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ABSTRACT
Individual robots in distributed systems must often coordinate to
optimize the global performance. Where explicit coordination via
communication is concerned, it is almost always achieved via a pre-
defined “language” designed by human users. Such hand-designed
languages tend to be either too rigid or too forgiving, leading to
brittle solutions, excess negotiation costs, or unexpected coordi-
nation issues (e.g., deadlocks). In this paper, we consider a first
step to bridge the gap for task planning robots using symbolic plan-
ning. Specifically, we study the automatic construction of languages
that are maximally flexible while being sufficiently explicative for
coordination. To this end, we view language as a machinery for
specifying temporal-state constraints of plans. Such a view enables
us to reverse-engineer a language from the ground up by mapping
these composable constraints to words. Our language expresses a
plan for any given task as a “plan sketch” to convey just-enough
details while maximizing the flexibility to realize it, leading to ro-
bust coordination with optimality guarantees among other benefits.
We formulate the problem, analyze it, and provide an approximate
solution. We validate the advantages of our approach under various
scenarios to shed light on its applications.
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1 INTRODUCTION
To facilitate explicit coordination via communication between robots
in distributed systems, a key consideration is the adoption of a “lan-
guage” that the robots can all speak. Such a language often relies
on words with predefined meanings that are designed by human
users [3, 8, 20, 27]. However, such languages tend to be either too
rigid or too forgiving, leading to brittle solutions, excess negotiation
costs, or unexpected coordination issues (e.g., deadlocks). In this
paper, as a first step, we consider to bridge the gap for task planning
robots using symbolic planning.
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Figure 1: Motivating scenario involving two pathfinding
robots, R1 and R2, in a gridworld. Each cell can only accom-
modate a single robot at a time and the darker cells are obsta-
cles. The robots are tasked to reach their goal locations (G1
and G2), respectively, in the shortest timespan while avoid-
ing collisions. They have a limited sensing range and com-
munication is costly. During plan execution, there may be
locations of interest popping up at random places that re-
quire one of the robots to visit (denoted by the eye sign).

Traditional methods for explicit coordination (implicit coordina-
tion via observations and actions not considered here) in distributed
systems with planning agents can be divided into two classes:

1) Centralized plan and distributed execution: provides optimality
guarantees except when approximate solutions are considered [16,
18, 21]. Note that the planning process may be centralized or dis-
tributed [16]. Explicit coordination in this class involves broadcast-
ing the centralized plan in the planning language and sometimes
exchanging messages as stipulated by the plan during plan execu-
tion. This approach results in brittle solutions (i.e., a single agent
changing its part of plan requires the entire plan to be updated)
among other limitations.

2) Distributed plans and distributed execution: provides no guar-
antee of optimality in general [4, 28]. Note that distributed plans
imply that the planning process is distributed. Methods in this class
are often rule or local-search based [2, 19], making them adaptive
to local changes and easy to implement. For explicit coordination, a
language is often designed manually on a case-by-case basis, which
is prone to unexpected coordination issues (e.g., deadlocks).

Our work serves as a middle ground that bridges the two classes
and combines their advantages, contributing a novel perspective
for explicit coordination between task planning agents. Consider
the scenario in Fig. 1. The problem is difficult for the second class of
methods: the robots must coordinate before one of them enters the
narrow pathway so methods based on local information only would
not work well (i.e., leading to deadlocks). Furthermore, given that
the locations of interest are unpredictable, neither can we assign
fixed priorities to the robots (e.g., always letting R1 go through
first). While these issues are not present in the first class since the
robots coordinate a plan before execution, whenever some location
of interest pops up during plan execution, the robots must replan
and re-coordinate, significantly increasing the cost.
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While similar to the first class, robots in our approach coordinate
by communicating “plan sketches” that guarantee optimality while
maximizing flexibility to reduce the need for replanning and re-
coordination (thus differing from work on replanning or plan repair
for making replanning more efficient [9]). In the scenario above, the
robots can communicate that “R2 to wait for R1” without specifying
the exact plan to be followed, so that robot R2 later (instead of R1
even though R1 would detect the location of interest first, since
that would require R1 to wait for R2) can adjust locally to visit the
location of interest even if its original plan does not pass through
it. A crucial property is to enable each robot to make local changes
without any negative impact to the (global) makespan as long as
the updated plan is still consistent with the plan sketch.

