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ABSTRACT
Multi-agent path finding (MAPF) aims to find a set of conflict-free
paths for multiple agents so that each agent can reach its destination
while optimizing a global cost. Recently, learning-based methods
gain much attention due to their better real-time performance and
scalability. However, most existing learning-based methods suffer
from poor cooperation among agents since only local observations
are used to make decisions. Meanwhile, methods that are bent on
team benefits perform poorly due to a lack of individual exploration.
To address this problem, this paper proposes a novel Hybrid Reward
Path Finding (HRPF), which employs the global information to
learn a cooperation mechanism for agents during the training, and
embeds it in distributed networks to generate strategies during the
execution. HRPF enforces agents to learn strategies from a new
type of reward function that decomposes a complex MAPF task into
a team task and individual tasks. Experiments on random obstacle
gridworlds show that, HRPF performs significantly better in success
rate and collision rate than state-of-the-art learning-based methods.
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1 INTRODUCTION
The task of multi-agent path finding (MAPF) aims at planning a
group of conflict-free and shortest paths for multiple agents [13].
MAPF arises in many real world applications of multi-agent systems
such as warehouse robots [4], office robots [15], aircraft-towing
vehicles [8]. A key challenge of MAPF is to avoid frequent collisions
and blockages, as multiple agents interact with each other. Many
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search-based methods [2, 3, 11, 12] performwell in finding collision-
free solutions using global information in simple environments, but
perform poorly in terms of real-time performance and scalability.

Recently, a great amount of work focus on learning-based meth-
ods [9] for better real-time performance and scalability. Learning-
basedmethods typically generate one-step policies online for agents
based on localised observations. In order to implement distributed
planning with effective collaboration, existing learning-based meth-
ods usually use multi-agent reinforcement learning (MARL) al-
gorithms in a centralised training with decentralised execution
(CTDE) paradigm [1, 6, 10, 16]. The popular MARL methods use
team rewards to encourage agents to complete team tasks. However,
a MAPF task is complex, with different sub-tasks to be completed by
each agent, and the team reward does not guide each agent through
the sub-task in detail. As a result, typical MARL methods that do
not make full use of individual rewards are less efficient in training
and perform poorly in practice.

This paper proposes a novel Hybrid Reward Path Finding (HRPF)
for MAPF, which considers both the global team task and indi-
vidual sub-tasks. HRPF builds on the CTDE paradigm, which in-
herits the benefits of distributed execution, while enabling agents
to use global information to acquire collaborative skills. During
the training, HRPF uses a novel mechanism of reward function,
hybrid reward, to guide the agents’ behaviour. Agents learn blue-
print strategies for completing team tasks from team rewards and
learn more refined strategies from individual rewards. During the
execution, each agent independently makes decisions, only accord-
ing to its individual observations, which guarantees the real-time
performance and scalability of the method.

2 METHODOLOGY
HRPF defines hybrid reward for MAPF tasks, consisting of the team
reward and the individual reward. The individual reward 𝑅in is
only visible to each agent itself and is only related to that agent’s
observation 𝑜 and action 𝑎. It is defined as follows:

𝑅in (𝑜, 𝑎) = 𝜖 in𝑔 (𝑜, 𝑎)𝑅in𝑔 + 𝜖 in𝑐 (𝑜, 𝑎)𝑅in𝑐 + 𝜖 in𝑝 (𝑜, 𝑎)𝑅in𝑝 . (1)

𝜖 in𝑔 , 𝜖 in𝑔 , and 𝜖 in𝑔 are indicator functions for whether the agent first
reaches the target, collides with other agents, and move or stay off
the goal, respectively. 𝑅in𝑔 , 𝑅in𝑐 , 𝑅in𝑝 are reward values for the agent
performing these actions. The team reward 𝑅te is shared by the

Poster Session II
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

2577



Table 1: The comparison of algorithms in different environments

Methods 8 Agent (0%, 10%, 20%, 30% Obstacle Densities)
CA↓ CO↓ SR↑ MS↓ CR↓ TM↓

HRPF 0.4 0.4 0.6 3.1 0.0 0.0 0.0 0.0 100 99 91 50 26 29 52 152 0.01 0.01 0.01 0.02 110 115 144 314
PRIMAL 1.9 3.0 3.0 6.0 0.0 0.0 0.0 0.0 93 90 48 15 35 63 149 234 0.06 0.05 0.02 0.03 221 233 345 565
PICO 0.6 0.6 1.3 2.3 0.0 0.0 0.0 0.0 100 96 55 25 27 42 135 205 0.02 0.01 0.01 0.01 124 143 290 463

Methods 16 Agent (0%, 10%, 20%, 30% Obstacle Densities)
CA↓ CO↓ SR↑ MS↓ CR↓ TM↓

HRPF 1.1 2.1 5.1 11.6 0.0 0.0 0.0 0.0 100 96 65 13 28 39 127 232 0.04 0.05 0.04 0.05 219 244 380 686
PRIMAL 6.6 8.3 11.6 17.6 0.0 0.0 0.1 0.1 92 88 50 3 57 72 176 249 0.11 0.12 0.07 0.07 482 510 766 1396
PICO 3.0 3.9 5.0 8.0 0.0 0.0 0.0 0.0 100 95 57 7 31 49 145 240 0.10 0.08 0.03 0.03 251 299 526 1292

