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ABSTRACT
An important challenge in the field of autonomous open-ended
learning is the autonomous learning of interdependent tasks, and
in particular when such interdependencies are non-stationary, so
that the robot has to modify the acquired knowledge to properly
sequence goals that constitute preconditions for other ones. This
work proposes a hierarchical robotic architecture to address this
type of scenarios, allowing for the autonomous learning of both the
skills necessary to achieve the multiple goals, and of the sequences
reflecting the relations between them. Moreover, our system is en-
dowed with a mechanism that, on the basis of self-estimated com-
petence over goal achievement, is able to self-tune the exploration-
exploitation balance to cope with the non-stationarity of the envi-
ronment. The architecture is tested using an UR5e robot operating
in a scenario where it should autonomously learn to accomplish
various manipulation tasks.

KEYWORDS
Developmental Robotics; Machine Learning for Robot Control; Cog-
nitive Control Architectures
ACM Reference Format:
Alejandro Romero, Richard J. Duro, Gianluca Baldassarre, and Vieri Giuliano
Santucci. 2023. Learning Multiple Tasks with Non-stationary Interdepen-
dencies in Autonomous Robots: Extended Abstract. In Proc. of the 22nd
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023, IFAAMAS,
3 pages.

1 INTRODUCTION
Autonomy is a crucial feature for the development of robotic sys-
tems that can be deployed in real-world scenarios, where robots
must adapt to situations not foreseen at design-time and learn new
skills to achieve their goals eventually handling unexpected changes
in the environment. Amongst other approaches [7–9], intrinsically
motivated open-ended learning [1, 10] leverages on “curiosity” and
self-generated motivational signals [15] to build agents (often im-
plemented in the reinforcement learning framework [5]) that can
autonomously select their own goals and acquire the behaviours
necessary to achieve them [3, 4, 6, 16]. However, in spite of the con-
siderable advances that this line of research has managed to make

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

towards increasingly autonomous systems, the majority of works
in the field [2, 16] focus on the autonomous learning of multiple
independent tasks, that is, tasks not related to each other. Even less
investigated, especially with real robots, are scenarios in which the
interdependencies between tasks are non-stationary, thus requir-
ing the robot to modify its behaviour and the representation of its
knowledge. In this work we propose an architecture providing a
solution for robots operating in such scenarios.

2 IMPLEMENTED SOLUTION
Leveraging and extending previous research [11, 13, 14, 17], we
propose a hierarchical cognitive architecture that encompasses dif-
ferent mechanisms and functions to autonomously: (1) select goals
on the basis of IMs; (2) select and learn sequences of interdepen-
dent (sub-)goals needed to achieve the desired one (autonomous
curriculum learning); (3) cope with non-stationary interdependen-
cies between goals. The system is composed of 3 main layers, each
working at a different temporal level (epochs, trials and time-steps):

• The Goal-Selector, implemented as an N -armed bandit, deter-
mines the goal to pursue in the current epoch (composed of 𝑛
trials) according to a softmax selection rule based on the current
values of the goals. These values are updated through a standard
exponential moving average (EMA) of the competence improve-
ments Δ𝐶𝑔 obtained when training on each goal. In particular,
Δ𝐶𝑔 is calculated as the difference between two averages of pre-
dictions (𝐶𝑃 ), each one over a period 𝑃𝑇 of 10 attempts related
to the same goal:

Δ𝐶𝑔 =

∑𝑡
𝑖=𝑡−(𝑃𝑇−1) |𝐶𝑃𝑖 |

𝑃𝑇
−
∑𝑡−𝑃𝑇
𝑖=𝑡−(2𝑃𝑇−1) |𝐶𝑃𝑖 |

𝑃𝑇
(1)

where 𝐶𝑃𝑖 is the difference between the prediction generated
at the beginning of the trial (expected probability of achieving
𝑔) and the actual result of the robot’s attempt (1 for success, 0
otherwise).

