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ABSTRACT
In the context of continuous surveillance of a spatial region, this

paper investigates a practically-relevant scenario where robotic

sensors are introduced asynchronously and inter-robot communi-

cation is discrete, event-driven, local and asynchronous. The robots

are assumed to be lazy; i.e., they seek to minimize their area of

responsibility by equipartitioning the domain to be covered. We

construct a non-trivial example which shows that coverage guar-

antees for a given algorithm might be sensitive to the number of

robots and, therefore, may not scale in obvious ways. It also sug-

gests that when such algorithms are to be verified and validated

prior to field deployment, the number of robots or sensors used in

test scenarios should match that deployed on the field.
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1 INTRODUCTION
We address the problem of dynamically partitioning an environ-

ment for the purpose of continuous surveillance using a distributed

scheme which relies on local, event-triggered communication be-

tween mobile robots. The robots are introduced asynchronously

and seek to minimize their individual areas of coverage while en-

suring that the environment as a whole is covered. The distributed

nature of the communication and task allocation between the robots

leads to the following question with practical ramifications: if a
reasonably designed coverage algorithm is proven to work for some
non-trivial range of numbers of robots, can it fail to work when the
number of robots is changed to outside the proven range? We answer

this question in the affirmative by constructing an example.

Optimal sensor placement problems map the number of sensors

and their placement to an objective function which needs to be

either maximized or minimized subject to constraints related to the

sensors and the environment [4, 5, 9–11]. When the sensors are

mounted on mobile robotic platforms, the sensor placement prob-

lem needs to be solved dynamically together with the associated
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path planning problems for the mobile robots [6, 15]. These cov-
erage problems have been extended to accommodate non-convex

domains [2, 3, 13], robots with finite communication radii [7], envi-

ronments with unknown sensory functions [14], and cases where

the necessity for covering the area has to be balanced against the

spatial distribution of events in that area [1]. A continuous flow of

information may not be required for coverage; instead, communica-

tion triggered by individual agents [12] or gossip between random

pairs of agents [8] may suffice.

1.1 Contribution
This paper considers lazy robots operating under a coverage algo-

rithm based on [8]. By lazy, we mean that a robot’s share of the

total area at any given time is proportional to the reciprocal of the

total number of agents that it is aware of, which can be viewed

as a proxy for the robot minimizing its energy consumption. We

examine the conditions under which this lazy behavior leads to a

loss of coverage. We construct a simplified example and a sequence

of events which leads to an instantaneous loss of coverage when

the number of robots exceeds a non-trivial threshold. The same

sequence of events actually leads to an equipartition of the domain

(i.e., the optimum solution) for a smaller number of robots. This

demonstration suggests that the success of multi-agent algorithms

operating in the presence of restricted communication might be

sensitive to the number of agents involved, above and beyond the

known complexities that arise due to the “scale” of the problem or

the geometry of the environment. We refer the reader to [16] for

the proofs of the mathematical results presented here.

2 MAIN RESULTS
Let 𝑄 ⊂ R2 be a closed, bounded domain containing 𝑁 ≥ 1 agents

or sensors. Let 𝑝𝑖 ∈ 𝑄 denote the position of the 𝑖th agent, and let

𝑉𝑖 ⊆ 𝑄 denote the area assigned to the 𝑖th agent, where 𝑝𝑖 ∈ 𝑉𝑖 . A
sufficient condition for coverage by 𝑁 agents is that ∪𝑁

𝑖=1
𝑉𝑖 = 𝑄 .

This assignment is carried out in a distributed manner by the agents

to ensure an equipartition; i.e., |𝑉𝑖 | = |𝑉𝑗 | for all 𝑖, 𝑗 , where |𝑉𝑖 |
denotes the area of𝑉𝑖 . We assume that the agents are lazy; i.e.,𝑉𝑖 =
|𝑄 |/𝑛𝑖 for all 𝑖 at any given time, where 𝑛𝑖 ≥ 1 denotes the number

of agents that agent 𝑖 is aware of, including itself. Unlike [12], we

assume that an interaction event is a random occurrence, which is a

proxy for two agents entering their mutual communication radius

in the course of, for instance, responding to an environmental event.

We consider the gossip-based coverage algorithm described in

Algorithm 1. We are interested in the domain 𝑄 which is a unit

disc with a hole in the centre, and the partitions are assumed to
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be angular slices. This is equivalent to partitioning 𝑆1 (the unit

circle) into sectors. Algorithm 1 includes a specific sequence of

interaction events aimed at generating an equipartition. Once all

𝑁 agents are introduced sequentially (clockwise, without loss of

generality), they interact in the opposite order (i.e., agent 𝑗 with its

immediate anticlockwise neighbor) until either coverage is lost, or

an equipartition is achieved, or the number of interactions crosses a

prescribed threshold. A related sequence, which proceeds clockwise,
is also presented in [16].

