
Near Optimal Strategies for Honeypots Placement in Dynamic
and Large Active Directory Networks

Extended Abstract

Huy Q. Ngo

The University of Adelaide

Adelaide, Australia

quanghuy.ngo@adelaide.edu.au

Mingyu Guo

The University of Adelaide

Adelaide, Australia

mingyu.guo@adelaide.edu.au

Hung Nguyen

The University of Adelaide

Adelaide, Australia

hung.nguyen@adelaide.edu.au

ABSTRACT
Active Directory (AD) is the default security management system

for Windows domain networks and is the target of many recent

cyber attacks. We study a Stackelberg game between an attacker

and a defender on large Active Directory (AD) attack graphs, where

the defender employs a set of honeypots to stop the attacker from

reaching high value targets. Contrary to existing works that focus

on small and static attack graphs, AD graphs typically contain

hundreds of thousands of nodes/edges and constantly change over

time. We show that the optimal honeypot placement problem is

NP-hard even for static graphs and develop a tree decomposition

method to derive an optimal deployment strategy and a mixed-

integer programming (MIP) formulation to scale to large graphs.We

observed that the optimal blocking plan for static graphs performs

poorly for dynamic graphs. To handle dynamic graphs, we re-design

the mixed-integer programming formulation by combining m MIP

(dyMIP(m)) instances. We prove a performance lower-bound on the

optimal blocking strategy for dynamic graphs and show that our

dyMIP(m) algorithm produces near optimal results.

KEYWORDS
Active Directory, Attack Graph, Network Security, Honeypot Place-

ment, Stackelberg Game

ACM Reference Format:
Huy Q. Ngo, Mingyu Guo, and Hung Nguyen. 2023. Near Optimal Strategies

for Honeypots Placement in Dynamic and Large Active Directory Net-

works: Extended Abstract. In Proc. of the 22nd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION
Microsoft Active Directories (AD) are popular directory services for

identity and access management and are deployed at most enter-

prises. Due to their popularity, AD systems have been been a major

targets for attackers over the last decade. In 2021, Microsoft reported

more than 25.6 billion brute force attacks on their AD accounts [11].

In these attacks, the attacker first builds an attack graph of the

targeted AD system where nodes are user accounts, computers,

security groups, etc. Each edge in the AD attack graph represents

an existing access/exploit that the attacker can use to move from

node to node. The attacker then uses the attack graph to escalate

themselves from low privilege nodes to higher privilege nodes (ex.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

Account A

AdminTo−−−−−−−→ Computer B

HasSession−−−−−−−−−→ Account C) [1]. Tools

for generating the AD attack graphs are widely available, such as

BloodHound [10]. Defending AD systems is very challenging as

AD systems are large, complex, and continuously evolve over time.

Active defense with honeypots is not new. Plenty of work have

investigate the honeypot allocation problem [2–4, 8, 9]. However,

the problem of placing honeypots in an AD attack graph represents

two unique challenges that have not been studied thus far. The first

challenge is the scale of the graphs. An AD attack graph typically

consists of thousands of nodes and hundreds of thousands of edges

with millions attack paths, even for a small/medium organization.

The second challenge is to develop a decoy solution that remains

effective even when the graph randomly changes. Defending the

AD attack graph has been studied in the previous literature [1, 5–7],

but none of them consider the fact that AD attack graphs are very

dynamic. One of the major sources of changes in the AD graphs

are users’ activities. In an AD attack graph, these dynamics are

represented by a special type of edges called HasSession edges [10].

HasSession edges are added to the graph when user signs on to a

computer and has their credential stored in the computer memory.

HasSession edge stay online until being removed from the graph

when the user signs off from the computer after a period of time.

In this study, we contribute a new method for defending AD by

using active defense with honeypots. We show that our honeypot

placement problem in AD graphs is NP-hard even for static graphs.

Then, we provide a dynamic program based on tree decomposi-

tion to optimally solve the problem and a mixed integer program

(staticMIP) formulation to scale the solution to large graphs. Fur-

thermore, we extend our study to include the honeypot placement

problem in dynamic graphs, which has not been previously studied

in the literature.

