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ABSTRACT
Resource assignment algorithms for decision-making in dynamic
environments have been shown to sometimes lead to negative
impacts on individuals from minority populations. We propose
a framework for algorithmic assignment of scarce resources in a
dynamic setting that seeks to minimize concerns around unfairness
and the potential for runaway feedback loops that create injustices.
Our model estimates an underlying true latent confounder in a
biased dataset, and makes allocation decisions based on a notion
of fair intervention. We present evidence for the plausibility of
our model by analyzing a novel dataset obtained from the City of
Chicago through FOIA requests, and plan to release this dataset
along with a visualization tool for use by various stakeholders. We
also show that, in a simulated environment, our counterfactually
fair policy can allocate limited resources near optimally, and better
than baseline alternatives.
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1 INTRODUCTION
Algorithmic methods are increasingly used for decision-making in
several societal resource allocation domains such as child welfare,
homelessness, and policing services [4, 8, 11]. However, there is
now widespread recognition that such methods impact differently
demographic groups defined by ages, genders, races, etc [1, 10].
Additionally, the data collection process is dynamic and future data
collected depends on past decisions of the algorithms, resulting
in a feedback loop. For example, in the case of predictive policing,
the algorithm may send more officers to neighborhoods with more
reports of crime if it is continuously trained on previous data [2,
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6]. This in turn can lead to more stops and arrests even without
a true increase in crime in those neighborhoods. Such feedback
loops may end up with the policing rate (and hence arrest rates)
in neighborhoods becoming divorced from the “true” crime rate in
that neighborhoods [2].

A theoretically well-grounded approach to fairness that has re-
ceived considerable attention lately is to tie the notion of fairness to
an explicit causal model [3, 5, 7, 9, 12]. This is particularly appeal-
ing in dynamic settings because we can explicitly reason about the
effects of interventions within a specific causal model. We argue
in this paper that the correct notion of fairness in such settings
is to require counterfactual fairness [5] in terms of both sensitive
variables (as traditionally defined) and the variables corresponding
to prior interventions in the system (for example, the level of past
policing in a neighborhood). The latter requirement can help en-
sure that bias does not perpetuate dynamically through the system,
resulting in runaway feedback loops of the kind hypothesized by
Ensign et al. [2].

We demonstrate the need for, and viability of, this approach
through a combination of data and modeling. We introduce a model
that aims to capture both the complexity of dynamically allocating
limited police resources across beats and the constraints on doing
so in a fair manner. We construct a novel real-world dataset that
allows us to examine police force allocation at a granular level in
the City of Chicago, collected by merging three different sources: (1)
population demographics from the American Community Survey1;
(2) publicly available data on crimes, arrests, and stops from the
website of the Chicago Police Department2; (3) police deployment
levels obtained using a Freedom of Information Act (FOIA) request
from the police department. We identify areas where it would or
would not have made a difference if our causal model had been
used in prior allocation decisions.

2 CONTRIBUTIONS
Causal Model for Predictive Policing. Our approach to predictive

policing is to construct a causal model that could reasonably de-
scribe the underlying data generating process and to use this causal
model to estimate an optimal policy allocation that is not affected

1https://www.census.gov/programs-surveys/acs
2https://home.chicagopolice.org/statistics-data/
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Figure 1: A causal model for policing and crime. Sensitive
attributes: Policing, Minority Population; Observed features:
Arrest Rate; Outcome Variable: Concerning Crime Rate; La-
tent Variable: Criminality.

by the biases introduced by the data collection. The objective of
predictive policing is to choose a police allocation {𝑃𝑏,𝑡 } for each
beat 𝑏 and period of time 𝑡 . The decision maker can access histori-
cal arrest rates 𝐴𝑏,𝑡

′ , stop rates 𝑆𝑏,𝑡 ′ , concerning crime rates 𝐶𝑏,𝑡 ′
and protected demographic characteristics 𝑀𝑏 collected at time
𝑡
′
< 𝑡 . Protected demographic characteristics include the fraction

of minority populations that live in the beat. We assume a latent
variable 𝑍𝑏 that represents the true level of criminal activity in a
beat 𝑏 and that affects arrest rates 𝐴𝑏,𝑡 , and concerning crime rates
𝐶𝑏,𝑡 (Figure 1). Policing 𝑃𝑏,𝑡 is what the causal literature considers
as a treatment and affects 𝐴𝑏,𝑡 , and 𝐶𝑏,𝑡 . We assume that protected
demographic characteristics𝑀𝑏 affect the outcomes 𝐴𝑏,𝑡 . We also
assume that criminal activity 𝑍𝑏 does not fluctuate with the short-
term allocation of police officers and thus does not depend on 𝑡 ,
and that dynamic effects between times 𝑡 and 𝑡 + 1 are propagated
only through the policing variable 𝑃𝑡+1.