Algorithm 1 Agent interaction and area allocation

Require: Domain 𝑄 = 𝑆1 and 𝑁 > 1 agents

Initialize: add agent 1 to 𝑄 ; 𝑝1 = 𝜋/2 and 𝑉1 = 2𝜋

while last agent in 𝑄 < 𝑁 do
Add new agent 𝑗 ; 𝑛 𝑗 = 𝑛 𝑗−1 = 𝑗

𝑝 𝑗−1 ← 𝑝 𝑗−1 ⊖ 𝜋/𝑛 𝑗 , 𝑝 𝑗 = 𝑝 𝑗−1 ⊕ 2𝜋/𝑛 𝑗
|𝑉𝑗 | = |𝑉𝑗−1 | = 2𝜋/𝑛 𝑗

end while
Initialize 𝑡 = 0, 𝑙 = 𝑁 − 1
while Stopping condition not reached do
𝑙𝑛 = anticlockwise neighbor of 𝑙

Update: 𝑛𝑙𝑛 = 𝑁 ; |𝑉𝑙𝑛 | = 2𝜋/𝑁 ; 𝑝𝑙𝑛 = 𝑝𝑙 ⊖ 2𝜋/𝑁 ;

Update 𝑙 ← 𝑙𝑛 ; 𝑡 ← 𝑡 + 1
Stopping condition reached if 𝑡 = 𝑡max or 𝑄 is equipartitioned

or coverage is lost

end while

In Algorithm 1, the operators ⊕ and ⊖ represent clockwise and

anticlockwise rotations. Thus, when we write 𝜃3 = 𝜃2 ⊕ 𝜃1 for

𝜃 {1,2,3} ∈ 𝑆1, it is understood that 𝜃 {1,2,3} ∈ [0, 2𝜋) (and likewise

for ⊖).
We proceed to state the main results. The reader is referred to

[16] for the complete proof.

Theorem 1. Suppose 𝑁 > 1 agents are introduced in 𝑄 = 𝑆1 and
that they interact as per Algorithm 1. Then,

(1) the addition of a new agent (i.e., the first while loop of Algo-
rithm 1) does not lead to a loss of coverage.

(2) if 𝑁 ≤ 7, then Algorithm 1 terminates with the loss of instan-
taneous coverage if and only if 𝑁 = 7, and with equipartition
of 𝑄 for 𝑁 ≤ 6.

While Algorithm 1 ensures that coverage is not lost for 𝑁 ≤ 6,

we can find an alternate sequence of events which leads to loss of

coverage for 𝑁 = 5. This occurs when the interaction described in

the second while loop of Algorithm 1 involves each agent, starting

with agent 𝑁 , interacting with its immediate clockwise neighbor.
The theoretical machinery leading to Thm 1 is difficult to ex-

tend to cases when 𝑁 increases beyond 7, and we use a numeri-

cal parametric study instead. The application of Algorithm 1 for

𝑁 ∈ [8, 19] (the case 𝑁 ≤ 7 is covered using Thm 1) shows that it

terminates prematurely with loss of continuous coverage as follows:

between agents 1 and 2 for 𝑁 ∈ [7, 11]; between agents 2 and 3

for 𝑁 ∈ [12, 16]; and between agents 3 and 4 for 𝑁 ∈ [17, 19]. We

plot the uncovered area after the termination of Algorithm 1, as a

function of 𝑁 , in Fig. 1. Although the size of the uncovered area

reduces rapidly (albeit not monotonically) with increasing 𝑁 , the

partition at the end of Algorithm 1 is seen to not be an equipartition.

Figure 1: The uncovered area after Algorithm 1 terminates.

3 CONCLUDING DISCUSSION
Although carried out in a simplified setting, our work illustrates

how the performance guarantees of coverage algorithms may be

sensitive to the number of agents. It is difficult to obtain coverage

guarantees rigorously for an arbitrary number of lazy agents when

the domain is non-convex and inter-agent communication is lim-

ited and local. In a practical setting, our results suggest that the

verification and validation of an algorithm prior to field deployment

needs to be carried out with the same number of robots as that

deployed on the field.

We assumed that the agents repartition and resize their areas of

responsibility lazily. Our results show that some degree of altruism,

in the sense of partaking a larger area, might be necessary in order

to guarantee coverage using a manifestation of Algorithm 1 for

an arbitrary number of agents. The extra area, above that recom-

mended by a lazy scheme, could reduce with each interaction so

that the eventual area of responsibility matches that of the lazy

scheme. It remains an open problem to determine if there exists a

sequence of events and an accompanying sequence of reductions

which guarantees that Algorithm 1 leads to an equipartitioned

domain for an arbitrary number of agents.
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