for this applica-
tion due to its superior capability.

3 SECURITY GAME MODEL
The attack mitigation process is modeled as interactions between
theAttacker (an intelligent adversary), the imperfect anomaly detec-
tor, and the Defender (the defense system). In our problem setting,
the Attacker has a total number of 𝑁 accounts created beforehand,
and each account has six action options: five attack query pat-
terns and one benign user pattern, all extracted from the CIC DoS
dataset [9]. The Defender optimizes the (MLaaS cloud) account ban-
ning mitigation strategy based on the imperfect detection report
and the anticipation of the downstream attack effects. This struc-
ture lends itself to a multi-stage, non-cooperative dynamic game in
the presence of imperfect information.
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Figure 2: The number of accounts banned when the attacker
initiates adversarial attacks. The attack query patterns (x-
axis) are extracted from the CIC DoS dataset. Attacking
MLaaS is more costly when our approach is deployed.

We use experimental data from a realistic small-scale MLaaS
ecosystem to construct the game components (e.g., players’ utili-
ties and detection accuracy). We introduce chance nodes into the
game tree to represent the attack detector’s characteristics taking
the detector’s inaccuracies (i.e., false positives and false negatives
against different attack types) into consideration. A chance node
can be seen as a fictitious (nature) player who performs actions
according to a fixed probability distribution [3, 18]. We calibrate
the probability distributions of the chance nodes based on real de-
tection performance from the experiments performed in our MLaaS
system. We utilize Nash equilibrium solutions of the game to guide
the Defender. To reduce computational complexity, the Nash solu-
tions are approximated using the external sampling Monte Carlo
Counterfactual Regret Minimization (MCCFR) [11] algorithm in
OpenSpiel [10]. This game structure and information flows are
summarised in Figure 1.

4 EXPERIMENTAL EVALUATION
We compare our method with state-of-the-art defense approaches,
including one adversarial attack detection method, the query-based
stateful detection method [6], and two detectors from a DDoS attack
detection proposal [4]. We used the number of banned accounts
within a fixed attack period as our comparison metric, which is the
same metric as used in the stateful detection method [6]. As shown
in Figure 2, our defense method outperformed the comparison base-
lines, requiring the attacker to create significantly more accounts
in the MLaaS system than when attacking the stateful method or
the DDoS detection methods. For example, the attacker needed
6152 accounts to conduct attacks against our proposal, compared
to only 1020 accounts needed to attack the stateful method. Addi-
tionally, the performance of the DDoS detection methods decreases
dramatically as the attack pattern becomes more stealthy (e.g., from
Full strength to Slowloris). Our method performs consistently well
against various attack patterns. Across the set of tested scenarios,
we saw a reduction in the number of accounts required for com-
pleting the attack by between 82.5 and 98.9%, for the stateful and
the DDoS detection methods respectively, but only drops by about
41.6% with our method.
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