Allocation. There exists a resource constraint on the total amount
of police force 𝑃𝑡 that can be allocated at time 𝑡 :

∑︁
𝑏

𝑃𝑏,𝑡 ≤ 𝑃𝑡 .

This expands previous work in fair causal modeling [5, 7] that
learns optimal policies without such resource constraints on the
treatment variable. We propose a dynamic resource allocation that
optimizes an outcome that is not affected by the dynamics of the
data collection process nor by the effect of the protected attribute
𝑀 . This differs from previous approaches (e.g. [7]) that optimize an
outcome possibly affected by both protected attributes and dynamic
data collection and mitigate unfair outcomes via interventions that
remove these unwanted effects.

Previous approaches [7] minimize arrest rates after an interven-
tion 𝑑𝑜 (𝑀 → 0) and/or 𝑑𝑜 (𝑃𝑡−1 → 0). In this paper, we argue
instead in favor of minimizing: min𝑃𝑏,𝑡

∑︁
𝑏

𝐶𝑏,𝑡 s.t
∑︁
𝑏

𝑃𝑏,𝑡 ≤ 𝑃𝑡 .

Allocation Policies. A benevolent planner that knows the struc-
ture of the causal model in Figure 1 could optimize directly. In
practice, decision makers do not have direct knowledge of the pa-
rameter values in the model. We compare our allocation policy
PropFair with several baselines.

PropFair. This method estimates parameters 𝜶 and criminal
activity 𝒁 from the data and then derives an allocation of the
police force from our causal model. We estimate the posterior
distribution of 𝒁 and other coefficients from past observed data
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(a) Case: Beats differ by level of criminal activity
(𝑍𝑏1 = 0.3, 𝑍𝑏2 = 0.7,𝑀𝑏1 = 0.8,𝑀𝑏2 = 0.2).

Figure 2: Comparative analysis of baseline policies, the opti-
mal full-information policy, and our proposed policy (Prop-
Fair). The graphs show the fraction of police allocated to
Beat 𝐵1 (the remaining fraction is allocated to 𝐵2).

𝑷𝑡 ′ ,𝑨𝑡
′ , 𝑺𝑡 ′ ,𝑴, 𝑪𝑡 ′ where 𝑡

′
< 𝑡 . We use MAP values for 𝒁 and 𝜶

given past data to compute the allocation at time 𝑡 .

PropArrest and PropCrime. PropArrest allocates police resources
proportionally to past arrest rates 𝐴𝑏,𝑡−1. This is likely to generate
a feedback loop [2, 6] since a larger fraction of the police force
will be allocated to beats with larger shares of arrest rates at time
𝑡 − 1; thus, if more policing leads to more arrests, future allocations
would exacerbate initial differences in arrest rates 𝐴𝑡−1. PropCrime
allocates police proportionally to past concerning crime rates.

We also compare with two baselines based on the Polya urn
model proposed by Ensign et al. [2]: PropPolyaUrnAR and Prop-
PolyaUrnCR. We model the two beats as two colored balls X and
Y in an urn. Initially, the urn contains equal numbers of balls for
the two beats (𝑛𝑥 = 𝑛𝑦 = 𝑛), meaning they have equal numbers of
officers allocated. The urn is updated based on past arrests (Prop-
PolyaUrnAR) and crimes (PropPolyaUrnCR).

Results. We instantiate the causal model in Figure 1 setting all
parameter values to 1. Figure 2 presents the results of an experiment
where we allocate police force across two beats 𝐵1 and 𝐵2, which,
in the data generating process, vary by their level of criminality 𝑍
and percentage of minority population𝑀 . The allocation is done
under a resource constraint 𝑃𝑏1,𝑡 + 𝑃𝑏2,𝑡 = 10 over 100 time periods.

In the case where level of criminal activity varies across beats,
with lower criminal activity in the beat with a higher minority
population, the allocation policy from PropFair is closer to the
optimal policy generated by an omniscient and benevolent planner
than the allocations offered by the baseline models PropArrest and
PropCrime. Both PropArrest and PropPolyaUrnAR exacerbate initial
differences in the level of arrests and allocate too much policing to
the beat (𝐵1) with the lower initial criminal activity (𝑍𝐵1 < 𝑍𝐵2 ). On
the other hand, both PropCrime and PropPolyaUrnCR underestimate
differences in initial criminal activity and under-allocate policing
to beat 𝐵1. PropFair is able to reach the correct balance.
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