2 MODEL DESCRIPTION
We consider a Stackelberg game between an attacker and a defender

on a directed AD attack graph 𝐺 = (𝑉 , 𝐸). There is a set 𝑆 ⊆ 𝑉 of

entry nodes, and the attacker can enter the graph via one of 𝑠 = |𝑆 |
entry nodes. The attacker tries to reach a destination node called

Domain Admin (DA) via shortest paths only. From an entry node,

when there are multiple shortest paths, we assume the attacker

will randomly draw one of the shortest paths. There is a fixed set

of blockable nodes 𝑁𝑏 ⊆ 𝑉 , the defender’s task is to pick 𝑏 nodes

in 𝑁𝑏 to allocate honeypots in order to intercept as many of the

attacker’s shortest attack paths as possible. The attacker cannot

differentiate a normal node from a honeypot. Furthermore, if the

attacker stumbles into a honeypot, the attack campaign fails.

Poster Session II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2517

Static b = 10 b = 20

Greedy staticMIP DP Greedy staticMIP DP

𝑅4000 0.4009 0.4009 0.4009 0.2605 0.2605 0.2605

(0.014s) (0.140s) (0.189s) (0.020s) (0.102s) (0.713s)

𝐴𝐷𝑆025 0.5889 0.5877 - 0.3437 0.3418 -

(0.128s) (0.257s) (0.195s) (0.190s)

𝐴𝐷𝑆10 0.5731 0.5731 - 0.3316 0.3315 -

(0.220s) (0.226s) (0.380s) (0.276s)

Dynamic staticMIP dyMIP(1) dyMIP(10) dyMIP(50) dyMIP(100)

𝐷𝑌𝐴𝐷𝑆025 0.7196 0.6994 0.6865 0.6862 0.6862

(0.190s) (649s) (726s) (1271s) (2214s)

Table 1: Experimental result of Static graph and Dynamic
graph scenario. 𝐷𝑌𝐴𝐷𝑆025 is the dynamic version of 𝐴𝐷𝑆025.
For Dynamic graph, we set 𝑏 = 20

Initially, the AD graph is filled with “open paths" which are

paths that can be used by the attacker to access the DA without any

intervention. The defender’s task is to reduce the number of “open

paths". Let’s denote by𝑦𝑖 the total number of open paths from entry

node 𝑖 to DA and 𝑦𝐵
𝑖
as the remaining open paths after the defender

applies a blocking plan 𝐵. The attacker’s success probability is then

𝑦𝐵
𝑖

𝑦𝑖
. The defender’s task is to strategically place the honeypots so

that the attacker’s success probability (measured by the fraction

of shortest paths that are not covered by at least one honeypot)

is minimized. As there are 𝑠 entry nodes, the expected success

probability can be obtained by averaging over all entry nodes. Given

a static graph 𝐺 , our optimization problem is formally defined as:

min

𝐵⊂𝑁𝑏 , |𝐵 | ≤𝑏

𝑠∑︁
𝑖=1

𝑦𝐵
𝑖

𝑦𝑖 · 𝑠
(1)

In real AD networks, the graph 𝐺 changes constantly due to

users’ activities. We consider dynamic graphs with on/off HasSes-

sion edges (nodes remain static). We model the dynamic graph

process as follows. There is a subset of HasSession edges 𝐻 ⊆ 𝐸

where each edge is turned on and off randomly. We denote the set

of all graph instances as 𝐺𝑠 = {𝑔1, 𝑔2, 𝑔3, ..., 𝑔𝑚}, where𝑚 = |𝐺𝑠 |.
A snapshot/realisation of the dynamic graph 𝑔𝑡 = (𝑉 , 𝐸𝑡) can be

obtained by simulating whether each edge in 𝐻 is on or off. We

assume that each HasSession edge is on/off independently of others

with a fixed probability. In the dynamic setting, giving a defensive

budget of 𝑏, the defender’s problem is to allocate honeypots to limit

the attacker’s clean paths on every possible snapshots/realisations

of the attack graphs. Let’s denote by 𝑦𝑖,𝑔 the total number of open

paths from entry node 𝑖 to DA in snapshot 𝑔 and 𝑦𝐵
𝑖,𝑔

as the re-

maining open paths after the defender applies a blocking plan 𝐵 to

snapshot g. The problem in dynamic graph is defined as:

min

𝐵⊂𝑁𝑏 , |𝐵 | ≤𝑏

∑︁
𝑔∈𝐺𝑠

𝑠𝑔∑︁
𝑖=1

𝑦𝐵
𝑖,𝑔

𝑦𝑖,𝑔 · 𝑠𝑔
(2)

Theorem 2.1. Let 𝐿 be the maximum shortest path length from
any entry node to DA. The static version of the optimal honeypot
placement problem (i.e., Expression (1)) is NP-hard when 𝐿 ≥ 7.

