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ABSTRACT
With the development of autonomous driving, it is becoming in-
creasingly common for autonomous vehicles (AVs) and human-
driven vehicles (HVs) to share the same roads. We propose a hier-
archical multi-vehicle decision-making and planning framework
with several advantages. The framework makes decisions jointly
for all vehicles within the traffic flow and reacts promptly to the
dynamic environment through a high-frequency planning module.
The decision module produces interpretable action sequences that
can explicitly communicate self-intentions to the surrounding HVs.
We also present the cooperation factor and the trajectory weight
set, which bring diversity to autonomous vehicles in traffic at both
the social and individual levels.
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1 INTRODUCTION
With the combined efforts of academia and industry, research on
autonomous driving has flourished over the past decade. A growing
number of companies are testing their autonomous vehicles (AVs)
on the road, becoming new participants besides human-driven vehi-
cles (HVs). The real-world vehicle flow encompasses a diversity of
behaviors at both the social and individual levels, known as social
behavior and driving habit. Social behavior [15, 18] implies how a ve-
hicle interacts with others. When another vehicle is changing lanes,
overtaking or merging, the driver chooses whether to continue the
current movement or yield based on experience. Drivers also have
their own driving characteristics. Driving habits [12, 17, 19] are
therefore introduced to describe the individual difference, especially
on cruising comfort and driving safety.
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The behavioral diversity of AVs is mainly expressed through
the decision-making and planning modules, which are core com-
ponents of the automated driving system. The prevailing single-
vehicle planning approaches [3, 5, 7] struggle to game with other
traffic participants in the real world, and therefore exhibit an insuffi-
cient understanding of social interactions. Multi-vehicle centralised
trajectory planners effectively address the complex interactions in
traffic flow, including optimization-based [6, 14], MCTS-based [8, 9]
and learning-based approaches [1, 2, 11]. However, these methods
fail to express driving intentions explicitly and are thus poorly
understood by passengers onboard or by surrounding HVs. Popular
open-source autonomous driving simulators [4, 10] also provide
solutions for background traffic generation, but they apply rigid
driving behavioral models, resulting in overly conservative and
non-diverse trajectories.

We propose a hierarchical framework for decision-making and
planning in a multi-vehicle environment. By adding a vehicle coop-
eration factor in the decision module and introducing the trajectory
weight set in the planning module, our framework produces solu-
tions with social and individual level diversity. We also consider
all AVs and HVs in the traffic flow when making decisions and can
therefore explore complex interactions between them.

2 HIERARCHICAL FRAMEWORK
Consider a set V = {𝑉1,𝑉2, · · · ,𝑉𝑁 } containing 𝑁 vehicles in-
cluding AVs and HVs, where 𝐾 AVs available for the centralized
planning, denoted as VC = {𝑉1, · · · ,𝑉𝑘 } ⊆ V . The remaining AVs
and all HVs are treated as uncontrolled vehicles that make decisions
and motion planning independently. Our task is to generate feasible
trajectories with behavioral diversity for each controllable vehicle
𝑉𝑖 ∈ VC and collaborating with other uncontrolled vehicles in the
environment. We propose a two-stage multi-vehicle framework
containing both decision making and trajectory planning modules.
The schematic diagram of our proposed framework is illustrated
in Figure 1, where vehicles with IDs 2 and 3 (in red) are AVs while
vehicle 1 (in blue) is an uncontrolled vehicle.

The input to the framework is a perceivable environment which
contains road conditions, route information, vehicle status and pre-
dictions of uncontrolled vehicles. In the first stage, we propose a
decision-making module to address the social interactions among
vehicles. This module proposes a modified Monte-Carlo tree search
algorithm to generate long-term, coarse decisions for all vehicles

Poster Session II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2571



Figure 1: The proposed decision and planning framework

jointly and simultaneously. The environment is constructed on the
Frenét frame [13] for decision-making, which allows the decision
module to focus on inter-vehicle interactions without considering
road constraints. Since actions like continuous lane-changing and
overtaking take a relatively long time to complete, the decision
module is required to be forward-looking and consistent. The deci-
sion module solves the interactions between vehicles by making
centralized joint decisions on the vehicle flow. It can generate di-
verse social behaviors via setting different cooperation factors in
the reward function. The decision module generates a temporal
sequence of discrete actions for each controlled vehicle 𝑉𝑖 . Since
each action in the sequence has a physical meaning, such as chang-
ing lane, accelerating, maintaining speed, etc., the output of our
decision module is interpretable.

In the second stage, the planning module receives discrete action
sequences and generates short-term kinematic-feasible trajectories
for each controlled vehicle. Our planning module adopts a dis-
tributed parallel architecture, i.e. running a planner independently
for each vehicle, which more closely resembles human driving in
the real world. For each parallel planner, the leading part of its
received action sequence is selected as the guidance to generate a
continuous trajectory that satisfies to the vehicle kinematic con-
straints in Cartesian space. This module reflects the driving habits
of different drivers through planner’s selection strategy for different
trajectories. The planner maintains a high replanning frequency
and continuously predicts surrounding vehicles to avoid collisions.

