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ABSTRACT
Modular robots can change between different configurations to
adapt to complex and dynamic environments. Therefore, perform-
ing accurate and efficient changes to modular robot system, known
as the self-reconfiguration problem, is essential. Existing reconfig-
uration algorithms are based on discrete motion primitives. How-
ever, freeformmodular robots are connected without alignment and
their motion space is continuous, making existing reconfiguration
methods infeasible. In this work, we design a parallel distributed
self-reconfiguration algorithm based on multi-agent reinforcement
learning for freeform modular robots. We introduce a collaboration
mechanism into the reinforcement learning to avoid conflicts in con-
tinuous action spaces. Simulations show that our algorithm reduces
conflicts and improves effectiveness compared to the baselines.
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1 INTRODUCTION
Through reconfiguration between different configurations, a multi-
robot system composed of a number of modular robots can adapt to
different environments and tasks. Therefore, modular robots have
drawn extensive attention from many fields [10, 18].

However, the strong reliance on the connectors with specific
locations is a common problem for most types of modular robots,
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which may result in task failures [1, 20]. Freeform modular robots,
inspired by the diverse connectivity mechanisms found in living
organisms, have continuous freeform connectors that do not need
to be aligned and can be reconfigured more freely in a continuous
configuration space [9, 20, 22, 27]. Freeform designs increase the ef-
ficiency of self-reconfiguration and reduces connection errors [20].

The reconfiguration problem is one of the most important and
challenging problems for freeform modular robots. The diverse
ways in which modular robots are combined lead to a huge con-
figuration space [14], and the search for a global optimal planning
between any two configurations is NP-Complete [5, 26]. In the
freeform modular robot system, the connection and movement
methods are infinite. Consequently, the kinematic constraints are
too complex, making existing reconfiguration methods infeasible.

In this paper, we propose a multi-agent reinforcement learning
based distributed reconfiguration algorithm for freeform modular
robots. The main challenge is that the motion trajectories conflict
during the decentralised reconfiguration process due to the kine-
matic constraints. To address this problem, we let modular robots
learn to avoid conflicts autonomously. Since it is difficult to synchro-
nise global configuration information in real time in modular robot
systems [23], we use local information for coordination. In this
case, the method of maximising joint rewards is not suitable [12].
While several methods have been proposed for mixed-motive prob-
lem [2, 6, 11, 19, 24], most of them are only applicable to discrete
action space problems. Inspired by the altruism scale, we design a
personalized collaboration mechanism in proximal policy optimiza-
tion (PPO) to avoid conflicts. We introduce personalised altruism
factors for all modular robots to accommodate the dynamic depen-
dencies among modular robots and find the optimal altruism of
each modular robot through meta-reinforcement learning [4, 21].
Simulations show that our method has better reconfiguration effec-
tiveness by avoiding conflict.

2 APPROACH
The goal of the reconfiguration algorithm is to achieve rapid changes
between configuration pairs. Any given configuration is uniquely
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determined by the position information 𝑃𝑖 of each modular robot
𝑖 and the topological connection information 𝛿𝑖, 𝑗 of all modular
robots.

We adopt the method of multi-agent reinforcement learning to
solve the reconfiguration problem. To comply with the general
design principles of modular robots, we take the reconfiguration
problem of modular robots as a Decentralized Partially Observable
Markov Decision Process (Dec-POMDP).

2.1 Reward Function
For the defined reconfiguration problem, we design a reward func-
tion as,

𝑅𝑖,𝑡 = 𝑐𝑝 × 𝑅
𝑡𝑜𝑝

𝑖,𝑡
+ 𝑐𝑞 × 𝑅

𝑔𝑒𝑜

𝑖,𝑡
− 𝑐𝑡 (1)

which is used by all modular robots. This reward encourages the
modular robots to approach the target configuration in both the
geometric and topological connection directions. The topological
reward encourages modular robots to take actions to approach
their local topological relationships in the target configuration. The
geometric reward measures the effective distance that the modular
robot moves in the correct direction to the target position per time
step, thus making the overall configuration consistent with the
target configuration.

2.2 Altruism Proximal Policy Optimization
We introduce an altruismmechanism in PPO to achieve cooperation
among modular robots and avoid conflicts.

