Poster Session Il

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Multi-Agent Pickup and Delivery
with Task Probability Distribution
Extended Abstract

Andrea Di Pietro
Politecnico di Milano
Milano, Italy
andrea4.dipietro@mail. polimi.it

ABSTRACT

Multi-Agent Pickup and Delivery (MAPD) consists in completing
a set of tasks by having agents move to the pickup location and
then to the delivery location of each task. In MAPD, new tasks are
dynamically added to the system throughout its lifetime and exist-
ing algorithms usually assume either complete ignorance or full
knowledge about the position and the time at which future tasks
will appear until they are actually added to the system. This paper
introduces a novel MAPD problem in which a spatial and temporal
probability distribution of future tasks is known and defines algo-
rithms that take advantage of this knowledge to reduce the average
time required to execute tasks. In particular, we build on an existing
MAPD algorithm, Token Passing (TP), proposing different ways
to exploit a given task probability distribution. Experiments show
that these methods can have a positive impact on the time required
to complete the tasks.

KEYWORDS
Multi-Agent Pickup and Delivery; Task Probability Distribution

ACM Reference Format:
Andrea Di Pietro, Nicola Basilico, and Francesco Amigoni. 2023. Multi-Agent
Pickup and Delivery with Task Probability Distribution: Extended Abstract.
In Proc. of the 22nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 — June
2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION

In MAPD [5], agents have to plan collision-free paths on a graph
in order to execute a set of tasks, each consisting of reaching a
pickup vertex and then a delivery one. MAPD generalizes the well-
known Multi-Agent Path Finding (MAPF) problem [11], where
each agent has to complete a single and pre-assigned task whose
pickup location is the agent’s start vertex. Warehouse manage-
ment [13], aircraft operations [7], ride-sharing services [2], and
video games [6] are examples of important real-world applications
where this problem might appear.

To solve MAPD, the literature features both online and offline
methods. In the online approach, tasks are assumed to become
known only upon their arrival. Some algorithms decompose the
problem into a sequence of MAPF instances [1] where each free
agent can be assigned to a new task and paths are replanned at
each time [12] for all agents or for a group of them (e.g., only for

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 — June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Nicola Basilico
Universita degli Studi di Milano
Milano, Italy
nicola.basilico@unimi.it

2580

Francesco Amigoni
Politecnico di Milano
Milano, Italy
francesco.amigoni@polimi.it

free agents [5]). Offline approaches, on the other hand, assume
that tasks are known in advance and solve the assignment and
path-planning problems in a single phase [3, 8].

The above two families of approaches are antithetical with re-
spect to how they are informed about future tasks. The former
assumes that the system is completely unaware of any informa-
tion about tasks until their arrival. The latter assumes to have full
knowledge at planning time. Following the recognized need for
intermediate approaches [4, 9], in this work we propose online so-
lution methods for MAPD that are informed by a prior probability
distribution of future task arrivals. Such knowledge might be avail-
able in those settings where historical data can be used to predict
where and when new tasks will appear and could be exploited to
improve task assignment and path planning [9].

The methods we propose are refinements of TP [5], arguably one
of the most common algorithms for MAPD. TP is a decentralized
online algorithm in which agents assign themselves to tasks and
plan paths one after another by passing a shared token that contains
the current task set, task assignments, and paths. It leverages the
same idea of Cooperative A* [10], where each agent plans its optimal
path under the constraints imposed by the agents that planned
before.

2 PROBLEM AND METHODS

We introduce MAPD with task probability distribution (MAPD-P).
As in MAPD, we consider a graph G = (V, E), where k agents, each
at an initial vertex, can wait at the current vertex or move to an
adjacent one. Each action (wait or move) costs one discrete time
step. A set T contains the unassigned tasks, which are dynamically
added at runtime. Each task is defined as 7; = (sj, g;), where s; and
g;j are the pickup and delivery vertices, respectively. A function
P(t,sj,9;) gives the probability that task r; = (sj,g;) will arrive
at time ¢. From P, we derive P;(t,s) as the probability that a task
arrives at time ¢ with pickup vertex s and any delivery vertex.