Methods 32 Agent (0%, 10%, 20%, 30% Obstacle Densities)
CA↓ CO↓ SR↑ MS↓ CR↓ TM↓

HRPF 5.3 10.5 24.3 42.0 0.0 0.0 0.0 0.0 95 78 21 1 45 88 218 255 0.12 0.12 0.11 0.16 471 571 1162 1620
PRIMAL 26.2 30.5 47.3 98.3 0.0 0.4 1.6 2.1 92 72 9 0 54 108 245 256 0.49 0.28 0.19 0.38 958 1094 2227 3431
PICO 14.8 20.6 36.3 83.4 0.0 0.2 1.3 1.6 100 75 19 0 38 97 225 256 0.39 0.21 0.16 0.33 551 774 1713 3176

whole team and is related to the joint observation o and the joint
action a. It is defined as follows:

𝑅te (o, a) = 𝜖te𝑤 (o, a)𝑅te𝑤 + 𝑛te𝑔 (o, a)𝑅te𝑔 + 𝑛te𝑐 (o, a)𝑅te𝑐 . (2)

The first term of RHS indicates the final reward when the task is
completed, where 𝜖te𝑤 is the indicator function for whether the task
is completed. 𝑛te𝑔 , 𝑛te𝑐 denote the number of agents that first reach
the destination and the number of agents that collide at the current
time step, respectively. 𝑅te𝑤 , 𝑅te𝑔 , 𝑅te𝑐 are reward values.

HRPF trains two different Q-value networks for each agent, in-
dividual Q-network and team Q-network, based on DQN [7]. The
input embedding and network structure of the Q-network is similar
to that in PRIMAL [10], as shown in Fig. 1.
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Figure 1: Network structure of HRPF.

During the training, each agent’s networks output an estimated
individual Q-value and a part of the team Q-value, denoted 𝑄̃ in

𝑖
and

𝑄̃ te
𝑖
respectively, where the subscript 𝑖 denotes the agent index. The

individual loss function 𝐿in is the TD error between the individual
reward and the network output:

𝐿in = [(𝑅in𝑖 + 𝛾 max
𝑎𝑡+1
𝑖

𝑄̃ in
𝑖 (𝑜𝑡+1𝑖 , 𝑎𝑡+1𝑖 )) − 𝑄̃ in

𝑖 (𝑜𝑡𝑖 , 𝑎
𝑡
𝑖 )]

2, (3)

where 𝛾 is the discount of the model, and the superscript 𝑡 (or 𝑡 + 1)
denotes the time step. For the team Q-network, all agents aim to
approximate a total team Q-value 𝑄̃ te that is the sum of the output
of each team Q-network 𝑄̃ te

𝑖
. The monotonicity allows each agent

to maximise the team 𝑄 te and participate in distributed execution

by selecting greedy actions only for its 𝑄 te
𝑖

[14]. With the value
decomposition technique, the team loss function 𝐿te is:

𝐿te = [(𝑅te + 𝛾 max
𝑎𝑡+1
𝑖

∑︁
𝑖

𝑄̃ te
𝑖 (𝑜𝑡+1𝑖 , 𝑎𝑡+1𝑖 )) −

∑︁
𝑖

𝑄̃ te
𝑖 (𝑜𝑡𝑖 , 𝑎

𝑡
𝑖 )]

2 . (4)

During the execution, each agent combines the Q-values of the
two networks to get a new type of value, denoted𝑄comb

𝑖
. We balance

the weight of the individual Q-value and the team Q-value by a
parameter 𝛽 . The formula for 𝑄comb

𝑖
is:

𝑄comb
𝑖 (𝑜𝑡𝑖 , 𝑎

𝑡
𝑖 ) =

1
1 + 𝛽

𝑄̃ in
𝑖 (𝑜𝑡𝑖 , 𝑎

𝑡
𝑖 ) +

𝛽

1 + 𝛽
𝑄̃ te
𝑖 (𝑜𝑡𝑖 , 𝑎

𝑡
𝑖 ) . (5)

Typically, the individual Q-value and the team Q-value should be
weighted approximately equally, so in practice 𝛽 is usually on the
same scale as the number of agents 𝑘 , as the total team Q-value is
decomposed into 𝑘 components for each agent. Next, each agent
generates a 𝜖-greedy policy based on 𝑄comb

𝑖
.

3 EXPERIMENT
We conduct experiments on random obstacle grid worlds with
reference to the setup in PICO [5]. To test the performance under
different settings, the number of agents varies in three cases: 8, 16,
32, and the density of obstacles varies in four cases: 0%, 10%, 20%,
and 30%. The performance is evaluated on 6 different measurements
compared with two baselines, PRIMAL [10] and PICO [5].

To further analyze the effectiveness of hybrid reward, we conduct
ablation studies on the reward function. We propose two methods,
IRPF and TRPF, with the team reward and the individual reward
are removed respectively. Fig. 2 shows the result on grid worlds
with an obstacle density of 20% and a number of agents of 8.

Figure 2: Ablation experiment result.
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