We introduce the sociologicalmechanism of the altruism scale [16]
to measure the tendency of each modular robot to benefit others
and form the altruism reward

𝑅𝐴𝑆𝑖,𝑡 = 𝑅𝑖,𝑡 + 𝛼𝑖𝑅
𝑀𝐹
𝑖,𝑡 (2)

where 𝛼𝑖 is an altruism factor in the interval (−1, 1) that measures
each modular robot’s attitude that benefits others. The mean-field
reward 𝑅𝑀𝐹

𝑖,𝑡
represents the average reward of neighboring modular

robots [13, 15]. Note that the altruism factor we introduce is more
suitable for reconfiguration which is a non-zero-sum game, than
the ring metric of social value orientation [12, 15] introduced by
previous work in non-strict zero-sum game problems.

The vector 𝜶 is the set of 𝛼𝑖 , representing the distribution of
altruistic tendencies across the population. And the altruism factor
𝛼𝑖 is an personalised attribute of each module 𝑀𝑖 . Heterogeneity
and diversity can improve performance [12].

We train PPO by way of CTDE(centralized training and decen-
tralized execution) [11] to maximize 𝑅𝐴𝑆 :

𝐿𝐴𝑆 (\𝑖 , 𝛼𝑖 ) = 𝐸𝑖,𝑡 [min(𝑘𝐴𝐴𝑆
𝑖,𝑡 , 𝑐𝑙𝑖𝑝 (𝑘, 1 − Y, 1 + Y)𝐴𝐴𝑆

𝑖,𝑡 ] (3)

where the altruism advantage function 𝐴𝐴𝑆
𝑖,𝑡

= 𝐴𝑖,𝑡 + 𝛼𝑖𝐴
𝑀𝐹
𝑖,𝑡

.
But it is impractical to design each 𝛼𝑖 manually. Therefore, re-

ferring to the meta reinforcement learning [4, 15, 21], we take
Equation 4 as the optimization goal, and perform another layer of
training to optimize an appropriate personalised 𝛼𝑖 for each modu-
lar robot. A suitable set of personalised 𝜶 can lead to higher overall
reconfiguration performance.

𝐿𝐺𝑖 (\𝑖 |\1, \2 · · · ) = E[
∑︁
𝑡

∑
𝑗 𝑅 𝑗,𝑡

𝑁
] (4)

3 LEARNING TO RECONFIGURE
Referring to the setting of [23], we construct two-dimensional con-
figuration pairs with 12 modular robots in unity-ml [7], as the basic
environment for simulation experiments.

We implement the above method based on the PPO of Rllib [8]
and share the same policy in all modular robots through the param-
eter sharing [3], which guarantees the scalability of the method.

We compare multiple baselines that can handle continuous mo-
tion control, including PPO [17], MFPPO [25] and CoPO [15].

Evaluation metrics include mean congruence and conflict rate.
The mean congruence is the average of the similarity of the con-
figuration obtained from the reconfiguration method to the target
configuration, which represents the effectiveness of the method.
The conflict rate is the proportion of modular robots that cause
conflicts to the total number of modular robots. Conflict detection
is simplified for easy detection in Unity into collision detection,
loop formation detection and break detection.

Figure 1: Comparison of different methods.

Figure 1 shows that our method has advantages in mean con-
gruence and lower conflict rates compared with the baselines. The
lower conflict rate guarantees the reconfiguration performance of
our method. Due to the lack of a collaboration mechanism, both
IPPO and MFPPO show poor performance, since conflicts between
modular robots are more likely to occur during the reconfiguration
of complex configurations. Compared with the CoPO algorithm
with collaboration mechanism, the personalised altruism factors in
our method enhance the diversity of modular robots and improve
the effectiveness of reconfiguration. Collaboration mechanisms
based on non-strict zero-sum games do not fit the nature of the
reconfiguration problem.

4 CONCLUSION
In this paper, a multi-agent reinforcement learning algorithm based
on altruism factors was designed to realize the continuous reconfig-
uration control of freeform modular robots. Our approach demon-
strated the research prospects for the automatic design of recon-
figurable motion controllers. Our study was limited to the two-
dimensional reconfiguration problem.
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