To this end, we view language as a machinery for specifying
plan constraints. A language thus specifies a plan space abstraction
where a sentence in the language (i.e., a plan sketch) specifies a set
of plans. The robots all commit to the same set of plans as a result
of coordination (i.e., one robot communicates a plan sketch to the
others). To guarantee the feasibility of this approach, given that the
robots may be unaware of the local changes made by the others, one
of key challenges is for the plans in this set to not introduce misco-
ordinations; to maximize flexibility, the number of plans should be
maximized. Since different sets will be specified for different tasks,
we instead minimize the number of words in the language, resulting
in a minimal language. In our approach, we associate words in the
language with temporal-state constraints that are composable. We
show that searching for a minimal language is NEXP-complete. In
light of this result, we develop an approximate solution. We validate
the benefits of the languages under various application scenarios.
The full paper can be accessed online here [29].

2 RELATEDWORK
A language often represents a structured symbolic system map-
ping symbols to semantic meanings that can be grounded in the
environment [10, 11, 22, 24, 25]. In this work, we instead reverse en-
gineer the process by considering the mapping from temporal-state
constraints to symbols for language construction. These symbols
(i.e., words) are then used to form sentences, which introduce a
plan space abstraction to resolve miscoordinations. The idea of ap-
plying abstraction to planning problems is not new. Most prior
work has focused on state abstraction for problem decomposition,
which has been well studied in both path and task planning meth-
ods [7, 12, 15]. Such decomposition has also been shown to benefit
communication and coordination in multi-agent planning [5, 17].
The temporal-state constraints for plan space abstraction used in
our approach resemble options in semi-MDP and LTL expressions
in temporal logic [6, 23, 26]. However, these prior approaches have
mostly focused on applying plan space abstraction to improving
planning [1, 23], or learning such abstraction for problem decompo-
sition [13, 14]. We consider plan space abstraction for coordination.

3 EVALUATION
In this evaluation, we demonstrate how the language computed by
ourmethod (referred to as a coordination language) contributes to ro-
bust coordination during plan execution. We consider a warehouse
setting (see Fig. 2) where robots are tasked to deliver products

between one of the storage zones (located at the corners of the
workspace and labeled as S1 and S2) and one of the dispatch zones
(located at the other corners of the workspace and labeled as D1
and D2). Products must be transported between the corresponding
zones (i.e., S1 − D1 and S2 − D2). For a given task, the robots start
randomly from different corners and must deliver, respectively, to
the corresponding zones for storage or dispatch. At the same time,
a human worker may be present in the workspace at a random
location other than the four corners. We assume that the human
worker would not change his/her location during the task. Since
the robots are from different manufacturers, they would not be able
to robustly detect each other but can both detect the human. To
guarantee safety, the robots must coordinate to avoid collisions
with each other and the human. We assume that robots move at
the same speed. The robots can coordinate their plans via a coordi-
nation language before execution but can only detect the position
of the human after the plan execution starts.

Environment Success Rate Success Rate Gain
Size Exact Plan Our Language
3 × 3 18.0% 24.0% 33.3%
4 × 3 28.0% 42.0% 50.0%
5 × 3 27.0% 34.0% 25.9%
4 × 4 43.0% 58.0% 34.9%

Table 1: Success rates of 100 tasks with dynamic obstacles.

We tested the success rates of 100 randomly generated tasks
when the robots used the exact plan or a sentence in the computed
coordination language for expressing the plan to coordinate. When
the coordination language is used, the robots can choose other
candidate plans (if available) that are expressed by the sentence
even when the initial plan would lead to a collision with the human.
Table 1 shows the results for environments of different sizes where
a language is constructed for each environment. We can see that the
use of coordination languages significantly improved the success
rate in all environments. As the environment size increases, the
success rates also increased as the chance of collision decreases.

Figure 2: Problem setting for a navigation domain with dy-
namic obstacles (i.e., a human worker).

4 CONCLUSIONS AND DISCUSSIONS
In this paper, we introduced a novel language formation problem for
achieving robust coordination. It bridged a gap in prior methods for
coordinating planning agents in distributed systems and combined
their advantages. We viewed language as a machinery for resolving
miscoordinations and reverse-engineered a language to maximize
flexibility during plan execution while guaranteeing optimality. A
full version of our work can be accessed online here [29].
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