3 MCTS FOR MULTIPLE VEHICLES
3.1 Metanode
Several multi-vehicle decision methods based on the Monte-Carlo
tree search, also known as MCTS, have been developed [8, 9]. Our
approach takes the HVs in the traffic flow into account and there is
no priority between vehicles in the decision-making process. We
replace the node in the general MCTS method with ametanode that
can generate multi-vehicle actions simultaneously.

For a metanode extended to time step 𝑡 , it receives all controlled
vehicle’s state at the current moment. The state for vehicle 𝑉𝑖 at
time step 𝑡 can be described as x𝑡

𝑖
= [𝑠, 𝑑, 𝑣]𝑇 , 𝑠 and 𝑑 are the

Frenét coordinates of the vehicle and 𝑣 is the longitudinal velocity.
We define a set of possible actions for each controlled vehicle to
take in one time step. There are five actions - maintain speed (KS),
accelerate (AC), decelerate (DC), change lanes to the left (LCL) and
to the right (LCR). By selecting different actions, the vehicle can
then calculate its corresponding state at the next time step. As for

uncontrolled vehicles in the flow, we assume they performing a
lane-keeping (KL) action. This action dynamically adjusts their
velocity and always maintains an appropriate distance from the
leading vehicle during the decision-making process.

3.2 Pruning
Although each vehicle has five optional actions, not every one of
them is feasible and some may lead to a potential collision. Ac-
cording to [16], vehicles in traffic should maintain a shortest safe
distance 𝐷𝑠 from its leading vehicle, which is defined as:

𝐷𝑠 = 𝑣 · 𝜏 +𝑀𝑇𝐻 · Δ𝑣 (1)

where 𝜏 > 0 and 𝑀𝑇𝐻 > 0 are both time constants, representing
reaction time and minimum time headway respectively. 𝑣 denotes
vehicle longitude velocity and Δ𝑣 = 𝑣 − 𝑣𝑙 denotes the velocity
difference between the self and lead vehicles. Further, the velocity
limit that each controlled vehicle in the flow should satisfy is:

𝑣 ∈
[
𝑣 𝑓 −

Δ𝑠𝑓 − 𝜏 · 𝑣 𝑓
𝑀𝑇𝐻

,min(𝑀𝑇𝐻 · 𝑣𝑙 + Δ𝑠𝑙
𝜏 +𝑀𝑇𝐻 ,

Δ𝑠𝑙
𝜏

)
]

(2)

where Δ𝑠𝑙 and Δ𝑠𝑓 indicate the gap between the current vehicle
and its leading/following vehicle, respectively. 𝑣𝑙 and 𝑣 𝑓 denote the
velocity of the leading and following vehicle.

In the metanode at time 𝑡 , when vehicle𝑉𝑖 takes an action 𝑎 and
the resulting state x𝑡+1

𝑖
does not satisfy Equation (2), action 𝑎 be-

comes invalid and the corresponding state x𝑡+1
𝑖

will be abandoned.

3.3 Reward Function with Social Behavior
We first calculate the reward 𝑅𝑖 separately for each vehicle 𝑉𝑖 in
the traffic flow. The reward 𝑅𝑖 ∈ [0, 1] has three parts, namely
driving in the target lane, driving in the lane’s center line and
maintaining the consistency of the actions. For the vehicle flow to
exhibit a diversity of social behaviors, the cooperative tendency of
the vehicle should be characterized by the reward. Similar to [15],
we introduce a social behavior reward for vegicle 𝑉𝑖 considering
both reward to self and reward to others:

𝑅𝑖 = 𝑅self + 𝛾𝑖 𝑅other (3)

where 𝛾𝑖 ∈ [0, 1] being the cooperation factor. 𝛾𝑖 = 0 implies the
vehicle is egoistic and takes no account of the behavior of other
vehicles, whereas 𝛾𝑖 = 1 denotes the vehicle treats other vehicles
equally important to itself when making decisions. Each vehicle 𝑉𝑖
in the flow possesses its own factor 𝛾𝑖 .

Since each metanode in the search tree handles the actions of
the whole vehicle flow, the reward of the simulation is obtained by
combining all vehicles’ behavior rewards:

𝑋flow =
1
𝐾

∑︁
1≤𝑖≤𝐾

𝑅𝑖 + 𝛾𝑖
∑
𝑗≠𝑖 𝑅 𝑗

1 + (𝐾 − 1)𝛾𝑖
(4)

The distribution of 𝑋flow is guaranteed to stay in [0, 1]. Finally,
reward 𝑋flow is used to update the average rewards of all selected
metanodes in the back-propagation phase of MCTS.

The superiority of our proposed framework is validated through
experiments in multiple scenarios, and the diverse behaviors in
the generated vehicle trajectories are demonstrated through closed-
loop simulations. For detailed discussion and experiment results,
we refer the reader to the full version [20].
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