• The Sub-Goal Selector, implemented as a Q-Learning algorithm,
at each trial receives as inputs the selected goal 𝑔 and the current
state of the environment with respect to the goals, i.e., a binary
vector stating if a goal has been achieved during the current
epoch. Given this information, the sub-goal to be pursued is se-
lected according to a softmax selection rule based on the Q-values
of the sub-goals, depending on goal specific reinforcements 𝑟𝑔
obtained when achieving 𝑔. To cope with the non-stationarity
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Figure 1: Experimental setup and relations between goals.

Goal name Description
Goal 1 Orange button pressed
Goal 2 Green button pressed
Goal 3 Blue button pressed
Goal 4 Red cylinder grabbed
Goal 5 Blue cylinder grabbed
Goal 6 Blue cylinder in square box

Table 1: Achievable goals/sub-goals.

of goal interdependencies, the sub-goal selector modifies its ex-
ploratory attitude on the basis of the competence of the system
in achieving the selected goals. In particular, the temperature of
the softmax determining the noise level for the selection of the
sub-goals is proportional to 1 − Δ𝐶𝑔 .

• The Experts are represented as utility models and implemented
as neural-networks value functions (see [12]), each one associated
with a specific goal. The network receives as input the state of the
robot (sensors values) and provides as output the expected utility
(probability of reaching the associated goal modulated by the
achieved utility). Thus, at each time step, the robot generates a
series of candidate actions and uses the value function associated
with the goal to choose the most appropriate one.

3 EXPERIMENTAL RESULTS
To test the proposed architecture we created a robotic scenario
that includes a UR5e robot placed in front of a table where there
are several cylinders, boxes and buttons (Fig. 1 left). The boxes
are opened by pressing the buttons, which allows us to create
interdependencies between objects and make them change over
time (see Fig. 1 right). Thus, for one goal to be accessible, it is
necessary to previously reach another goal or goals. The different
goals and sub-goals the robot can achieve are defined in Table 1.

In the experiments we controlled the direction of movement and
the height of the arm. The perception of the robot (input to utility
models) at each instant of time was: 𝑃 (𝑡) = (𝑑1, . . . , 𝑑𝑛, 𝑠1, . . . , 𝑠𝑚)
where 𝑑 𝑗 are the relative distances between the objects and the
robot end-effector, and 𝑠𝑖 are the states of the different buttons.

The experiment was run 20 times and for 2,000 epochs each
run. Each epoch finished after a maximum of 8 trials or when the
main goal was achieved. After that, the scenario was reset. Each
trial ended when the robot reached the selected sub-goal or after a
timeout of 70 time steps. Interdependencies between objects (see
Fig. 1 right) changed every 1,000 epochs.

Figure 2: (Top) performance in achieving the different goals
of the scenario. (Bottom) trials needed to achieve the goals.

To evaluate the learning of the system, Fig. 2 (top) shows the
performance of the robot in achieving each goal. Thus, we can see
if it was able to learn the skills and the interdependencies necessary
to achieve the goals. In addition, to evaluate the efficiency of the
robot in carrying out the tasks, that is, that it only performs the
optimal number of sub-goals selections to reach the goal, Fig. 2
(bottom) shows the sub-goal selections (trials) needed to achieve
the goal set by the goal selector.

The results show the robot can efficiently adapt to the change
of interdependencies and achieve 100% performance in all of them.
A video illustrating the robot’s performance is available at https:
//github.com/alejandro-romero/AAMAS_2023.

4 CONCLUSIONS
The innovation of the presented architecture is two-fold: on the one
hand, the de-coupling into two different layers of the mechanisms
related to autonomous goal selection based on IMs, and the selection
and learning of the sequences of sub-goals necessary to achieve
the desired one; on the other hand, the capability of the system to
face non-stationary scenarios where interdependencies between
goals can change, based on a mechanism that employs a measure of
competence to autonomously regulate the exploration-exploitation
balance. The experimental results have shown the effectiveness of
the proposed architecture and paved the way to its application to
scenarios involving compound objects and unstructured conditions
that can change in time.
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