A solution for MAPD-P is a set of cost-minimizing collision-free
paths (agents do not share the same vertex nor the same edge at the
same time) that complete all tasks in a finite time. The solution’s
cost can be given by the makespan, that is, the minimum number of
time steps after which all the tasks are completed, or by the service
time defined as the average number of time steps elapsed from the
arrival of a task and its completion. It can be easily shown that
MAPD-P reduces to MAPF and, as a consequence, is NP-hard.

In the following, we outline three techniques to exploit the avail-
ability of P in the online resolution of MAPD-P. The techniques,
called TP-m2, TP-m1, and TP with preemption, can be combined
together and are implemented as refinements of the TP algorithm.

Poster Session Il

They will be triggered for the specific conditions they cover, allow-
ing a rollback to the standard TP’s routines in any other case.

TP-m2. In general, it might happen that a free agent cannot be
assigned to a new task because, at that time, there are no unassigned
tasks in T. In TP, these agents simply wait at their current locations
(if they are not delivery locations of other tasks) or at designated
locations to not interfere with other agents. In any case, the waiting
location has no relationship with possible future tasks.

Our first refinement, TP-m2, exploits P to take advantage of the
waiting time of agents and make them move towards locations that
are likely to become pickup vertices of future tasks. More precisely,
given any (approximate) distance function h between two locations,
if at time w a free agent a; (call loc(a;) its current location) does not
find a task in T, it will compute a path to the location s* maximizing

w+1+h(loc(a;),s) P1(t S)

t= 1
plw,s, a;) = =2

1+ h(loc(aj),s) W

This function provides a score proportional to the probability
that a task will appear at s by the time the agent would reach it.
The value is divided by h to favor closer locations.

TP-m1. In TP, the agent with the token assigns itself to the clos-
est task in T (if any) and there is no subsequent check on whether
other agents become free closer to the pickup location of the task.
When the closest task is far from the agent, it could be more con-
venient to speculatively leave the task to another agent and wait
for future tasks with closer pickup locations. In TP-m1 we use P to
make this kind of decision.

Instead of directly sending agent a; to the pickup location s;
of the closest task 7; € T, we verify whether s* (computed by
maximizing Equation 1) is a more attractive location. This location
will replace s; if (i) it is closer than s; and (ii) p(,s%, a;) > (1 +
h(loc(a;), s j))_l. Condition (ii), states that the attractiveness of s*
must be at least as large as the one of s; (where a task resides
with certainty). Notice that, due to condition (i), this rule is not
excessively speculative since only locations that are closer than s;
will be considered.

TP-m[1,2] with preemeption. Planning for destinations cho-
sen by any of the above methods can result in wasted efforts when
speculated task arrivals do not realize. Suppose that an agent a; is
traveling to a speculatively chosen location s* where no task will be
present upon arrival. If in the meanwhile another task appears close
to s*, other free agents will be assigned to it. However, it is likely
that a; would be a better candidate since it is already approaching
that task’s neighborhood and, more importantly, it will be free once
arrived there.

We leverage this rationale by giving a; a preemption right to
future tasks that might arrive inside a preemption zone defined by a
space-time neighborhood of s*. Specifically, when agent a; decides
to move to a location s* where no task is currently available, the
agent is assigned a preemption zone composed of the set of pickup
locations s that satisfy the following conditions: (a) no other agent
is traveling to s; (b) no current task has s as its pickup location; (c)
s does not belong to any other preemption zone; (d) h(s*, s) is less
than a threshold h. If not redeemed before, preemption rights are
cleared after f time steps have elapsed since the agent arrived at s*.

2581

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

60

51.73

<? 2 N SO A F
@2 @R pgo o

(a) Service time

94 51 99.24

<?

Q¢ NP) Do oA
(?.6‘ ,(9,6\ <9 «?,«\ %?,«\ %R Qo

(b) Cost per task

Figure 1: Results with 80 task at frequency 0.05, 10 agents,
warehouse with corridors.