3 MAIN RESULT
Static Graph: Our first approach is Dynamic Programming based

Tree Decomposition (DP). Tree Decomposition refers to techniques

that convert a general graph to a tree. The overall idea of using the

tree decomposition technique for our problem is to convert our AD

graph to a tree on which we could apply our Dynamic Program. We

used the security level-based vertex elimination algorithm to gen-

erate tree decomposition as shown in Guo et al. [6]. In our dynamic

programming implementation, the information held by each context
vertex is the number of paths from the node itself to DA. We con-

sider each tree node as a sub-problem where the defender decides

whether to allocate a honeypot at the current node or not, given

that there is a remaining budget 𝑏′. The DP algorithm guarantees

optimal solutions and is efficient when the graph is close to a tree.

In the second approach, we solve the problem via Mixed-Integer

Programming (staticMIP). The staticMIP formulation is based on

the observation that the number of paths from an arbitrary node to

the target (DA) on the all-shortest path graph can be obtained by

summing the numbers of paths to DA from all of its successors. Let

𝑛(𝑖) be the set of successors of node 𝑖 . This can be represented as:

𝑦𝑖 =
∑

𝑗∈𝑛 (𝑖) 𝑦 𝑗 . If we want to allocate a honeypot on node 𝑖 , then

𝑦𝑖 is reset to 0. Then, we have our blocking constraint as follows:

𝑦𝑖 = (1 − 𝐵𝑖)
∑

𝑗∈𝑛 (𝑖) 𝑦 𝑗 , where 𝐵𝑖 is the budget spent on node 𝑖

and 𝐵𝑖 is binary. We also have the budget constraint:

∑
𝑖∈𝑁𝑏

𝐵𝑖 ≤ 𝑏,

where 𝑏 is the allowed budget. The blocking constraint is nonlinear.

Our complete formulation includes the linearization step for these

constraints. We conducted experiments on synthetic AD graphs

generated by DBCreator
1
(𝑅4000), and Adsimulator

2
(𝐴𝐷𝑆025 and

𝐴𝐷𝑆10). While DP can guarantee an optimal solution, it does not

scale well on a large graph. On the other hand, staticMIP can scale

very well on a large graph.

Dynamic Graph:We can repurpose our earlier MIP for static

graphs to handle the task of jointly optimizing for |𝑚 | sample

graphs (dyMIP(𝑚)). All we need to do is merge the constraints

on individual graph instances by putting |𝑚 | sets of constraints
into the model and replace the objective by the sum over individ-

ual objectives. The blocking constraint in dynamic graph becomes

𝑦𝑖,𝑔 = (1−𝐵𝑖)
∑

𝑗∈𝑛 (𝑖,𝑔) 𝑦 𝑗,𝑔 , where 𝑛(𝑖, 𝑔) is the successor of node 𝑖
in snapshot 𝑔. The linear program dyMIP(𝑚) requires O(𝑚 ·𝑛) vari-
ables, where 𝑛 is the number of nodes in a graph 𝐺 ∈ 𝑋 . However,

one issue with dyMIP(𝑚) is that it is computationally difficult to

solve when𝑚 gets large. In a real AD graph, there could be a large

number of possible snapshots. To deal with this, we split 𝐺𝑠 into

𝑗 equally-sized batches, each batch has 𝑡 graphs (i.e., 𝑡 · 𝑗 = |𝐺𝑠 |).
We then run dyMIP(𝑡) on every partition and produce a blocking

plan for each partition. We use "majority voting" to come up with

a blocking plan (finding the 𝑏 most voted nodes to place honey-

pots). The lower bound is calculated to be 0.6708± 0.0059 for graph

DYADS025. The result shows that staticMIP performs poorly in

dynamic graphs, while dyMIP can produce a close-to-optimal result.