3 EXPERIMENTAL RESULTS

Figure 1 reports results obtained in a warehouse environment with
corridors defined on a grid of approx. 25 x 50 cells!. Tasks follow a
Poisson distribution for the arrival time and a uniform distribution
for locations. A* is used for planning paths for single agents and h
is implemented as the Manhattan distance. When enabling preemp-
tion, and 7 are set to 3. Results are averaged over 20 repeatable
random runs. Besides service time, we consider also the cost per
task, i.e., the number of agents’ movements divided by the total
number of tasks. Makespan is not reported here since no remark-
able differences are observed among the different algorithms. In
the figure, "TP-m" corresponds to having both m1 and m2 enabled,
the subscript "p" stands for preemption. In these experiments, P
encodes a full and exact knowledge about tasks arrivals. Under
this idealistic scenario, we assess the maximum gains and costs
achievable by our methods.

TP-m2 and TP-m, with and without preemption, have a lower
service time than TP-m1 and TP-m1y. Hence, exploiting agents’
idleness seems to offer more potential margins of gain. This trend
is observed only with low task frequencies: increasing the arrival
rate keeps the agents always busy reducing exploitable idle time.
Looking at the cost per task, we note that the large benefits of the
TP-m2 come at greater consumption of resources. This is reasonable
since in TP idle agents are just waiting at some locations instead of
planning and following speculative paths.

1Code available at https://github.com/andrea4dipietro/MAPD-P/tree/master/ MAPD-P.

https://github.com/andrea4dipietro/MAPD-P/tree/master/MAPD-P

Poster Session Il

ACKNOWLEDGMENTS

This paper is supported by PNRR-PE-AI FAIR project funded by the
NextGeneration EU program.

REFERENCES

[1] J.Li, A. Tinka, S. Kiesel, J. Durham, S. Kumar, and S. Koenig. 2021. Lifelong

(2]

Multi-Agent Path Finding in Large-Scale Warehouses. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI). 11272-11281.

M. Li, Z. Qin, Y. Jiao, Y. Yang, J. Wang, C. Wang, G. Wu, and J. Ye. 2019. Efficient
ridesharing order dispatching with mean field multi-agent reinforcement learning.
In Proceedings of the World Wide Web Conference (WWW). 983-994.

M. Liu, H. Ma, J. Li, and S. Koenig. 2019. Task and Path Planning for Multi-
Agent Pickup and Delivery. In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS). 1152-1160.

H. Ma. 2020. Target Assignment and Path Planning for Navigation Tasks with Teams
of Agents. Ph.D. Dissertation. University of Southern California, Department of
Computer Science, Los Angeles, CA.

H. Ma, J. Li, S. Kumar, and S. Koenig. 2017. Lifelong multi-agent path finding
for online pickup and delivery tasks. In Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS). 837-845.
H. Ma, J. Yang, L. Cohen, S. Kumar, and S. Koenig. 2017. Feasibility Study:
Moving Non-Homogeneous Teams in Congested Video Game Environments.

2582

[11

[12

(13]

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

In Proceedings of the Thirteenth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment. 270-272.

R. Morris, C. Pasareanu, K. Luckow, W. Malik, H. Ma, T. K. S. Kumar, and S. Koenig.
2016. Planning, Scheduling and Monitoring for Airport Surface Operations. AT
Magazine 29(1) (2016), 9-20.

V. Nguyen, P. Obermeier, T. Son, T. Schaub, and W. Yeoh. 2017. Generalized Target
Assignment and Path Finding Using Answer Set Programming. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI). 1216-1223.

O. Salzman and R. Stern. 2020. Research challenges and opportunities in multi-
agent path finding and multiagent pickup and delivery problems. In Proceedings of
the International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS). 662-667.

D. Silver. 2005. Cooperative pathfinding. In First Artificial Intelligence and Inter-
active Digital Entertainment Conference. 117-122.

R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li, D. Atzmon,
L. Cohen, S. Kumar, E. Boyarski, and R. Bartak. 2019. Multi-agent pathfind-
ing: Definitions, variants, and benchmarks. In Proceedings of the Symposium on
Combinatorial Search (SoCS). 151-158.

J. Svancara, M. VIk, R. Stern, D. Atzmon, and R. Bartak. 2019. Online multi-agent
pathfinding. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
7732-7739.

P. Wurman, R. D’Andrea, and M. Mountz. 2008. Coordinating Hundreds of Co-
operative, Autonomous Vehicles in Warehouses. AAAI-16 Workshop on Planning
for Hybrid Systems 29 (2008), 608-614.

	Abstract
	1 Introduction
	2 Problem and methods
	3 Experimental results
	Acknowledgments
	References