Future Work: For dynamic graphs, we jointly optimize for𝑚

sample graph snapshots/realisations to derive defence. For future

work, instead of randomly sampling, we aim to identify𝑚 “repre-

sentative” snapshots (i.e., via K-means clustering).

1
https://github.com/BloodHoundAD/BloodHound-Tools/tree/master/DBCreator

2
https://github.com/nicolas-carolo/adsimulator

Poster Session II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2518

https://github.com/BloodHoundAD/BloodHound-Tools/tree/master/DBCreator
https://github.com/nicolas-carolo/adsimulator

ACKNOWLEDGMENTS
This work was supported with supercomputing resources provided

by the Phoenix HPC service at the University of Adelaide. Hung

Nguyen is partly supported by ARC NISDRG Grant NI210100139

and NGTF-Cyber Grant ID10614.

REFERENCES
[1] John Dunagan, Alice X Zheng, and Daniel R Simon. 2009. Heat-ray: combating

identity snowball attacks using machinelearning, combinatorial optimization and

attack graphs. In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles. 305–320.

[2] Karel Durkota, Viliam Lisỳ, Branislav Bošanskỳ, and Christopher Kiekintveld.

2015. Approximate solutions for attack graph games with imperfect information.

In International Conference on Decision and Game Theory for Security. Springer,
228–249.

[3] Karel Durkota, Viliam Lisỳ, Branislav Bošanskỳ, and Christopher Kiekintveld.

2015. Optimal network security hardening using attack graph games. In Twenty-
Fourth International Joint Conference on Artificial Intelligence.

[4] Karel Durkota, Viliam Lisỳ, Branislav Bošanskỳ, Christopher Kiekintveld, and

Michal Pěchouček. 2019. Hardening networks against strategic attackers using

attack graph games. Computers & Security 87 (2019), 101578.

[5] Diksha Goel, MaxHectorWard-Graham, Aneta Neumann, Frank Neumann, Hung

Nguyen, and Mingyu Guo. 2022. Defending active directory by combining neural

network based dynamic program and evolutionary diversity optimisation. In

Proceedings of the Genetic and Evolutionary Computation Conference. 1191–1199.
[6] Mingyu Guo, Jialiang Li, Aneta Neumann, Frank Neumann, and Hung Nguyen.

2022. Practical fixed-parameter algorithms for defending active directory style

attack graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 36. 9360–9367.

[7] Mingyu Guo, Max Ward, Aneta Neumann, Frank Neumann, and Hung Nguyen.

2023. Scalable Edge Blocking Algorithms for Defending Active Directory Style

Attack Graphs. Proceedings of the AAAI Conference on Artificial Intelligence
(2023).

[8] Ondrej Lukas and Sebastian Garcia. 2021. Deep Generative Models to Extend

Active Directory Graphs with Honeypot Users. arXiv preprint arXiv:2109.06180
(2021).

[9] Stephanie Milani, Weiran Shen, Kevin S Chan, Sridhar Venkatesan, Nandi O

Leslie, Charles Kamhoua, and Fei Fang. 2020. Harnessing the power of deception

in attack graph-based security games. In International Conference on Decision and
Game Theory for Security. Springer, 147–167.

[10] Andy Robbins. 2023. “Bloodhound: Six Degrees of domain admin. https://github.

com/BloodHoundAD/BloodHound. Accessed: 2022-08-02.

[11] David Weston. 2022. New security features for Windows 11 will help protect

hybrid work. https://www.microsoft.com/en-us/security/blog/2022/04/05/new-

security-features-for-windows-11-will-help-protect-hybrid-work/.

Poster Session II

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2519

https://github.com/BloodHoundAD/BloodHound
https://github.com/BloodHoundAD/BloodHound
https://www.microsoft.com/en-us/security/blog/2022/04/05/new-security-features-for-windows-11-will-help-protect-hybrid-work/
https://www.microsoft.com/en-us/security/blog/2022/04/05/new-security-features-for-windows-11-will-help-protect-hybrid-work/

	Abstract
	1 Introduction
	2 Model Description
	3 Main Result
	Acknowledgments
	References

